1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-06-05 11:24:17 +03:00
occt/src/GeomFill/GeomFill_ConstrainedFilling.cxx

1493 lines
44 KiB
C++

// Created on: 1995-10-26
// Created by: Laurent BOURESCHE
// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// Modified by skv - Fri Jun 18 12:52:54 2004 OCC6129
#include <AdvApprox_ApproxAFunction.hxx>
#include <BSplCLib.hxx>
#include <Geom_BSplineSurface.hxx>
#include <GeomFill_BoundWithSurf.hxx>
#include <GeomFill_ConstrainedFilling.hxx>
#include <GeomFill_CoonsAlgPatch.hxx>
#include <GeomFill_DegeneratedBound.hxx>
#include <GeomFill_TgtOnCoons.hxx>
#include <gp_XYZ.hxx>
#include <Law.hxx>
#include <Law_BSpFunc.hxx>
#include <Law_BSpline.hxx>
#include <Law_Linear.hxx>
#include <Standard_Failure.hxx>
#include <Standard_NotImplemented.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColStd_HArray1OfReal.hxx>
#ifdef DRAW
// Pour le dessin.
#include <Draw_Appli.hxx>
#include <Draw_Display.hxx>
#include <Draw.hxx>
#include <Draw_Segment3D.hxx>
#include <Draw_Segment2D.hxx>
#include <Draw_Marker2D.hxx>
#include <Draw_ColorKind.hxx>
#include <Draw_MarkerShape.hxx>
static Standard_Boolean dodraw = 0;
static Standard_Real drawfac = 0.1;
#endif
#ifdef OCCT_DEBUG
Standard_IMPORT void Law_draw1dcurve(const TColStd_Array1OfReal& pol,
const TColStd_Array1OfReal& knots,
const TColStd_Array1OfInteger& mults,
const Standard_Integer deg,
const gp_Vec2d& tra,
const Standard_Real scal);
Standard_IMPORT void Law_draw1dcurve(const Handle(Law_BSpline)& bs,
const gp_Vec2d& tra,
const Standard_Real scal);
// Pour les mesures.
#include <OSD_Chronometer.hxx>
static OSD_Chronometer totclock, parclock, appclock, cstclock;
#endif
static Standard_Integer inqadd(const Standard_Real d1,
const Standard_Real d2,
Standard_Real* k,
Standard_Integer* m,
const Standard_Integer deg,
const Standard_Real tolk)
{
Standard_Integer nbadd = 0;
m[0] = m[1] = deg - 2;
if (d1 != 1. && d2 != 1.){
if(Abs(d1+d2-1.) < tolk) {
k[0] = 0.5 * (d1 + 1. - d2);
nbadd = 1;
}
else{
nbadd = 2;
k[0] = Min(d1,1. - d2);
k[1] = Max(d1,1. - d2);
}
}
else if (d1 != 1.) {
k[0] = d1;
nbadd = 1;
}
else if (d2 != 1.) {
k[0] = d2;
nbadd = 1;
}
return nbadd;
}
static Handle(Law_Linear) mklin(const Handle(Law_Function)& func)
{
Handle(Law_Linear) fu = Handle(Law_Linear)::DownCast(func);
if(fu.IsNull()) {
fu = new Law_Linear();
Standard_Real d,f;
func->Bounds(d,f);
fu->Set(d,func->Value(d),f,func->Value(f));
}
return fu;
}
static void sortbounds(const Standard_Integer nb,
Handle(GeomFill_Boundary)* bound,
Standard_Boolean* rev,
GeomFill_CornerState* stat)
{
// trier les bords (facon bourinos),
// flaguer ceux a renverser,
// flaguer les baillements au coins.
Standard_Integer i,j;
Handle(GeomFill_Boundary) temp;
rev[0] = 0;
gp_Pnt pf,pl;
gp_Pnt qf,ql;
for (i = 0; i < nb-1; i++){
if(!rev[i]) bound[i]->Points(pf,pl);
else bound[i]->Points(pl,pf);
for (j = i+1; j <= nb-1; j++){
bound[j]->Points(qf,ql);
// Modified by skv - Fri Jun 18 12:52:54 2004 OCC6129 Begin
Standard_Real df = qf.Distance(pl);
Standard_Real dl = ql.Distance(pl);
if (df<dl) {
if(df < stat[i+1].Gap()){
temp = bound[i+1];
bound[i+1] = bound[j];
bound[j] = temp;
stat[i+1].Gap(df);
rev[i+1] = Standard_False;
}
} else {
if(dl < stat[i+1].Gap()){
temp = bound[i+1];
bound[i+1] = bound[j];
bound[j] = temp;
stat[i+1].Gap(dl);
rev[i+1] = Standard_True;
}
}
// Modified by skv - Fri Jun 18 12:52:54 2004 OCC6129 End
}
}
if(!rev[nb-1]) bound[nb-1]->Points(pf,pl);
else bound[nb-1]->Points(pl,pf);
bound[0]->Points(qf,ql);
stat[0].Gap(pl.Distance(qf));
// flaguer les angles entre tangentes au coins et entre les normales au
// coins pour les bords contraints.
gp_Pnt pbid;
gp_Vec tgi, nori, tgn, norn;
Standard_Real fi, fn, li, ln;
for (i = 0; i < nb; i++){
Standard_Integer next = (i+1)%nb;
if(!rev[i]) bound[i]->Bounds(fi,li);
else bound[i]->Bounds(li,fi);
bound[i]->D1(li,pbid,tgi);
if(rev[i]) tgi.Reverse();
if(!rev[next]) bound[next]->Bounds(fn,ln);
else bound[next]->Bounds(ln,fn);
bound[next]->D1(fn,pbid,tgn);
if(rev[next]) tgn.Reverse();
Standard_Real ang = M_PI - tgi.Angle(tgn);
stat[next].TgtAng(ang);
if(bound[i]->HasNormals() && bound[next]->HasNormals()){
stat[next].Constraint();
nori = bound[i]->Norm(li);
norn = bound[next]->Norm(fn);
ang = nori.Angle(norn);
stat[next].NorAng(ang);
}
}
}
static void coonscnd(const Standard_Integer nb,
Handle(GeomFill_Boundary)* bound,
Standard_Boolean* rev,
GeomFill_CornerState* stat,
// Handle(GeomFill_TgtField)* tga,
Handle(GeomFill_TgtField)* ,
Standard_Real* mintg)
{
Standard_Real fact_normalization = 100.;
Standard_Integer i;
// Pour chaque coin contraint, on controle les bounds adjascents.
