mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-10 18:51:21 +03:00
All library-specific macros for defining export / import properties of symbols on Windows (like Standard_API, __Draw_API, _math_API etc.) are eliminated. Common macro Standard_EXPORT is used in all places where it is necessary. New macro OCCT_STATIC_BUILD is defined for disabling Standard_EXPORT, to be used instead of HAVE_NO_DLL, though the latter is still supported as well (for compatibility). To allow building OCCT in static mode on Windows after these changes: - Files OSD_WNT_1.hxx and OSD_WNT_BREAK.hxx are removed; useful declarations are moved to OSD_WNT.hxx - In the class IVtkVTK_ShapeData, static fields ARRNAME_MESH_TYPES and ARRNAME_SUBSHAPE_IDS are converted to static inline functions - Global array ChoixRef defined in IntImp_ComputeTangence.cxx is converted to static function returning element of the array by index - Unused class Quantity_Convert is removed (it had static field accessed by inline method) - Struct Approx_Data defined in the same way in BRepApprox_Approx.hxx and GeomInt_WLApprox.hxx is made private member of these classes to avoid name clash - Some C++ files producing no object code are removed - In NCollection_EBTree.hxx and StdLPersistent_Collectio.hxx, definition of template virtual method is moved to class definition to avoid MSVC linker warnings on unused symbols
189 lines
5.8 KiB
C++
189 lines
5.8 KiB
C++
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <IntImp_ComputeTangence.hxx>
|
|
#include <IntImp_ConstIsoparametric.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
|
|
static const IntImp_ConstIsoparametric staticChoixRef [4] = {
|
|
IntImp_UIsoparametricOnCaro1,
|
|
IntImp_VIsoparametricOnCaro1,
|
|
IntImp_UIsoparametricOnCaro2,
|
|
IntImp_VIsoparametricOnCaro2,
|
|
};
|
|
|
|
IntImp_ConstIsoparametric ChoixRef (Standard_Integer theIndex)
|
|
{
|
|
Standard_OutOfRange_Raise_if (theIndex < 0 || theIndex > 3, "ChoixRef() in " __FILE__)
|
|
return staticChoixRef[theIndex];
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : IntImp_ComputeTangence
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean IntImp_ComputeTangence(const gp_Vec DPuv[],
|
|
const Standard_Real EpsUV[],
|
|
Standard_Real Tgduv[],
|
|
IntImp_ConstIsoparametric TabIso[])
|
|
// arguments d entree:
|
|
// DPuv [0] =derivee en u sur caro 1
|
|
// DPuv [1] =derivee en v sur caro 1
|
|
// DPuv [2] =derivee en u sur caro 2
|
|
// DPuv [3] =derivee en v sur caro 2
|
|
// EpsUV[0] tolerance en u sur caro1
|
|
// EpsUV[1] tolerance en v sur caro1
|
|
// EpsUV[2] tolerance en u sur caro2
|
|
// EpsUV[3] tolerance en v sur caro2
|
|
// arguments de sortie:
|
|
// Tgduv[0] composante sup dp/du de caro1 de la tangente a l intersection
|
|
// Tgduv[1] composante sup dp/dv de caro1 de la tangente a l intersection
|
|
// Tgduv[2] composante sup dp/du de caro2 de la tangente a l intersection
|
|
// Tgduv[3] composante sup dp/dv de caro2 de la tangente a l intersection
|
|
// TabIso[0...3] meilleure iso range par ordre decroissant candidate
|
|
// a l intersection
|
|
// algorithme
|
|
// calculer la tangente a l 'intersection ;en utilisant la propriete suivante
|
|
// du produit scalaire a^(b^c)=b(ac)-c(ab) on obtient les composantes de la
|
|
// tangente a l intersection dans les 2 plans tangents (t=n1^n2 ou n1 normale
