mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-04 18:06:22 +03:00
Removed unused exception classes OSD_Exception_FLT_DIVIDE_BY_ZERO, OSD_Exception_INT_DIVIDE_BY_ZERO, OSD_Exception_FLT_DENORMAL_OPERAND, OSD_Exception_FLT_INEXACT_RESULT, OSD_Exception_FLT_INVALID_OPERATION, OSD_Exception_FLT_OVERFLOW, OSD_Exception_FLT_STACK_CHECK, OSD_Exception_FLT_UNDERFLOW.
657 lines
19 KiB
C++
657 lines
19 KiB
C++
// Created on: 2014-01-20
|
|
// Created by: Alexaner Malyshev
|
|
// Copyright (c) 2014-2015 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement
|
|
|
|
#include <math_GlobOptMin.hxx>
|
|
|
|
#include <math_BFGS.hxx>
|
|
#include <math_MultipleVarFunctionWithHessian.hxx>
|
|
#include <math_NewtonMinimum.hxx>
|
|
#include <math_Powell.hxx>
|
|
#include <Standard_Integer.hxx>
|
|
#include <Standard_Real.hxx>
|
|
#include <Precision.hxx>
|
|
|
|
//=======================================================================
|
|
//function : DistanceToBorder
|
|
//purpose :
|
|
//=======================================================================
|
|
static Standard_Real DistanceToBorder(const math_Vector & theX,
|
|
const math_Vector & theMin,
|
|
const math_Vector & theMax)
|
|
{
|
|
Standard_Real aDist = RealLast();
|
|
|
|
for (Standard_Integer anIdx = theMin.Lower(); anIdx <= theMin.Upper(); ++anIdx)
|
|
{
|
|
const Standard_Real aDist1 = Abs (theX(anIdx) - theMin(anIdx));
|
|
const Standard_Real aDist2 = Abs (theX(anIdx) - theMax(anIdx));
|
|
|
|
aDist = Min (aDist, Min (aDist1, aDist2));
|
|
}
|
|
|
|
return aDist;
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : math_GlobOptMin
|
|
//purpose : Constructor
|
|
//=======================================================================
|
|
math_GlobOptMin::math_GlobOptMin(math_MultipleVarFunction* theFunc,
|
|
const math_Vector& theA,
|
|
const math_Vector& theB,
|
|
const Standard_Real theC,
|
|
const Standard_Real theDiscretizationTol,
|
|
const Standard_Real theSameTol)
|
|
: myN(theFunc->NbVariables()),
|
|
myA(1, myN),
|
|
myB(1, myN),
|
|
myGlobA(1, myN),
|
|
myGlobB(1, myN),
|
|
myIsConstLocked(Standard_False),
|
|
myX(1, myN),
|
|
myTmp(1, myN),
|
|
myV(1, myN),
|
|
myMaxV(1, myN),
|
|
myCellSize(0, myN - 1),
|
|
myFilter(theFunc->NbVariables()),
|
|
myCont(2),
|
|
myF(Precision::Infinite())
|
|
{
|
|
Standard_Integer i;
|
|
|
|
myFunc = theFunc;
|
|
myC = theC;
|
|
myInitC = theC;
|
|
myIsFindSingleSolution = Standard_False;
|
|
myFunctionalMinimalValue = -Precision::Infinite();
|
|
myZ = -1;
|
|
mySolCount = 0;
|
|
|
|
for(i = 1; i <= myN; i++)
|
|
{
|
|
myGlobA(i) = theA(i);
|
|
myGlobB(i) = theB(i);
|
|
|
|
myA(i) = theA(i);
|
|
myB(i) = theB(i);
|
|
}
|
|
|
|
for(i = 1; i <= myN; i++)
|
|
{
|
|
myMaxV(i) = (myB(i) - myA(i)) / 3.0;
|
|
}
|
|
|
|
myTol = theDiscretizationTol;
|
|
mySameTol = theSameTol;
|
|
|
|
const Standard_Integer aMaxSquareSearchSol = 200;
|
|
Standard_Integer aSolNb = Standard_Integer(Pow(3.0, Standard_Real(myN)));
|
|
myMinCellFilterSol = Max(2 * aSolNb, aMaxSquareSearchSol);
|
|
initCellSize();
|
|
ComputeInitSol();
|
|
|
|
myDone = Standard_False;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : SetGlobalParams
|
|
//purpose : Set parameters without memory allocation.