for(i = 0; i < nb; i++){
if(stat[i].HasConstraint()){
Standard_Integer ip = (i-1+nb)%nb;
Standard_Real tolang = Min(bound[ip]->Tolang(),bound[i]->Tolang());
Standard_Real an = stat[i].NorAng();
Standard_Boolean twist = Standard_False;
if(an >= 0.5*M_PI) { twist = Standard_True; an = M_PI-an; }
if(an > tolang) stat[i].DoKill(0.);
else{
Standard_Real fact = 0.5*27./4;
tolang *= (Min(mintg[ip],mintg[i])*fact*fact_normalization);
gp_Vec tgp, dnorp, tgi, dnori, vbid;
gp_Pnt pbid;
Standard_Real fp,lp,fi,li;
if(!rev[ip]) bound[ip]->Bounds(fp,lp);
else bound[ip]->Bounds(lp,fp);
bound[ip]->D1(lp,pbid,tgp);
bound[ip]->D1Norm(lp,vbid,dnorp);
if(!rev[i]) bound[i]->Bounds(fi,li);
else bound[i]->Bounds(li,fi);
bound[i]->D1(fi,pbid,tgi);
bound[i]->D1Norm(fi,vbid,dnori);
Standard_Real scal1 = tgp.Dot(dnori);
Standard_Real scal2 = tgi.Dot(dnorp);
if(!twist) scal2 *= -1.;
scal1 = Abs(scal1+scal2);
if(scal1 > tolang) {
Standard_Real killfactor = tolang/scal1;
stat[i].DoKill(killfactor);
#ifdef OCCT_DEBUG
std::cout<<"pb coons cnd coin : "<<i<<" fact = "<<killfactor<<std::endl;
#endif
}
}
}
}
}
static void killcorners(const Standard_Integer nb,
Handle(GeomFill_Boundary)* bound,
Standard_Boolean* rev,
Standard_Boolean* nrev,
GeomFill_CornerState* stat,
Handle(GeomFill_TgtField)* tga)
{
Standard_Integer i;
// Pour chaque bound, on controle l etat des extremites et on flingue
// eventuellement le champ tangent et les derivees du bound.
for(i = 0; i < nb; i++){
Standard_Integer inext = (i+1)%nb;
Standard_Boolean fnul, lnul;
Standard_Real fscal, lscal;
if(!nrev[i]){
fnul = stat[i].IsToKill(fscal);
lnul = stat[inext].IsToKill(lscal);
}
else{
lnul = stat[i].IsToKill(lscal);
fnul = stat[inext].IsToKill(fscal);
}
if(fnul || lnul){
#ifdef OCCT_DEBUG
parclock.Start();
#endif
bound[i]->Reparametrize(0.,1.,fnul,lnul,fscal,lscal,rev[i]);
#ifdef OCCT_DEBUG
parclock.Stop();
#endif
if(bound[i]->HasNormals() && tga[i]->IsScalable()) {
Handle(Law_BSpline) bs = Law::ScaleCub(0.,1.,fnul,lnul,fscal,lscal);
tga[i]->Scale(bs);
#ifdef DRAW
if(dodraw) Law_draw1dcurve(bs,gp_Vec2d(1.,0.),1.);
#endif
}
}
}
}
//=======================================================================
//class : GeomFill_ConstrainedFilling_Eval
//purpose: The evaluator for curve approximation
//=======================================================================
class GeomFill_ConstrainedFilling_Eval : public AdvApprox_EvaluatorFunction
{
public:
GeomFill_ConstrainedFilling_Eval (GeomFill_ConstrainedFilling& theTool)
: curfil(theTool) {}
virtual void Evaluate (Standard_Integer *Dimension,
Standard_Real StartEnd[2],
Standard_Real *Parameter,
Standard_Integer *DerivativeRequest,
Standard_Real *Result, // [Dimension]
Standard_Integer *ErrorCode);
private:
GeomFill_ConstrainedFilling& curfil;
};
void GeomFill_ConstrainedFilling_Eval::Evaluate (Standard_Integer *,/*Dimension*/
Standard_Real /*StartEnd*/[2],
Standard_Real *Parameter,
Standard_Integer *DerivativeRequest,
Standard_Real *Result,// [Dimension]
Standard_Integer *ErrorCode)
{
*ErrorCode = curfil.Eval(*Parameter, *DerivativeRequest, Result[0]);
}
//=======================================================================
//function : GeomFill_ConstrainedFilling
//purpose :
//=======================================================================
GeomFill_ConstrainedFilling::GeomFill_ConstrainedFilling
(const Standard_Integer MaxDeg,
const Standard_Integer MaxSeg)
: degmax(MaxDeg),
segmax(MaxSeg),
appdone(Standard_False),
nbd3(0)
{
dom[0] = dom[1] = dom[2] = dom[3] = 1.;
memset (ctr, 0, sizeof (ctr));
memset (degree, 0, sizeof (degree));
memset (ibound, 0, sizeof (ibound));
memset (mig, 0, sizeof (mig));
}
//=======================================================================
//function : Init
//purpose :
//=======================================================================
void GeomFill_ConstrainedFilling::Init(const Handle(GeomFill_Boundary)& B1,
const Handle(GeomFill_Boundary)& B2,
const Handle(GeomFill_Boundary)& B3,
const Standard_Boolean NoCheck)
{
#ifdef OCCT_DEBUG
totclock.Reset();
parclock.Reset();
appclock.Reset();
cstclock.Reset();
totclock.Start();
#endif
Standard_Boolean rev[3];
rev[0] = rev[1] = rev[2] = Standard_False;
Handle(GeomFill_Boundary) bound[3];
bound[0] = B1; bound[1] = B2; bound[2] = B3;
Standard_Integer i;
sortbounds(3,bound,rev,stcor);
// on reoriente.
rev[2] = !rev[2];
// on reparamettre tout le monde entre 0. et 1.
#ifdef OCCT_DEBUG
parclock.Start();
#endif
for (i = 0; i <= 2; i++){
bound[i]->Reparametrize(0.,1.,0,0,1.,1.,rev[i]);
}
#ifdef OCCT_DEBUG
parclock.Stop();
#endif
// On cree le carreau algorithmique (u,(1-u)) et les champs tangents
// 1er jus.
// On cree donc le bord manquant.
gp_Pnt p1 = bound[1]->Value(1.);
gp_Pnt p2 = bound[2]->Value(1.);
gp_Pnt ppp(0.5*(p1.XYZ()+p2.XYZ()));
Standard_Real t3 = Max(bound[1]->Tol3d(),bound[2]->Tol3d());
Handle(GeomFill_DegeneratedBound)
DB = new GeomFill_DegeneratedBound(ppp,0.,1.,t3,10.);
ptch = new GeomFill_CoonsAlgPatch(bound[0],bound[1],DB,bound[2]);
Handle(GeomFill_TgtField) ttgalg[3];
if(bound[0]->HasNormals())
ttgalg[0] = tgalg[0] = new GeomFill_TgtOnCoons(ptch,0);
if(bound[1]->HasNormals())
ttgalg[1] = tgalg[1] = new GeomFill_TgtOnCoons(ptch,1);
if(bound[2]->HasNormals())
ttgalg[2] = tgalg[3] = new GeomFill_TgtOnCoons(ptch,3);
for (i = 0; i <= 3; i++){
mig[i] = 1.;
if(!tgalg[i].IsNull()) MinTgte(i);
}
if(!NoCheck){
// On verifie enfin les conditions de compatibilites sur les derivees
// aux coins maintenant qu on a quelque chose a quoi les comparer.