|
|
// au premier carreau n2 au 2ieme)
|
|
// on s assurera que les plans tangents des 2 carreaux ne sont pas //
|
|
// les composantes de l intersection dans les plans tangents permettent de
|
|
//determiner l angle entre les isoparametriques d un carreau avec le carreau
|
|
//reciproque
|
|
//on triera par ordre croissant les cosinus :le plus petit cosinus determine le
|
|
// meilleure angle donc la meilleure iso a choisir pour trouver
|
|
// l intersection
|
|
|
|
{
|
|
Standard_Real NormDuv[4], aM2, aTol2;
|
|
Standard_Integer i;
|
|
//
|
|
aTol2=1.e-32;
|
|
//
|
|
for (i=0; i<4; ++i) {
|
|
NormDuv[i] = DPuv[i].SquareMagnitude();
|
|
if(NormDuv[i]<=aTol2) {
|
|
return Standard_True;
|
|
}
|
|
}
|
|
//
|
|
//-------------------------------------------------
|
|
gp_Vec N1 = DPuv[0];
|
|
N1.Cross(DPuv[1]);
|
|
//
|
|
//modified by NIZNHY-PKV Tue Nov 01 08:37:32 2011f
|
|
aM2=N1.SquareMagnitude();
|
|
if (aM2<aTol2) {
|
|
return Standard_True;
|
|
}
|
|
//modified by NIZNHY-PKV Tue Nov 01 08:37:34 2011t
|
|
N1.Normalize();
|
|
//-------------------------------------------------
|
|
gp_Vec N2 = DPuv[2];
|
|
N2.Cross(DPuv[3]);
|
|
//modified by NIZNHY-PKV Tue Nov 01 08:37:32 2011f
|
|
aM2=N2.SquareMagnitude();
|
|
if (aM2<aTol2) {
|
|
return Standard_True;
|
|
}
|
|
//modified by NIZNHY-PKV Tue Nov 01 08:37:34 2011t
|
|
N2.Normalize();
|
|
//
|
|
//modified by NIZNHY-PKV Tue Nov 01 08:31:25 2011f
|
|
for (i=0; i<4; ++i) {
|
|
NormDuv[i]=sqrt(NormDuv[i]);
|
|
}
|
|
//modified by NIZNHY-PKV Tue Nov 01 08:31:29 2011t
|
|
Tgduv[0] = -DPuv[1].Dot(N2);
|
|
Tgduv[1] = DPuv[0].Dot(N2);
|
|
Tgduv[2] = DPuv[3].Dot(N1);
|
|
Tgduv[3] = -DPuv[2].Dot(N1);
|
|
|
|
|
|
Standard_Boolean tangent = (Abs(Tgduv[0]) <= EpsUV[0]*NormDuv[1] &&
|
|
Abs(Tgduv[1]) <= EpsUV[1]*NormDuv[0] &&
|
|
Abs(Tgduv[2]) <= EpsUV[2]*NormDuv[3] &&
|
|
Abs(Tgduv[3]) <= EpsUV[3]*NormDuv[2] );
|
|
if(!tangent) {
|
|
Standard_Real t=N1.Dot(N2);
|
|
if(t<0.0) t=-t;
|
|
if(t>0.999999999) {
|
|
tangent=Standard_True;
|
|
}
|
|
}
|
|
|
|
if (!tangent) {
|
|
NormDuv[0] = Abs(Tgduv[1]) /NormDuv[0]; //iso u sur caro1
|
|
NormDuv[1] = Abs(Tgduv[0]) /NormDuv[1]; //iso v sur caro1
|
|
NormDuv[2] = Abs(Tgduv[3]) /NormDuv[2]; // iso u sur caro2
|
|
NormDuv[3] = Abs(Tgduv[2]) /NormDuv[3]; //iso v sur caro2
|
|
|
|
|
|
|
|
//-- Tri sur NormDuv ( en para. avec ChoixRef )
|
|
Standard_Boolean triOk = Standard_False;
|
|
Standard_Real t;
|
|
IntImp_ConstIsoparametric ti;
|
|
for ( i=0;i<=3;i++)
|
|
{
|
|
TabIso[i] = staticChoixRef[i];
|
|
}
|
|
do {
|
|
triOk = Standard_True;
|
|
for(i=1;i<=3;i++) {
|
|
if(NormDuv[i-1]>NormDuv[i]) {
|
|
triOk=Standard_False;
|
|
t=NormDuv[i];
|
|
NormDuv[i]=NormDuv[i-1];
|
|
NormDuv[i-1]=t;
|
|
|
|
ti = TabIso[i];
|
|
TabIso[i] = TabIso[i-1];
|
|
TabIso[i-1] = ti;
|
|
}
|
|
}
|
|
}
|
|
while(!triOk);
|
|
|
|
|
|
#if 0
|
|
// trier par ordre croissant le tableau NormDuv
|
|
Standard_Integer II;
|
|
for (j =0;j<=3;j++) Irang[j]=j;
|
|
for (j =0;j<=3;j++) {
|
|
Tampon = NormDuv[j];
|
|
II=j;
|
|
for (i =j+1;i<=3;i++) {
|
|
if (NormDuv[i] < Tampon) {
|
|
Tampon = NormDuv[i];
|
|
II = i;
|
|
}
|
|
}
|
|
Irang[j] = Irang[II];
|
|
Irang[II] = j;
|
|
NormDuv[II] = NormDuv[j];
|
|
NormDuv[j] = Tampon;
|
|
}
|
|
for (j=0; j<=3;j++)
|
|
{
|
|
TabIso[j] = staticChoixRef[Irang[j]];
|
|
}
|
|
#endif
|
|
}
|
|
return tangent;
|
|
}
|
|
|
|
|