|
|
//=======================================================================
|
|
void math_GlobOptMin::SetGlobalParams(math_MultipleVarFunction* theFunc,
|
|
const math_Vector& theA,
|
|
const math_Vector& theB,
|
|
const Standard_Real theC,
|
|
const Standard_Real theDiscretizationTol,
|
|
const Standard_Real theSameTol)
|
|
{
|
|
Standard_Integer i;
|
|
|
|
myFunc = theFunc;
|
|
myC = theC;
|
|
myInitC = theC;
|
|
myZ = -1;
|
|
mySolCount = 0;
|
|
|
|
for(i = 1; i <= myN; i++)
|
|
{
|
|
myGlobA(i) = theA(i);
|
|
myGlobB(i) = theB(i);
|
|
|
|
myA(i) = theA(i);
|
|
myB(i) = theB(i);
|
|
}
|
|
|
|
for(i = 1; i <= myN; i++)
|
|
{
|
|
myMaxV(i) = (myB(i) - myA(i)) / 3.0;
|
|
}
|
|
|
|
myTol = theDiscretizationTol;
|
|
mySameTol = theSameTol;
|
|
|
|
initCellSize();
|
|
ComputeInitSol();
|
|
|
|
myDone = Standard_False;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : SetLocalParams
|
|
//purpose : Set parameters without memory allocation.
|
|
//=======================================================================
|
|
void math_GlobOptMin::SetLocalParams(const math_Vector& theLocalA,
|
|
const math_Vector& theLocalB)
|
|
{
|
|
Standard_Integer i;
|
|
|
|
myZ = -1;
|
|
for(i = 1; i <= myN; i++)
|
|
{
|
|
myA(i) = theLocalA(i);
|
|
myB(i) = theLocalB(i);
|
|
}
|
|
|
|
for(i = 1; i <= myN; i++)
|
|
{
|
|
myMaxV(i) = (myB(i) - myA(i)) / 3.0;
|
|
}
|
|
|
|
myDone = Standard_False;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : SetTol
|
|
//purpose : Set algorithm tolerances.
|
|
//=======================================================================
|
|
void math_GlobOptMin::SetTol(const Standard_Real theDiscretizationTol,
|
|
const Standard_Real theSameTol)
|
|
{
|
|
myTol = theDiscretizationTol;
|
|
mySameTol = theSameTol;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : GetTol
|
|
//purpose : Get algorithm tolerances.
|
|
//=======================================================================
|
|
void math_GlobOptMin::GetTol(Standard_Real& theDiscretizationTol,
|
|
Standard_Real& theSameTol)
|
|
{
|
|
theDiscretizationTol = myTol;
|
|
theSameTol = mySameTol;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Perform
|
|
//purpose : Compute Global extremum point
|
|
//=======================================================================
|
|
// In this algo indexes started from 1, not from 0.
|
|
void math_GlobOptMin::Perform(const Standard_Boolean isFindSingleSolution)
|
|
{
|
|
myDone = Standard_False;
|
|
|
|
// Compute parameters range
|
|
Standard_Real minLength = RealLast();
|
|
Standard_Real maxLength = RealFirst();
|
|
for(Standard_Integer i = 1; i <= myN; i++)
|
|
{
|
|
Standard_Real currentLength = myB(i) - myA(i);
|
|
if (currentLength < minLength)
|
|
minLength = currentLength;
|
|
if (currentLength > maxLength)
|
|
maxLength = currentLength;
|
|
|
|
myV(i) = 0.0;
|
|
}
|
|
|
|
if (minLength < Precision::PConfusion())
|
|
{
|
|
#ifdef OCCT_DEBUG
|
|
std::cout << "math_GlobOptMin::Perform(): Degenerated parameters space" << std::endl;
|
|
#endif
|
|
|
|
return;
|
|
}
|
|
|
|
if (!myIsConstLocked)
|
|
{
|
|
// Compute initial value for myC.