Standard_Boolean nrev[3];
nrev[0] = nrev[1] = 0;
nrev[2] = 1;
mig[2] = mig[3];
coonscnd(3,bound,nrev,stcor,ttgalg,mig);
killcorners(3,bound,rev,nrev,stcor,ttgalg);
}
// on remet les coins en place (on duplique la pointe).
stcor[3] = stcor[2];
for (i = 0; i <= 3; i++){
mig[i] = 1.;
if(!tgalg[i].IsNull()) {
if(!CheckTgte(i)) {
Handle(Law_Function) fu1,fu2;
ptch->Func(fu1,fu2);
fu1 = Law::MixBnd(Handle(Law_Linear)::DownCast (fu1));
fu2 = Law::MixBnd(Handle(Law_Linear)::DownCast (fu2));
ptch->Func(fu1,fu2);
break;
}
}
}
Build();
}
//=======================================================================
//function : Init
//purpose :
//=======================================================================
void GeomFill_ConstrainedFilling::Init(const Handle(GeomFill_Boundary)& B1,
const Handle(GeomFill_Boundary)& B2,
const Handle(GeomFill_Boundary)& B3,
const Handle(GeomFill_Boundary)& B4,
const Standard_Boolean NoCheck)
{
#ifdef OCCT_DEBUG
totclock.Reset();
parclock.Reset();
appclock.Reset();
cstclock.Reset();
totclock.Start();
#endif
Standard_Boolean rev[4];
rev[0] = rev[1] = rev[2] = rev[3] = Standard_False;
Handle(GeomFill_Boundary) bound[4];
bound[0] = B1; bound[1] = B2; bound[2] = B3; bound[3] = B4;
Standard_Integer i;
sortbounds(4,bound,rev,stcor);
// on reoriente.
rev[2] = !rev[2];
rev[3] = !rev[3];
// on reparamettre tout le monde entre 0. et 1.
#ifdef OCCT_DEBUG
parclock.Start();
#endif
for (i = 0; i <= 3; i++){
bound[i]->Reparametrize(0.,1.,0,0,1.,1.,rev[i]);
}
#ifdef OCCT_DEBUG
parclock.Stop();
#endif
// On cree le carreau algorithmique (u,(1-u)) et les champs tangents
// 1er jus.
ptch = new GeomFill_CoonsAlgPatch(bound[0],bound[1],bound[2],bound[3]);
for (i = 0; i <= 3; i++){
if(bound[i]->HasNormals()) tgalg[i] = new GeomFill_TgtOnCoons(ptch,i);
}
// on calcule le min de chacun des champs tangents pour l evaluation
// des tolerances.
for (i = 0; i <= 3; i++){
mig[i] = 1.;
if(!tgalg[i].IsNull()) MinTgte(i);
}
if(!NoCheck){
// On verifie enfin les conditions de compatibilites sur les derivees
// aux coins maintenant qu on a quelque chose a quoi les comparer.
Standard_Boolean nrev[4];
nrev[0] = nrev[1] = 0;
nrev[2] = nrev[3] = 1;
coonscnd(4,bound,nrev,stcor,tgalg,mig);
killcorners(4,bound,rev,nrev,stcor,tgalg);
}
// On verifie les champs tangents ne changent pas de direction.
for (i = 0; i <= 3; i++){
mig[i] = 1.;
if(!tgalg[i].IsNull()) {
if(!CheckTgte(i)) {
Handle(Law_Function) fu1,fu2;
ptch->Func(fu1,fu2);
Handle(Law_Function) ffu1 = Law::MixBnd(Handle(Law_Linear)::DownCast (fu1));
Handle(Law_Function) ffu2 = Law::MixBnd(Handle(Law_Linear)::DownCast (fu2));
ptch->SetFunc(ffu1,ffu2);
break;
}
}
}
Build();
}
//=======================================================================
//function : SetDomain
//purpose :
//=======================================================================
void GeomFill_ConstrainedFilling::SetDomain
(const Standard_Real l, const Handle(GeomFill_BoundWithSurf)& B)
{
if(B == ptch->Bound(0)) dom[0] = Min(1.,Abs(l));
else if(B == ptch->Bound(1)) dom[1] = Min(1.,Abs(l));
else if(B == ptch->Bound(2)) dom[2] = Min(1.,Abs(l));
else if(B == ptch->Bound(3)) dom[3] = Min(1.,Abs(l));
}
//=======================================================================
//function : ReBuild
//purpose :
//=======================================================================
void GeomFill_ConstrainedFilling::ReBuild()
{
if(!appdone) throw Standard_Failure("GeomFill_ConstrainedFilling::ReBuild Approx non faite");
MatchKnots();
PerformS0();
PerformS1();
PerformSurface();
}
//=======================================================================
//function : Boundary
//purpose :
//=======================================================================
Handle(GeomFill_Boundary) GeomFill_ConstrainedFilling::Boundary
(const Standard_Integer I) const
{
return ptch->Bound(I);
}
//=======================================================================
//function : Surface
//purpose :
//=======================================================================
Handle(Geom_BSplineSurface) GeomFill_ConstrainedFilling::Surface() const
{
return surf;
}
//=======================================================================
//function : Build
//purpose :
//=======================================================================
void GeomFill_ConstrainedFilling::Build()
{
for (Standard_Integer count = 0; count < 2; count++){
ibound[0] = count; ibound[1] = count+2;
ctr[0] = ctr[1] = nbd3 = 0;
Standard_Integer ii ;
for ( ii = 0; ii < 2; ii++){
if (ptch->Bound(ibound[ii])->HasNormals()) {
ctr[ii] = 2;
}
else if (!ptch->Bound(ibound[ii])->IsDegenerated()){
ctr[ii] = 1;
}
nbd3 += ctr[ii];
}
#ifdef OCCT_DEBUG
appclock.Start();
#endif
if(nbd3) PerformApprox();
#ifdef OCCT_DEBUG
appclock.Stop();
#endif
}
appdone = Standard_True;
#ifdef OCCT_DEBUG
cstclock.Start();
#endif
MatchKnots();
PerformS0();
PerformS1();
PerformSurface();
#ifdef OCCT_DEBUG
cstclock.Stop();
totclock.Stop();
Standard_Real tottime, apptime, partime, csttime;
totclock.Show(tottime);
parclock.Show(partime);
appclock.Show(apptime);
cstclock.Show(csttime);
std::cout<<"temp total : "<<tottime<<" secondes"<<std::endl;
std::cout<<std::endl;
std::cout<<"dont"<<std::endl;
std::cout<<std::endl;
std::cout<<"reparametrage : "<<partime<<" secondes"<<std::endl;
std::cout<<"approximation : "<<apptime<<" secondes"<<std::endl;
std::cout<<"construction formelle : "<<csttime<<" secondes"<<std::endl;
std::cout<<std::endl;
#endif
}
//=======================================================================
//function : PerformApprox
//purpose :
//=======================================================================
void GeomFill_ConstrainedFilling::PerformApprox()
{
Standard_Integer ii ;
Handle(TColStd_HArray1OfReal) tol3d, tol2d, tol1d;
if(nbd3) tol3d = new TColStd_HArray1OfReal(1,nbd3);
Standard_Integer i3d = 0;
for( ii = 0; ii <= 1; ii++){
if (ctr[ii]) {tol3d->SetValue((++i3d),ptch->Bound(ibound[ii])->Tol3d());}
if(ctr[ii] == 2){
tol3d->SetValue(++i3d,0.5* mig[ibound[ii]] * ptch->Bound(ibound[ii])->Tolang());
}
}
Standard_Real f,l;
ptch->Bound(ibound[0])->Bounds(f,l);
GeomFill_ConstrainedFilling_Eval ev (*this);
AdvApprox_ApproxAFunction app(0,
0,
nbd3,
tol1d,
tol2d,
tol3d,
f,
l,
GeomAbs_C1,
degmax,
segmax,
ev);
if (app.IsDone() || app.HasResult()){
Standard_Integer imk = Min(ibound[0],ibound[1]);
Standard_Integer nbpol = app.NbPoles();
degree[imk] = app.Degree();
mults[imk] = app.Multiplicities();
knots[imk] = app.Knots();
i3d = 0;
for(ii = 0; ii <= 1; ii++){
curvpol[ibound[ii]] = new TColgp_HArray1OfPnt(1,nbpol);
TColgp_Array1OfPnt& cp = curvpol[ibound[ii]]->ChangeArray1();
if (ctr[ii]){
app.Poles(++i3d,cp);
}
else{
gp_Pnt ppp = ptch->Bound(ibound[ii])->Value(0.5*(f+l));
for(Standard_Integer ij = 1; ij <= nbpol; ij++){
cp(ij) = ppp;
}
}
if(ctr[ii] == 2){
tgtepol[ibound[ii]] = new TColgp_HArray1OfPnt(1,nbpol);
app.Poles(++i3d,tgtepol[ibound[ii]]->ChangeArray1());
}
}
}
}
//=======================================================================
//function : MatchKnots
//purpose :
//=======================================================================
void GeomFill_ConstrainedFilling::MatchKnots()
{
// on n insere rien si les domaines valent 1.
