1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-10 18:51:21 +03:00
occt/src/gp/gp_Elips2d.cxx
abv 42cf5bc1ca 0024002: Overall code and build procedure refactoring -- automatic
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl":
- WOK-generated header files from inc and sources from drv are moved to src
- CDL files removed
- All packages are converted to nocdlpack
2015-07-12 07:42:38 +03:00

81 lines
2.4 KiB
C++

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
//Modif JCV 10/01/91
#include <gp_Ax2d.hxx>
#include <gp_Ax22d.hxx>
#include <gp_Elips2d.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Trsf2d.hxx>
#include <gp_Vec2d.hxx>
#include <Standard_ConstructionError.hxx>
void gp_Elips2d::Coefficients (Standard_Real& A,
Standard_Real& B,
Standard_Real& C,
Standard_Real& D,
Standard_Real& E,
Standard_Real& F) const
{
Standard_Real DMin = minorRadius * minorRadius;
Standard_Real DMaj = majorRadius * majorRadius;
if (DMin <= gp::Resolution() && DMaj <= gp::Resolution()) {
A = B = C = D = E = F = 0.0;
}
else {
gp_Trsf2d T;
T.SetTransformation (pos.XAxis());
Standard_Real T11 = T.Value (1, 1);
Standard_Real T12 = T.Value (1, 2);
Standard_Real T13 = T.Value (1, 3);
if (DMin <= gp::Resolution()) {
A = T11 * T11; B = T12 * T12; C = T11 * T12;
D = T11 * T13; E = T12 * T13; F = T13 * T13 - DMaj;
}
else {
Standard_Real T21 = T.Value (2, 1);
Standard_Real T22 = T.Value (2, 2);
Standard_Real T23 = T.Value (2, 3);
A = (T11 * T11 / DMaj) + (T21 * T21 / DMin);
B = (T12 * T12 / DMaj) + (T22 * T22 / DMin);
C = (T11 * T12 / DMaj) + (T21 * T22 / DMin);
D = (T11 * T13 / DMaj) + (T21 * T23 / DMin);
E = (T12 * T13 / DMaj) + (T22 * T23 / DMin);
F = (T13 * T13 / DMaj) + (T23 * T23 / DMin) - 1.0;
}
}
}
void gp_Elips2d::Mirror (const gp_Pnt2d& P)
{ pos.Mirror(P); }
gp_Elips2d gp_Elips2d::Mirrored (const gp_Pnt2d& P) const
{
gp_Elips2d E = *this;
E.pos.Mirror (P);
return E;
}
void gp_Elips2d::Mirror (const gp_Ax2d& A)
{ pos.Mirror(A); }
gp_Elips2d gp_Elips2d::Mirrored (const gp_Ax2d& A) const
{
gp_Elips2d E = *this;
E.pos.Mirror (A);
return E;
}