|
|
computeInitialValues();
|
|
}
|
|
|
|
myE1 = minLength * myTol;
|
|
myE2 = maxLength * myTol;
|
|
|
|
myIsFindSingleSolution = isFindSingleSolution;
|
|
if (isFindSingleSolution)
|
|
{
|
|
// Run local optimization if current value better than optimal.
|
|
myE3 = 0.0;
|
|
}
|
|
else
|
|
{
|
|
if (myC > 1.0)
|
|
myE3 = - maxLength * myTol / 4.0;
|
|
else
|
|
myE3 = - maxLength * myTol * myC / 4.0;
|
|
}
|
|
|
|
// Search single solution and current solution in its neighborhood.
|
|
if (CheckFunctionalStopCriteria())
|
|
{
|
|
myDone = Standard_True;
|
|
return;
|
|
}
|
|
|
|
myLastStep = 0.0;
|
|
isFirstCellFilterInvoke = Standard_True;
|
|
computeGlobalExtremum(myN);
|
|
|
|
myDone = Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : computeLocalExtremum
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean math_GlobOptMin::computeLocalExtremum(const math_Vector& thePnt,
|
|
Standard_Real& theVal,
|
|
math_Vector& theOutPnt)
|
|
{
|
|
Standard_Integer i;
|
|
|
|
//Newton method
|
|
if (myCont >= 2 &&
|
|
dynamic_cast<math_MultipleVarFunctionWithHessian*>(myFunc))
|
|
{
|
|
math_MultipleVarFunctionWithHessian* aTmp =
|
|
dynamic_cast<math_MultipleVarFunctionWithHessian*> (myFunc);
|
|
math_NewtonMinimum newtonMinimum(*aTmp);
|
|
newtonMinimum.SetBoundary(myGlobA, myGlobB);
|
|
newtonMinimum.Perform(*aTmp, thePnt);
|
|
|
|
if (newtonMinimum.IsDone())
|
|
{
|
|
newtonMinimum.Location(theOutPnt);
|
|
theVal = newtonMinimum.Minimum();
|
|
|
|
if (isInside(theOutPnt))
|
|
return Standard_True;
|
|
}
|
|
}
|
|
|
|
// BFGS method used.
|
|
if (myCont >= 1 &&
|
|
dynamic_cast<math_MultipleVarFunctionWithGradient*>(myFunc))
|
|
{
|
|
math_MultipleVarFunctionWithGradient* aTmp =
|
|
dynamic_cast<math_MultipleVarFunctionWithGradient*> (myFunc);
|
|
math_BFGS bfgs(aTmp->NbVariables());
|
|
bfgs.SetBoundary(myGlobA, myGlobB);
|
|
bfgs.Perform(*aTmp, thePnt);
|
|
|
|
if (bfgs.IsDone())
|
|
{
|
|
bfgs.Location(theOutPnt);
|
|
theVal = bfgs.Minimum();
|
|
|
|
if (isInside(theOutPnt))
|
|
return Standard_True;
|
|
}
|
|
}
|
|
|
|
// Powell method used.
|
|
if (dynamic_cast<math_MultipleVarFunction*>(myFunc))
|
|
{
|
|
math_Matrix m(1, myN, 1, myN, 0.0);
|
|
for(i = 1; i <= myN; i++)
|
|
m(i, i) = 1.0;
|
|
|
|
math_Powell powell(*myFunc, 1e-10);
|
|
powell.Perform(*myFunc, thePnt, m);
|
|
|
|
if (powell.IsDone())
|
|
{
|
|
powell.Location(theOutPnt);
|
|
theVal = powell.Minimum();
|
|
|
|
if (isInside(theOutPnt))
|
|
return Standard_True;
|
|
}
|
|
}
|
|
|
|
return Standard_False;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : computeInitialValues
|
|
//purpose :
|
|
//=======================================================================
|
|
void math_GlobOptMin::computeInitialValues()
|
|
{
|
|
const Standard_Real aMinLC = 0.01;
|
|
const Standard_Real aMaxLC = 1000.;
|
|
const Standard_Real aMinEps = 0.1;
|
|
const Standard_Real aMaxEps = 100.;
|
|
Standard_Integer i;
|
|
math_Vector aCurrPnt(1, myN);
|
|
math_Vector aBestPnt(1, myN);
|
|
math_Vector aParamStep(1, myN);
|
|
Standard_Real aCurrVal = RealLast();
|
|
|
|
// Lipchitz const approximation.