Standard_Integer i, j, l;
Standard_Integer ind[4];
nm[0] = mults[0]; nm[1] = mults[1];
nk[0] = knots[0]; nk[1] = knots[1];
ind[0] = nk[1]->Length(); ind[2] = 1;
ind[1] = 1; ind[3] = nk[0]->Length();
ncpol[0] = curvpol[0]; ncpol[1] = curvpol[1];
ncpol[2] = curvpol[2]; ncpol[3] = curvpol[3];
ntpol[0] = tgtepol[0]; ntpol[1] = tgtepol[1];
ntpol[2] = tgtepol[2]; ntpol[3] = tgtepol[3];
Standard_Real kadd[2];
Standard_Integer madd[2];
Standard_Real tolk = 1./Max(10,2*knots[1]->Array1().Length());
Standard_Integer nbadd = inqadd(dom[0],dom[2],kadd,madd,degree[1],tolk);
if(nbadd){
TColStd_Array1OfReal addk(kadd[0],1,nbadd);
TColStd_Array1OfInteger addm(madd[0],1,nbadd);
Standard_Integer nbnp, nbnk;
if(BSplCLib::PrepareInsertKnots(degree[1],0,
knots[1]->Array1(),
mults[1]->Array1(),
addk,&addm,nbnp,nbnk,tolk,0)){
nm[1] = new TColStd_HArray1OfInteger(1,nbnk);
nk[1] = new TColStd_HArray1OfReal(1,nbnk);
ncpol[1] = new TColgp_HArray1OfPnt(1,nbnp);
ncpol[3] = new TColgp_HArray1OfPnt(1,nbnp);
BSplCLib::InsertKnots(degree[1],0,
curvpol[1]->Array1(),BSplCLib::NoWeights(),
knots[1]->Array1(),mults[1]->Array1(),
addk,&addm,
ncpol[1]->ChangeArray1(),BSplCLib::NoWeights(),
nk[1]->ChangeArray1(),nm[1]->ChangeArray1(),
tolk,0);
BSplCLib::InsertKnots(degree[1],0,
curvpol[3]->Array1(),BSplCLib::NoWeights(),
knots[1]->Array1(),mults[1]->Array1(),
addk,&addm,
ncpol[3]->ChangeArray1(),BSplCLib::NoWeights(),
nk[1]->ChangeArray1(),nm[1]->ChangeArray1(),
tolk,0);
if(!tgtepol[1].IsNull()){
ntpol[1] = new TColgp_HArray1OfPnt(1,nbnp);
BSplCLib::InsertKnots(degree[1],0,
tgtepol[1]->Array1(),BSplCLib::NoWeights(),
knots[1]->Array1(),mults[1]->Array1(),
addk,&addm,
ntpol[1]->ChangeArray1(),BSplCLib::NoWeights(),
nk[1]->ChangeArray1(),nm[1]->ChangeArray1(),
tolk,0);
}
if(!tgtepol[3].IsNull()){
ntpol[3] = new TColgp_HArray1OfPnt(1,nbnp);
BSplCLib::InsertKnots(degree[1],0,
tgtepol[3]->Array1(),BSplCLib::NoWeights(),
knots[1]->Array1(),mults[1]->Array1(),
addk,&addm,
ntpol[3]->ChangeArray1(),BSplCLib::NoWeights(),
nk[1]->ChangeArray1(),nm[1]->ChangeArray1(),
tolk,0);
}
}
if(dom[0] != 1.) {
for(i = 2; i <= nbnk; i++){
if(Abs(dom[0]-nm[1]->Value(i)) < tolk){
ind[0] = i;
break;
}
}
}
if(dom[2] != 1.) {
for(i = 1; i < nbnk; i++){
if(Abs(1.-dom[2]-nm[1]->Value(i)) < tolk){
ind[2] = i;
break;
}
}
}
}
tolk = 1./Max(10.,2.*knots[0]->Array1().Length());
nbadd = inqadd(dom[1],dom[3],kadd,madd,degree[0],tolk);
if(nbadd){
TColStd_Array1OfReal addk(kadd[0],1,nbadd);
TColStd_Array1OfInteger addm(madd[0],1,nbadd);
Standard_Integer nbnp, nbnk;
if(BSplCLib::PrepareInsertKnots(degree[0],0,
knots[0]->Array1(),
mults[0]->Array1(),
addk,&addm,nbnp,nbnk,tolk,0)){
nm[0] = new TColStd_HArray1OfInteger(1,nbnk);
nk[0] = new TColStd_HArray1OfReal(1,nbnk);
ncpol[0] = new TColgp_HArray1OfPnt(1,nbnp);
ncpol[2] = new TColgp_HArray1OfPnt(1,nbnp);
BSplCLib::InsertKnots(degree[0],0,
curvpol[0]->Array1(),BSplCLib::NoWeights(),
knots[0]->Array1(),mults[0]->Array1(),
addk,&addm,
ncpol[0]->ChangeArray1(),BSplCLib::NoWeights(),
nk[0]->ChangeArray1(),nm[0]->ChangeArray1(),
tolk,0);
BSplCLib::InsertKnots(degree[0],0,
curvpol[2]->Array1(),BSplCLib::NoWeights(),
knots[0]->Array1(),mults[0]->Array1(),
addk,&addm,
ncpol[2]->ChangeArray1(),BSplCLib::NoWeights(),
nk[0]->ChangeArray1(),nm[0]->ChangeArray1(),
tolk,0);
if(!tgtepol[0].IsNull()){
ntpol[0] = new TColgp_HArray1OfPnt(1,nbnp);
BSplCLib::InsertKnots(degree[0],0,
tgtepol[0]->Array1(),BSplCLib::NoWeights(),
knots[0]->Array1(),mults[0]->Array1(),
addk,&addm,
ntpol[0]->ChangeArray1(),BSplCLib::NoWeights(),
nk[0]->ChangeArray1(),nm[0]->ChangeArray1(),
tolk,0);
}
if(!tgtepol[2].IsNull()){
ntpol[2] = new TColgp_HArray1OfPnt(1,nbnp);
BSplCLib::InsertKnots(degree[0],0,
tgtepol[2]->Array1(),BSplCLib::NoWeights(),
knots[0]->Array1(),mults[0]->Array1(),
addk,&addm,
ntpol[2]->ChangeArray1(),BSplCLib::NoWeights(),
nk[0]->ChangeArray1(),nm[0]->ChangeArray1(),
tolk,0);
}
}
if(dom[1] != 1.) {
for(i = 2; i <= nbnk; i++){
