mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-04 18:06:22 +03:00
"endl" manipulator for Message_Messenger is renamed to "Message_EndLine". The following entities from std namespace are now used with std:: explicitly specified (from Standard_Stream.hxx): std::istream,std::ostream,std::ofstream,std::ifstream,std::fstream, std::filebuf,std::streambuf,std::streampos,std::ios,std::cout,std::cerr, std::cin,std::endl,std::ends,std::flush,std::setw,std::setprecision, std::hex,std::dec.
170 lines
4.4 KiB
C++
170 lines
4.4 KiB
C++
// Copyright (c) 1997-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <math_BissecNewton.hxx>
|
|
#include <math_FunctionWithDerivative.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
|
|
//=======================================================================
|
|
//function : math_BissecNewton
|
|
//purpose : Constructor
|
|
//=======================================================================
|
|
math_BissecNewton::math_BissecNewton(const Standard_Real theXTolerance)
|
|
: TheStatus(math_NotBracketed),
|
|
XTol (theXTolerance),
|
|
x (0.0),
|
|
dx (0.0),
|
|
f (0.0),
|
|
df (0.0),
|
|
Done (Standard_False)
|
|
{
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : ~math_BissecNewton
|
|
//purpose : Destructor
|
|
//=======================================================================
|
|
math_BissecNewton::~math_BissecNewton()
|
|
{
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Perform
|
|
//purpose :
|
|
//=======================================================================
|
|
void math_BissecNewton::Perform(math_FunctionWithDerivative& F,
|
|
const Standard_Real Bound1,
|
|
const Standard_Real Bound2,
|
|
const Standard_Integer NbIterations)
|
|
{
|
|
Standard_Boolean GOOD;
|
|
Standard_Integer j;
|
|
Standard_Real dxold, fh, fl;
|
|
Standard_Real swap, temp, xh, xl;
|
|
|
|
GOOD = F.Values(Bound1, fl, df);
|
|
if(!GOOD) {
|
|
Done = Standard_False;
|
|
TheStatus = math_FunctionError;
|
|
return;
|
|
}
|
|
GOOD = F.Values(Bound2, fh, df);
|
|
if(!GOOD) {
|
|
Done = Standard_False;
|
|
TheStatus = math_FunctionError;
|
|
return;
|
|
}
|
|
// Modified by Sergey KHROMOV - Wed Jan 22 12:06:45 2003 Begin
|
|
Standard_Real aFTol = RealEpsilon();
|
|
|
|
// if(fl * fh >= 0.0) {
|
|
if(fl * fh > aFTol*aFTol) {
|
|
Done = Standard_False;
|
|
TheStatus = math_NotBracketed;
|
|
return;
|
|
}
|
|
// if(fl < 0.0) {
|
|
if(fl < -aFTol || (fl < aFTol && fh < -aFTol)) {
|
|
xl = Bound1;
|
|
xh = Bound2;
|
|
}
|
|
else {
|
|
xl = Bound2;
|
|
xh = Bound1;
|
|
swap = fl;
|
|
fl = fh;
|
|
fh = swap;
|
|
}
|
|
// Modified by Sergey KHROMOV - Wed Jan 22 12:06:49 2003 End
|
|
x = 0.5 * (Bound1 + Bound2);
|
|
dxold = fabs(Bound2 - Bound1);
|
|
dx = dxold;
|
|
GOOD = F.Values(x, f, df);
|
|
if(!GOOD) {
|
|
Done = Standard_False;
|
|
TheStatus = math_FunctionError;
|
|
return;
|
|
}
|
|
for(j = 1; j <= NbIterations; j++) {
|
|
if((((x - xh) * df - f) * ((x - xl) * df - f) >= 0.0)
|
|
|| (fabs(2.0 * f) > fabs(dxold * df))) {
|
|
dxold = dx;
|
|
dx = 0.5 * (xh - xl);
|
|
x = xl + dx;
|
|
if(Abs(dx) < XTol) {
|
|
TheStatus = math_OK;
|
|
Done = Standard_True;
|
|
return;
|
|
}
|
|
}
|
|
else {
|
|
dxold = dx;
|
|
dx = f / df;
|
|
temp = x;
|
|
x -= dx;
|
|
if(temp == x) {
|
|
TheStatus = math_OK;
|
|
Done = Standard_True;
|
|
return;
|
|
}
|
|
}
|
|
if(IsSolutionReached(F)) {
|
|
TheStatus = math_OK;
|
|
Done = Standard_True;
|
|
return;
|
|
}
|
|
GOOD = F.Values(x, f, df);
|
|
if(!GOOD) {
|
|
Done = Standard_False;
|
|
TheStatus = math_FunctionError;
|
|
return;
|
|
}
|
|
if(f < 0.0) {
|
|
xl = x;
|
|
fl = f;
|
|
}
|
|
else if(f > 0.0) {
|
|
xh = x;
|
|
fh = f;
|
|
}
|
|
else {
|
|
TheStatus = math_OK;
|
|
Done = Standard_True;
|
|
return;
|
|
}
|
|
}
|
|
TheStatus = math_TooManyIterations;
|
|
Done = Standard_False;
|
|
return;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Dump
|
|
//purpose :
|
|
//=======================================================================
|
|
void math_BissecNewton::Dump(Standard_OStream& o) const {
|
|
|
|
o << "math_BissecNewton ";
|
|
if(Done) {
|
|
o << " Status = Done \n";
|
|
o << " The Root is: " << x << std::endl;
|
|
o << " The value at this Root is: " << f << std::endl;
|
|
}
|
|
else {
|
|
o << " Status = not Done \n";
|
|
}
|
|
}
|
|
|