|
|
Standard_Real aLipConst = 0.0, aPrevValDiag, aPrevValProj;
|
|
Standard_Integer aPntNb = 13;
|
|
myFunc->Value(myA, aPrevValDiag);
|
|
aPrevValProj = aPrevValDiag;
|
|
Standard_Real aStep = (myB - myA).Norm() / aPntNb;
|
|
aParamStep = (myB - myA) / aPntNb;
|
|
for(i = 1; i <= aPntNb; i++)
|
|
{
|
|
aCurrPnt = myA + aParamStep * i;
|
|
|
|
// Walk over diagonal.
|
|
myFunc->Value(aCurrPnt, aCurrVal);
|
|
aLipConst = Max (Abs(aCurrVal - aPrevValDiag), aLipConst);
|
|
aPrevValDiag = aCurrVal;
|
|
|
|
// Walk over diag in projected space aPnt(1) = myA(1) = const.
|
|
aCurrPnt(1) = myA(1);
|
|
myFunc->Value(aCurrPnt, aCurrVal);
|
|
aLipConst = Max (Abs(aCurrVal - aPrevValProj), aLipConst);
|
|
aPrevValProj = aCurrVal;
|
|
}
|
|
|
|
myC = myInitC;
|
|
aLipConst *= Sqrt(myN) / aStep;
|
|
if (aLipConst < myC * aMinEps)
|
|
myC = Max(aLipConst * aMinEps, aMinLC);
|
|
else if (aLipConst > myC * aMaxEps)
|
|
myC = Min(myC * aMaxEps, aMaxLC);
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ComputeGlobalExtremum
|
|
//purpose :
|
|
//=======================================================================
|
|
void math_GlobOptMin::computeGlobalExtremum(Standard_Integer j)
|
|
{
|
|
Standard_Integer i;
|
|
Standard_Real d = RealLast(), aPrevVal; // Functional in original and moved points.
|
|
Standard_Real val = RealLast(); // Local extrema computed in moved point.
|
|
Standard_Real aStepBestValue = RealLast();
|
|
math_Vector aStepBestPoint(1, myN);
|
|
Standard_Boolean isInside = Standard_False,
|
|
isReached = Standard_False;
|
|
|
|
Standard_Real r1, r2, r;
|
|
|
|
for(myX(j) = myA(j) + myE1; !isReached; myX(j) += myV(j))
|
|
{
|
|
if (myX(j) > myB(j))
|
|
{
|
|
myX(j) = myB(j);
|
|
isReached = Standard_True;
|
|
}
|
|
|
|
if (CheckFunctionalStopCriteria())
|
|
return; // Best possible value is obtained.
|
|
|
|
if (j == 1)
|
|
{
|
|
isInside = Standard_False;
|
|
aPrevVal = d;
|
|
myFunc->Value(myX, d);
|
|
r1 = (d + myZ * myC * myLastStep - myF) * myZ; // Evtushenko estimation.
|
|
r2 = ((d + aPrevVal - myC * myLastStep) * 0.5 - myF) * myZ; // Shubert / Piyavsky estimation.
|
|
r = Min(r1, r2);
|
|
if(r > myE3)
|
|
{
|
|
Standard_Real aSaveParam = myX(1);
|
|
|
|
// Piyavsky midpoint estimation.
|
|
Standard_Real aParam = (2 * myX(1) - myV(1) ) * 0.5 + (aPrevVal - d) * 0.5 / myC;
|
|
if (Precision::IsInfinite(aPrevVal))
|
|
aParam = myX(1) - myV(1) * 0.5; // Protection from upper dimension step.