if(Abs(dom[1]-nm[0]->Value(i)) < tolk){
ind[1] = i;
break;
}
}
}
if(dom[3] != 1.) {
for(i = 1; i < nbnk; i++){
if(Abs(1.-dom[3]-nm[0]->Value(i)) < tolk){
ind[3] = i;
break;
}
}
}
}
Handle(Law_Linear) fu = mklin(ptch->Func(0));
ab[0] = Law::MixBnd(degree[1],nk[1]->Array1(),nm[1]->Array1(),fu);
fu = mklin(ptch->Func(1));
ab[1] = Law::MixBnd(degree[0],nk[0]->Array1(),nm[0]->Array1(),fu);
for(i = 0; i<2; i++){
l = ab[i]->Length();
ab[i+2] = new TColStd_HArray1OfReal(1,l);
for(j = 1; j <= l; j++){
ab[i+2]->SetValue(j,1.-ab[i]->Value(j));
}
}
pq[0] = Law::MixTgt(degree[1],nk[1]->Array1(),nm[1]->Array1(),1,ind[0]);
pq[2] = Law::MixTgt(degree[1],nk[1]->Array1(),nm[1]->Array1(),0,ind[2]);
pq[1] = Law::MixTgt(degree[0],nk[0]->Array1(),nm[0]->Array1(),0,ind[1]);
pq[3] = Law::MixTgt(degree[0],nk[0]->Array1(),nm[0]->Array1(),1,ind[3]);
#ifdef DRAW
if(dodraw){
gp_Vec2d tra(0.,0.);
Standard_Real scal = 1.;
Law_draw1dcurve(ab[0]->Array1(),nk[1]->Array1(),nm[1]->Array1(),degree[1],tra,scal);
tra.SetCoord(1.,0.);
Law_draw1dcurve(ab[1]->Array1(),nk[0]->Array1(),nm[0]->Array1(),degree[0],tra,scal);
tra.SetCoord(0.,1.);
Law_draw1dcurve(ab[2]->Array1(),nk[1]->Array1(),nm[1]->Array1(),degree[1],tra,scal);
tra.SetCoord(1.,1.);
Law_draw1dcurve(ab[3]->Array1(),nk[0]->Array1(),nm[0]->Array1(),degree[0],tra,scal);
tra.SetCoord(0.,0.);
Law_draw1dcurve(pq[0]->Array1(),nk[1]->Array1(),nm[1]->Array1(),degree[1],tra,scal);
tra.SetCoord(0.,1.);
Law_draw1dcurve(pq[2]->Array1(),nk[1]->Array1(),nm[1]->Array1(),degree[1],tra,scal);
tra.SetCoord(1.,0.);
Law_draw1dcurve(pq[1]->Array1(),nk[0]->Array1(),nm[0]->Array1(),degree[0],tra,scal);
tra.SetCoord(1.,1.);
Law_draw1dcurve(pq[3]->Array1(),nk[0]->Array1(),nm[0]->Array1(),degree[0],tra,scal);
}
#endif
}
//=======================================================================
//function : PerformS0
//purpose :
//=======================================================================
void GeomFill_ConstrainedFilling::PerformS0()
{
// On construit les poles de S0 par combinaison des poles des bords,
// des poles des fonctions ab, des points c selon la formule :
// S0(i,j) = ab[0](j)*ncpol[0](i) + ab[1](i)*ncpol[1](j)
// + ab[2](j)*ncpol[2](i) + ab[3](i)*ncpol[3](j)
// - ab[3](i)*ab[0](j)*c[0] - ab[0](j)*ab[1](i)*c[1]
// - ab[1](i)*ab[2](j)*c[2] - ab[2](j)*ab[3](i)*c[3]
Standard_Integer i, j;
Standard_Integer ni = ncpol[0]->Length();
Standard_Integer nj = ncpol[1]->Length();
S0 = new TColgp_HArray2OfPnt(1,ni,1,nj);
TColgp_Array2OfPnt& ss0 = S0->ChangeArray2();
const gp_XYZ& c0 = ptch->Corner(0).Coord();
const gp_XYZ& c1 = ptch->Corner(1).Coord();
const gp_XYZ& c2 = ptch->Corner(2).Coord();
const gp_XYZ& c3 = ptch->Corner(3).Coord();
for (i = 1; i <= ni; i++){
Standard_Real ab1 = ab[1]->Value(i);
Standard_Real ab3 = ab[3]->Value(i);
const gp_XYZ& b0 = ncpol[0]->Value(i).Coord();
const gp_XYZ& b2 = ncpol[2]->Value(i).Coord();
for (j = 1; j <= nj; j++){
Standard_Real ab0 = ab[0]->Value(j);
Standard_Real ab2 = ab[2]->Value(j);
const gp_XYZ& b1 = ncpol[1]->Value(j).Coord();
const gp_XYZ& b3 = ncpol[3]->Value(j).Coord();
gp_XYZ polij = b0.Multiplied(ab0);
gp_XYZ temp = b1.Multiplied(ab1);
polij.Add(temp);
temp = b2.Multiplied(ab2);
polij.Add(temp);
temp = b3.Multiplied(ab3);
polij.Add(temp);
temp = c0.Multiplied(-ab3*ab0);
polij.Add(temp);
temp = c1.Multiplied(-ab0*ab1);
polij.Add(temp);
temp = c2.Multiplied(-ab1*ab2);
polij.Add(temp);
temp = c3.Multiplied(-ab2*ab3);
polij.Add(temp);
ss0(i,j).SetXYZ(polij);
}
}
}
//=======================================================================
//function : PerformS1
//purpose :
//=======================================================================
void GeomFill_ConstrainedFilling::PerformS1()
{
// on construit en temporaire les poles des champs tangents
// definis par :
// tgte[ibound](u) - d/dv (S0(u,vbound)) pour ibound = 0 ou 2
// tgte[ibound](v) - d/du (S0(ubound,v)) pour ibound = 1 ou 3
// sur les bords ou tgte est defini.
gp_XYZ* nt[4];
const TColgp_Array2OfPnt& ss0 = S0->Array2();
Standard_Integer l, i, j, k;
Standard_Integer ni = ss0.ColLength();
Standard_Integer nj = ss0.RowLength();
for(i = 0; i <= 3; i++){
if(ntpol[i].IsNull()) nt[i] = 0;
else {
Standard_Real z=0;
Standard_Integer nbp = ntpol[i]->Length();
Standard_Integer i1=0,i2=0,j1=0,j2=0;
Standard_Boolean inci=0;
nt[i] = new gp_XYZ[nbp];
switch(i){
case 0 :
z = - degree[1]/(nk[1]->Value(2) - nk[1]->Value(1));
inci = Standard_True;
i1 = 1; i2 = 1; j1 = 1; j2 = 2;
break;
case 1 :
l = nk[0]->Length();
z = - degree[0]/(nk[0]->Value(l) - nk[0]->Value(l-1));
inci = Standard_False;
i1 = ni-1; i2 = ni; j1 = 1; j2 = 1;
break;
case 2 :
l = nk[1]->Length();
z = - degree[1]/(nk[1]->Value(l) - nk[1]->Value(l-1));
inci = Standard_True;
i1 = 1; i2 = 1; j1 = nj-1; j2 = nj;
break;
case 3 :
z = - degree[0]/(nk[0]->Value(2) - nk[0]->Value(1));
inci = Standard_False;
i1 = 1; i2 = 2; j1 = 1; j2 = 1;
break;
}
for(k = 0; k < nbp; k++){
nt[i][k] = S0->Value(i1,j1).XYZ();
nt[i][k].Multiply(-1.);
nt[i][k].Add(S0->Value(i2,j2).XYZ());
nt[i][k].Multiply(z);
nt[i][k].Add(ntpol[i]->Value(k+1).XYZ());
if(inci) { i1++; i2++; }
else { j1++; j2++; }
}
}
}
// on calcul les termes correctifs pour le melange.
Standard_Real coef0 = degree[0]/(nk[0]->Value(2) - nk[0]->Value(1));
Standard_Real coef1 = degree[1]/(nk[1]->Value(2) - nk[1]->Value(1));
gp_XYZ vtemp, vtemp0, vtemp1;
if(nt[0] && nt[3]){
vtemp0 = nt[0][0].Multiplied(-1.);
vtemp0.Add(nt[0][1]);
vtemp0.Multiply(coef0);
vtemp1 = nt[3][0].Multiplied(-1.);
vtemp1.Add(nt[3][1]);
vtemp1.Multiply(coef1);
vtemp = vtemp0.Added(vtemp1);
vtemp.Multiply(0.5);
v[0].SetXYZ(vtemp);
}
Standard_Integer ln0 = nk[0]->Length(), lp0 = ncpol[0]->Length();
coef0 = degree[0]/(nk[0]->Value(ln0) - nk[0]->Value(ln0 - 1));
coef1 = degree[1]/(nk[1]->Value(2) - nk[1]->Value(1));
if(nt[0] && nt[1]){
vtemp0 = nt[0][lp0 - 2].Multiplied(-1.);
vtemp0.Add(nt[0][lp0 - 1]);
vtemp0.Multiply(coef0);
vtemp1 = nt[1][0].Multiplied(-1.);
vtemp1.Add(nt[1][1]);
vtemp1.Multiply(coef1);
vtemp = vtemp0.Added(vtemp1);
vtemp.Multiply(0.5);
v[1].SetXYZ(vtemp);
}
ln0 = nk[0]->Length(); lp0 = ncpol[0]->Length();
Standard_Integer ln1 = nk[1]->Length(), lp1 = ncpol[1]->Length();
coef0 = degree[0]/(nk[0]->Value(ln0) - nk[0]->Value(ln0 - 1));
coef1 = degree[1]/(nk[1]->Value(ln1) - nk[1]->Value(ln1 - 1));
if(nt[1] && nt[2]){
vtemp0 = nt[2][lp0 - 2].Multiplied(-1.);
vtemp0.Add(nt[2][lp0 - 1]);
vtemp0.Multiply(coef0);
vtemp1 = nt[1][lp1 - 2].Multiplied(-1.);
vtemp1.Add(nt[1][lp1 - 1]);
vtemp1.Multiply(coef1);
vtemp = vtemp0.Added(vtemp1);
vtemp.Multiply(0.5);
v[2].SetXYZ(vtemp);
}
ln1 = nk[1]->Length(); lp1 = ncpol[1]->Length();
coef0 = degree[0]/(nk[0]->Value(2) - nk[0]->Value(1));
coef1 = degree[1]/(nk[1]->Value(ln1) - nk[1]->Value(ln1 - 1));
if(nt[2] && nt[3]){
vtemp0 = nt[2][0].Multiplied(-1.);
vtemp0.Add(nt[2][1]);
vtemp0.Multiply(coef0);
vtemp1 = nt[3][lp1 - 2].Multiplied(-1.);
vtemp1.Add(nt[3][lp1 - 1]);
vtemp1.Multiply(coef1);
vtemp = vtemp0.Added(vtemp1);
vtemp.Multiply(0.5);
v[3].SetXYZ(vtemp);
}
// On construit les poles de S1 par combinaison des poles des
// champs tangents, des poles des fonctions pq, des duv au coins
// selon la formule :
// S1(i,j) = pq[0](j)*ntpol[0](i) + pq[1](i)*ntpol[1](j)
// + pq[2](j)*ntpol[2](i) + pq[3](i)*ntpol[3](j)
// - pq[3](i)*pq[0](j)*v[0] - pq[0](j)*pq[1](i)*v[1]
// - pq[1](i)*pq[2](j)*v[2] - pq[2](j)*pq[3](i)*v[3]
S1 = new TColgp_HArray2OfPnt(1,ni,1,nj);
TColgp_Array2OfPnt& ss1 = S1->ChangeArray2();
const gp_XYZ& v0 = v[0].XYZ();
const gp_XYZ& v1 = v[1].XYZ();
const gp_XYZ& v2 = v[2].XYZ();
const gp_XYZ& v3 = v[3].XYZ();
for (i = 1; i <= ni; i++){
Standard_Real pq1=0, pq3=0;
if(nt[1]) pq1 = -pq[1]->Value(i);
if(nt[3]) pq3 = pq[3]->Value(i);
gp_XYZ t0, t2;
if(nt[0]) t0 = nt[0][i-1];
if(nt[2]) t2 = nt[2][i-1];
for (j = 1; j <= nj; j++){
Standard_Real pq0=0, pq2=0;
if(nt[0]) pq0 = pq[0]->Value(j);
if(nt[2]) pq2 = -pq[2]->Value(j);
gp_XYZ t1, t3;
if(nt[1]) t1 = nt[1][j-1];
if(nt[3]) t3 = nt[3][j-1];
gp_XYZ tpolij(0.,0.,0.), temp;
if(nt[0]) {
temp = t0.Multiplied(pq0);
tpolij.Add(temp);
}
if(nt[1]) {
temp = t1.Multiplied(pq1);
tpolij.Add(temp);
}
if(nt[2]){
temp = t2.Multiplied(pq2);
tpolij.Add(temp);
}
if(nt[3]){
temp = t3.Multiplied(pq3);
tpolij.Add(temp);
}
if(nt[3] && nt[0]){
temp = v0.Multiplied(-pq3*pq0);
tpolij.Add(temp);
}
if(nt[0] && nt[1]){
temp = v1.Multiplied(-pq0*pq1);
tpolij.Add(temp);
}
if(nt[1] && nt[2]){
temp = v2.Multiplied(-pq1*pq2);
tpolij.Add(temp);
}
if(nt[2] && nt[3]){
temp = v3.Multiplied(-pq2*pq3);
tpolij.Add(temp);
}
ss1(i,j).SetXYZ(tpolij);
}
}
// Un petit menage
for(i = 0; i <= 3; i++){
if(nt[i]){
delete[] nt[i];
}
}
}
//=======================================================================
//function : PerformSurface
//purpose :
//=======================================================================
void GeomFill_ConstrainedFilling::PerformSurface()
{
Standard_Integer ni = S0->ColLength(), nj = S0->RowLength(),i,j;
TColgp_Array2OfPnt temp(1,ni,1,nj);
const TColgp_Array2OfPnt& t0 = S0->Array2();
const TColgp_Array2OfPnt& t1 = S1->Array2();
for(i = 1; i <= ni; i++){
for(j = 1; j <= nj; j++){
temp(i,j).SetXYZ(t0(i,j).XYZ().Added(t1(i,j).XYZ()));
}
}
surf = new Geom_BSplineSurface(temp,
nk[0]->Array1(),nk[1]->Array1(),
nm[0]->Array1(),nm[1]->Array1(),
degree[0],degree[1]);
}
//=======================================================================
//function : CheckTgte
//purpose :
//=======================================================================
Standard_Boolean GeomFill_ConstrainedFilling::CheckTgte(const Standard_Integer I)
{
Handle(GeomFill_Boundary) bou = ptch->Bound(I);
if(!bou->HasNormals()) return Standard_True;
// On prend 13 points le long du bord et on verifie que le triedre
// forme par la tangente a la courbe la normale et la tangente du
// peigne ne change pas d orientation.