|
|
|
|
myX(1) = aParam;
|
|
Standard_Real aVal = 0;
|
|
myFunc->Value(myX, aVal);
|
|
myX(1) = aSaveParam;
|
|
|
|
if ( (aVal < d && aVal < aPrevVal) ||
|
|
DistanceToBorder(myX, myA, myB) < myE1 ) // Condition optimization case near the border.
|
|
{
|
|
isInside = computeLocalExtremum(myX, val, myTmp);
|
|
}
|
|
}
|
|
aStepBestValue = (isInside && (val < d))? val : d;
|
|
aStepBestPoint = (isInside && (val < d))? myTmp : myX;
|
|
|
|
// Check point and value on the current step to be optimal.
|
|
checkAddCandidate(aStepBestPoint, aStepBestValue);
|
|
|
|
if (CheckFunctionalStopCriteria())
|
|
return; // Best possible value is obtained.
|
|
|
|
myV(1) = Min(myE2 + Abs(myF - d) / myC, myMaxV(1));
|
|
myLastStep = myV(1);
|
|
}
|
|
else
|
|
{
|
|
myV(j) = RealLast() / 2.0;
|
|
computeGlobalExtremum(j - 1);
|
|
|
|
// Nullify steps on lower dimensions.
|
|
for(i = 1; i < j; i++)
|
|
myV(i) = 0.0;
|
|
}
|
|
if (j < myN)
|
|
{
|
|
Standard_Real aUpperDimStep = Max(myV(j), myE2);
|
|
if (myV(j + 1) > aUpperDimStep)
|
|
{
|
|
if (aUpperDimStep > myMaxV(j + 1)) // Case of too big step.
|
|
myV(j + 1) = myMaxV(j + 1);
|
|
else
|
|
myV(j + 1) = aUpperDimStep;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : IsInside
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean math_GlobOptMin::isInside(const math_Vector& thePnt)
|
|
{
|
|
Standard_Integer i;
|
|
|
|
for(i = 1; i <= myN; i++)
|
|
{
|
|
if (thePnt(i) < myGlobA(i) || thePnt(i) > myGlobB(i))
|
|
return Standard_False;
|
|
}
|
|
|
|
return Standard_True;
|
|
}
|
|
//=======================================================================
|
|
//function : IsStored
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean math_GlobOptMin::isStored(const math_Vector& thePnt)
|
|
{
|
|
Standard_Integer i,j;
|
|
Standard_Boolean isSame = Standard_True;
|
|
math_Vector aTol(1, myN);
|
|
aTol = (myB - myA) * mySameTol;
|
|
|
|
// C1 * n^2 = C2 * 3^dim * n
|
|
if (mySolCount < myMinCellFilterSol)
|
|
{
|
|
for(i = 0; i < mySolCount; i++)
|
|
{
|
|
isSame = Standard_True;
|
|
for(j = 1; j <= myN; j++)
|
|
{
|
|
if ((Abs(thePnt(j) - myY(i * myN + j))) > aTol(j))
|
|
{
|
|
isSame = Standard_False;
|
|
break;
|
|
}
|
|
}
|
|
if (isSame == Standard_True)
|
|
return Standard_True;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
NCollection_CellFilter_Inspector anInspector(myN, Precision::PConfusion());
|
|
if (isFirstCellFilterInvoke)
|
|
{
|
|
myFilter.Reset(myCellSize);
|
|
|
|
// Copy initial data into cell filter.
|
|
for(Standard_Integer aSolIdx = 0; aSolIdx < mySolCount; aSolIdx++)
|
|
{
|
|
math_Vector aVec(1, myN);
|
|
for(Standard_Integer aSolDim = 1; aSolDim <= myN; aSolDim++)
|
|
aVec(aSolDim) = myY(aSolIdx * myN + aSolDim);
|
|
|
|
myFilter.Add(aVec, aVec);
|
|
}
|
|
}
|
|
|
|
isFirstCellFilterInvoke = Standard_False;
|
|
|
|
math_Vector aLow(1, myN), anUp(1, myN);
|
|
anInspector.Shift(thePnt, myCellSize, aLow, anUp);
|
|
|
|
anInspector.ClearFind();
|
|
anInspector.SetCurrent(thePnt);
|
|
myFilter.Inspect(aLow, anUp, anInspector);
|
|
if (!anInspector.isFind())
|
|
{
|
|
// Point is out of close cells, add new one.