Standard_Real ll = 1./12., pmix=0;
for (Standard_Integer iu = 0; iu < 13; iu++){
Standard_Real uu = iu * ll;
gp_Pnt pbid;
gp_Vec tgte;
bou->D1(uu,pbid,tgte);
gp_Vec norm = bou->Norm(uu);
gp_Vec vfield = tgalg[I]->Value(uu);
if(iu == 0) pmix = vfield.Dot(tgte.Crossed(norm));
else {
Standard_Real pmixcur = vfield.Dot(tgte.Crossed(norm));
if(pmix*pmixcur < 0.) return Standard_False;
}
}
return Standard_True;
}
//=======================================================================
//function : MinTgte
//purpose :
//=======================================================================
void GeomFill_ConstrainedFilling::MinTgte(const Standard_Integer I)
{
if(!ptch->Bound(I)->HasNormals()) return;
Standard_Real minmag = RealLast();
Standard_Real ll = 0.02;
for (Standard_Integer iu = 0; iu <= 30; iu++){
Standard_Real uu = 0.2 + iu * ll;
gp_Vec vv = tgalg[I]->Value(uu);
Standard_Real temp = vv.SquareMagnitude();
if(temp < minmag) minmag = temp;
}
mig[I] = sqrt(minmag);
}
//=======================================================================
//function : Eval
//purpose :
//=======================================================================
Standard_Integer GeomFill_ConstrainedFilling::Eval(const Standard_Real W,
const Standard_Integer Ord,
Standard_Real& Result)const
{
Standard_Real* res = &Result;
Standard_Integer jmp = (3 * ctr[0]);
switch(Ord){
case 0 :
if(ctr[0]){
ptch->Bound(ibound[0])->Value(W).Coord(res[0],res[1],res[2]);
}
if(ctr[0] == 2){
tgalg[ibound[0]]->Value(W).Coord(res[3],res[4],res[5]);
}
if(ctr[1]){
ptch->Bound(ibound[1])->Value(W).Coord(res[jmp],res[jmp+1],res[jmp+2]);
}
if(ctr[1] == 2){
tgalg[ibound[1]]->Value(W).Coord(res[jmp+3],res[jmp+4],res[jmp+5]);
}
break;
case 1 :
gp_Pnt pt;
gp_Vec vt;
if(ctr[0]){
ptch->Bound(ibound[0])->D1(W,pt,vt);
vt.Coord(res[0],res[1],res[2]);
}
if(ctr[0] == 2){
tgalg[ibound[0]]->D1(W).Coord(res[3],res[4],res[5]);
}
if(ctr[1]){
ptch->Bound(ibound[1])->D1(W,pt,vt);
vt.Coord(res[jmp],res[jmp+1],res[jmp+2]);
}
if(ctr[1] == 2){
tgalg[ibound[1]]->D1(W).Coord(res[jmp+3],res[jmp+4],res[jmp+5]);
}
break;
}
return 0;
}
//=======================================================================
//function : CheckCoonsAlgPatch
//purpose :
//=======================================================================
void GeomFill_ConstrainedFilling::CheckCoonsAlgPatch(const Standard_Integer I)
{
Standard_Integer nbp = 30;
Standard_Real uu=0,duu=0,vv=0,dvv=0,ww=0,dww=0,u1,u2,v1,v2;
surf->Bounds(u1,u2,v1,v2);
Standard_Boolean enu = Standard_False;
switch(I){
case 0:
uu = ww = u1;
vv = v1;
duu = dww = (u2 - u1)/nbp;
dvv = 0.;
break;
case 1:
vv = ww = v1;
uu = u2;
dvv = dww = (v2 - v1)/nbp;
duu = 0.;
enu = Standard_True;
break;
case 2:
uu = ww = u1;
vv = v2;
duu = dww = (u2 - u1)/nbp;
dvv = 0.;
break;
case 3:
vv = ww = v1;
uu = u1;
dvv = dww = (v2 - v1)/nbp;
duu = 0.;
enu = Standard_True;
break;
}
gp_Pnt pbound;
gp_Vec vptch;
Handle(GeomFill_Boundary) bou = ptch->Bound(I);
for (Standard_Integer k = 0; k <= nbp; k++){
pbound = bou->Value(ww);
if(enu) vptch = ptch->D1U(uu,vv);
else vptch = ptch->D1V(uu,vv);
#ifdef DRAW
gp_Pnt pp;
Handle(Draw_Segment3D) seg;
pp = pbound.Translated(vptch);
seg = new Draw_Segment3D(pbound,pp,Draw_jaune);
dout << seg;
#endif
uu += duu;
vv += dvv;
ww += dww;
}
}
//=======================================================================
//function : CheckTgteField
//purpose :
//=======================================================================
void GeomFill_ConstrainedFilling::CheckTgteField(const Standard_Integer I)
{
if(tgalg[I].IsNull()) return;
#ifdef DRAW
gp_Pnt p1,p2;
#else
gp_Pnt p1;
#endif
gp_Vec d1;
Standard_Boolean caplisse = 0;
Standard_Real maxang = 0.,pmix=0,pmixcur;
Handle(GeomFill_Boundary) bou = ptch->Bound(I);
for (Standard_Integer iu = 0; iu <= 30; iu++){
Standard_Real uu = iu/30.;
bou->D1(uu,p1,d1);
gp_Vec vtg = tgalg[I]->Value(uu);
gp_Vec vnor = bou->Norm(uu);
gp_Vec vcros = d1.Crossed(vnor);
vcros.Normalize();
if(iu == 0) pmix = vtg.Dot(vcros);
else {
pmixcur = vtg.Dot(vcros);
if(pmix*pmixcur < 0.) caplisse = 1;
}
#ifdef DRAW
Handle(Draw_Segment3D) seg;
p2 = p1.Translated(vtg);
seg = new Draw_Segment3D(p1,p2,Draw_blanc);
dout << seg;
p2 = p1.Translated(vnor);
seg = new Draw_Segment3D(p1,p2,Draw_rouge);
dout << seg;
p2 = p1.Translated(vcros);
seg = new Draw_Segment3D(p1,p2,Draw_jaune);
dout << seg;
#endif
if(vnor.Magnitude() > 1.e-15 && vtg.Magnitude() > 1.e-15){
Standard_Real alpha = Abs(M_PI/2.-Abs(vnor.Angle(vtg)));
if(Abs(alpha) > maxang) maxang = Abs(alpha);
}
}
std::cout<<"KAlgo angle max sur bord "<<I<<" : "<<maxang<<std::endl;
if(caplisse) std::cout<<"sur bord "<<I<<" le champ tangent change de cote!"<<std::endl;
}
//=======================================================================
//function : CheckApprox
//purpose :
//=======================================================================
void GeomFill_ConstrainedFilling::CheckApprox(const Standard_Integer I)
{
Standard_Boolean donor = !tgalg[I].IsNull();
Standard_Integer nbp = 30;
Standard_Real maxang = 0., maxdist = 0.;
gp_Pnt pbound, papp, pbid;
gp_Vec vbound, vapp;
Handle(GeomFill_Boundary) bou = ptch->Bound(I);
for (Standard_Integer iu = 0; iu <= nbp; iu++){
Standard_Real uu = iu;
uu /= nbp;
pbound = bou->Value(uu);
BSplCLib::D0(uu,0,degree[I%2],0,ncpol[I]->Array1(),BSplCLib::NoWeights(),
nk[I%2]->Array1(),&nm[I%2]->Array1(),papp);
if(donor) {
BSplCLib::D0(uu,0,degree[I%2],0,ntpol[I]->Array1(),BSplCLib::NoWeights(),
nk[I%2]->Array1(),&nm[I%2]->Array1(),pbid);
vapp.SetXYZ(pbid.XYZ());
vbound = bou->Norm(uu);
if(vapp.Magnitude() > 1.e-15 && vbound.Magnitude() > 1.e-15){
Standard_Real alpha = Abs(M_PI/2.-Abs(vbound.Angle(vapp)));
if(Abs(alpha) > maxang) maxang = Abs(alpha);
}
#ifdef DRAW
Handle(Draw_Segment3D) seg;
gp_Pnt pp;
pp = pbound.Translated(vbound);
seg = new Draw_Segment3D(pbound,pp,Draw_blanc);
dout << seg;
pp = papp.Translated(vapp);
seg = new Draw_Segment3D(papp,pp,Draw_rouge);
dout << seg;
#endif
}
if(papp.Distance(pbound) > maxdist) maxdist = papp.Distance(pbound);
}
std::cout<<"Controle approx/contrainte sur bord "<<I<<" : "<<std::endl;
std::cout<<"Distance max : "<<maxdist<<std::endl;
if (donor) {
maxang = maxang*180./M_PI;
std::cout<<"Angle max : "<<maxang<<" deg"<<std::endl;
}
}
//=======================================================================
//function : CheckResult
//purpose :
//=======================================================================
void GeomFill_ConstrainedFilling::CheckResult(const Standard_Integer I)
{
Standard_Boolean donor = !tgalg[I].IsNull();
Standard_Real maxang = 0., maxdist = 0.;
Standard_Real uu=0,duu=0,vv=0,dvv=0,ww=0,dww=0,u1,u2,v1,v2;
surf->Bounds(u1,u2,v1,v2);
switch(I){
case 0:
uu = ww = u1;
vv = v1;
duu = dww = (u2 - u1)/30;
dvv = 0.;
break;
case 1:
vv = ww = v1;
uu = u2;
dvv = dww = (v2 - v1)/30;
duu = 0.;
break;
case 2:
uu = ww = u1;
vv = v2;
duu = dww = (u2 - u1)/30;
dvv = 0.;
break;
case 3:
vv = ww = v1;
uu = u1;
dvv = dww = (v2 - v1)/30;
duu = 0.;
break;
}
gp_Pnt pbound[31],pres[31];
gp_Vec vbound[31],vres[31];
#ifdef DRAW
Standard_Real ang[31];
Standard_Boolean hasang[31];
#endif
Handle(GeomFill_Boundary) bou = ptch->Bound(I);
Standard_Integer k ;
for ( k = 0; k <= 30; k++){
pbound[k] = bou->Value(ww);
if(!donor) surf->D0(uu,vv,pres[k]);
else{
vbound[k] = bou->Norm(ww);
gp_Vec V1,V2;
surf->D1(uu,vv,pres[k],V1,V2);
vres[k] = V1.Crossed(V2);
if(vres[k].Magnitude() > 1.e-15 && vbound[k].Magnitude() > 1.e-15){
Standard_Real alpha = Abs(vres[k].Angle(vbound[k]));
alpha = Min(alpha,Abs(M_PI-alpha));
if(alpha > maxang) maxang = alpha;
#ifdef DRAW
ang[k] = alpha;
hasang[k] = 1;
#endif
}
#ifdef DRAW
else hasang[k] = 0;
#endif
}
if(pres[k].Distance(pbound[k]) > maxdist) maxdist = pres[k].Distance(pbound[k]);
uu += duu;
vv += dvv;
ww += dww;
}
std::cout<<"Controle resultat/contrainte sur bord "<<I<<" : "<<std::endl;
std::cout<<"Distance max : "<<maxdist<<std::endl;
if (donor) {
Standard_Real angdeg = maxang*180./M_PI;
std::cout<<"Angle max : "<<angdeg<<" deg"<<std::endl;
}
#ifdef DRAW
Standard_Boolean scale = maxang>1.e-10;
for (k = 0; k <= 30; k++){
if(hasang[k]){
gp_Pnt pp;
Handle(Draw_Segment3D) seg;
vbound[k].Normalize();
if(scale) vbound[k].Multiply(1.+3.*ang[k]/maxang);
vbound[k].Multiply(drawfac);
pp = pbound[k].Translated(vbound[k]);
seg = new Draw_Segment3D(pbound[k],pp,Draw_blanc);
dout << seg;
vres[k].Normalize();
if(scale) vres[k].Multiply(1.+3.*ang[k]/maxang);
vres[k].Multiply(drawfac);
pp = pres[k].Translated(vres[k]);
seg = new Draw_Segment3D(pres[k],pp,Draw_rouge);
dout << seg;
}
}
#endif
}