|
|
myFilter.Add(thePnt, thePnt);
|
|
}
|
|
}
|
|
return Standard_False;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Points
|
|
//purpose :
|
|
//=======================================================================
|
|
void math_GlobOptMin::Points(const Standard_Integer theIndex, math_Vector& theSol)
|
|
{
|
|
Standard_Integer j;
|
|
|
|
for(j = 1; j <= myN; j++)
|
|
theSol(j) = myY((theIndex - 1) * myN + j);
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : initCellSize
|
|
//purpose :
|
|
//=======================================================================
|
|
void math_GlobOptMin::initCellSize()
|
|
{
|
|
for(Standard_Integer anIdx = 1; anIdx <= myN; anIdx++)
|
|
{
|
|
myCellSize(anIdx - 1) = (myGlobB(anIdx) - myGlobA(anIdx))
|
|
* Precision::PConfusion() / (2.0 * Sqrt(2.0));
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : CheckFunctionalStopCriteria
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean math_GlobOptMin::CheckFunctionalStopCriteria()
|
|
{
|
|
// Search single solution and current solution in its neighborhood.
|
|
if (myIsFindSingleSolution &&
|
|
Abs (myF - myFunctionalMinimalValue) < mySameTol * 0.01)
|
|
return Standard_True;
|
|
|
|
return Standard_False;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ComputeInitSol
|
|
//purpose :
|
|
//=======================================================================
|
|
void math_GlobOptMin::ComputeInitSol()
|
|
{
|
|
Standard_Real aVal;
|
|
math_Vector aPnt(1, myN);
|
|
|
|
// Check functional value in midpoint. It is necessary since local optimization
|
|
// algorithm may fail and return nothing. This is a protection from uninitialized
|
|
// variables.
|
|
aPnt = (myGlobA + myGlobB) * 0.5;
|
|
myFunc->Value(aPnt, aVal);
|
|
checkAddCandidate(aPnt, aVal);
|
|
|
|
// Run local optimization from lower corner, midpoint, and upper corner.
|
|
for(Standard_Integer i = 1; i <= 3; i++)
|
|
{
|
|
aPnt = myA + (myB - myA) * (i - 1) / 2.0;
|
|
|
|
if(computeLocalExtremum(aPnt, aVal, aPnt))
|
|
checkAddCandidate(aPnt, aVal);
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : checkAddCandidate
|
|
//purpose :
|
|
//=======================================================================
|
|
void math_GlobOptMin::checkAddCandidate(const math_Vector& thePnt,
|
|
const Standard_Real theValue)
|
|
{
|
|
if (Abs(theValue - myF) < mySameTol * 0.01 && // Value in point is close to optimal value.
|
|
!myIsFindSingleSolution) // Several optimal solutions are allowed.
|
|
{
|
|
if (!isStored(thePnt))
|
|
{
|
|
if ((theValue - myF) * myZ > 0.0)
|
|
myF = theValue;
|
|
for (Standard_Integer j = 1; j <= myN; j++)
|
|
myY.Append(thePnt(j));
|
|
mySolCount++;
|
|
}
|
|
}
|
|
|
|
// New best solution:
|
|
// new point is out of (mySameTol * 0.01) surrounding or
|
|
// new point is better than old and single point search.
|
|
Standard_Real aDelta = (theValue - myF) * myZ;
|
|
if (aDelta > mySameTol * 0.01 ||
|
|
(aDelta > 0.0 && myIsFindSingleSolution))
|
|
{
|
|
myF = theValue;
|
|
myY.Clear();
|
|
for (Standard_Integer j = 1; j <= myN; j++)
|
|
myY.Append(thePnt(j));
|
|
mySolCount = 1;
|
|
|
|
isFirstCellFilterInvoke = Standard_True;
|
|
}
|
|
}
|