mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-04 18:06:22 +03:00
Fix affects BFGS optimization methods by checking convergence as the first step on each iteration. FRPR works well, but it is updated as well since its logic potentially dangerous.
493 lines
15 KiB
C++
493 lines
15 KiB
C++
// Copyright (c) 1997-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
//#ifndef OCCT_DEBUG
|
|
#define No_Standard_RangeError
|
|
#define No_Standard_OutOfRange
|
|
#define No_Standard_DimensionError
|
|
|
|
//#endif
|
|
|
|
#include <math_BFGS.hxx>
|
|
#include <math_BracketMinimum.hxx>
|
|
#include <math_BrentMinimum.hxx>
|
|
#include <math_FunctionWithDerivative.hxx>
|
|
#include <math_Matrix.hxx>
|
|
#include <math_MultipleVarFunctionWithGradient.hxx>
|
|
#include <Precision.hxx>
|
|
|
|
// l'utilisation de math_BrentMinumim pur trouver un minimum dans une direction
|
|
// donnee n'est pas du tout optimale. voir peut etre interpolation cubique
|
|
// classique et aussi essayer "recherche unidimensionnelle economique"
|
|
// PROGRAMMATION MATHEMATIQUE (theorie et algorithmes) tome1 page 82.
|
|
|
|
// Target function for 1D problem, point and direction are known.
|
|
class DirFunction : public math_FunctionWithDerivative
|
|
{
|
|
|
|
math_Vector *P0;
|
|
math_Vector *Dir;
|
|
math_Vector *P;
|
|
math_Vector *G;
|
|
math_MultipleVarFunctionWithGradient *F;
|
|
|
|
public:
|
|
|
|
//! Ctor.
|
|
DirFunction(math_Vector& V1,
|
|
math_Vector& V2,
|
|
math_Vector& V3,
|
|
math_Vector& V4,
|
|
math_MultipleVarFunctionWithGradient& f)
|
|
: P0(&V1),
|
|
Dir(&V2),
|
|
P(&V3),
|
|
G(&V4),
|
|
F(&f)
|
|
{}
|
|
|
|
//! Sets point and direction.
|
|
void Initialize(const math_Vector& p0,
|
|
const math_Vector& dir) const
|
|
{
|
|
*P0 = p0;
|
|
*Dir = dir;
|
|
}
|
|
|
|
void TheGradient(math_Vector& Grad)
|
|
{
|
|
Grad = *G;
|
|
}
|
|
|
|
virtual Standard_Boolean Value(const Standard_Real x,
|
|
Standard_Real& fval)
|
|
{
|
|
*P = *Dir;
|
|
P->Multiply(x);
|
|
P->Add(*P0);
|
|
fval = 0.;
|
|
return F->Value(*P, fval);
|
|
}
|
|
|
|
virtual Standard_Boolean Values(const Standard_Real x,
|
|
Standard_Real& fval,
|
|
Standard_Real& D)
|
|
{
|
|
*P = *Dir;
|
|
P->Multiply(x);
|
|
P->Add(*P0);
|
|
fval = D = 0.;
|
|
if (F->Values(*P, fval, *G))
|
|
{
|
|
D = (*G).Multiplied(*Dir);
|
|
return Standard_True;
|
|
}
|
|
|
|
return Standard_False;
|
|
}
|
|
virtual Standard_Boolean Derivative(const Standard_Real x,
|
|
Standard_Real& D)
|
|
{
|
|
*P = *Dir;
|
|
P->Multiply(x);
|
|
P->Add(*P0);
|
|
Standard_Real fval;
|
|
D = 0.;
|
|
if (F->Values(*P, fval, *G))
|
|
{
|
|
D = (*G).Multiplied(*Dir);
|
|
return Standard_True;
|
|
}
|
|
|
|
return Standard_False;
|
|
}
|
|
|
|
|
|
};
|
|
|
|
//=============================================================================
|
|
//function : ComputeInitScale
|
|
//purpose : Compute the appropriate initial value of scale factor to apply
|
|
// to the direction to approach to the minimum of the function
|
|
//=============================================================================
|
|
static Standard_Boolean ComputeInitScale(const Standard_Real theF0,
|
|
const math_Vector& theDir,
|
|
const math_Vector& theGr,
|
|
Standard_Real& theScale)
|
|
{
|
|
const Standard_Real dy1 = theGr * theDir;
|
|
if (Abs(dy1) < RealSmall())
|
|
return Standard_False;
|
|
|
|
const Standard_Real aHnr1 = theDir.Norm2();
|
|
const Standard_Real alfa = 0.7*(-theF0) / dy1;
|
|
theScale = 0.015 / Sqrt(aHnr1);
|
|
if (theScale > alfa)
|
|
theScale = alfa;
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : ComputeMinMaxScale
|
|
//purpose : For a given point and direction, and bounding box,
|
|
// find min and max scale factors with which the point reaches borders
|
|
// if we apply translation Point+Dir*Scale.
|
|
//return : True if found, False if point is out of bounds.
|
|
//=============================================================================
|
|
static Standard_Boolean ComputeMinMaxScale(const math_Vector& thePoint,
|
|
const math_Vector& theDir,
|
|
const math_Vector& theLeft,
|
|
const math_Vector& theRight,
|
|
Standard_Real& theMinScale,
|
|
Standard_Real& theMaxScale)
|
|
{
|
|
for (Standard_Integer anIdx = 1; anIdx <= theLeft.Upper(); anIdx++)
|
|
{
|
|
const Standard_Real aLeft = theLeft(anIdx) - thePoint(anIdx);
|
|
const Standard_Real aRight = theRight(anIdx) - thePoint(anIdx);
|
|
if (Abs(theDir(anIdx)) > RealSmall())
|
|
{
|
|
// Use PConfusion to get off a little from the bounds to prevent
|
|
// possible refuse in Value function.
|
|
const Standard_Real aLScale = (aLeft + Precision::PConfusion()) / theDir(anIdx);
|
|
const Standard_Real aRScale = (aRight - Precision::PConfusion()) / theDir(anIdx);
|
|
if (Abs(aLeft) < Precision::PConfusion())
|
|
{
|
|
// Point is on the left border.
|
|
theMaxScale = Min(theMaxScale, Max(0., aRScale));
|
|
theMinScale = Max(theMinScale, Min(0., aRScale));
|
|
}
|
|
else if (Abs(aRight) < Precision::PConfusion())
|
|
{
|
|
// Point is on the right border.
|
|
theMaxScale = Min(theMaxScale, Max(0., aLScale));
|
|
theMinScale = Max(theMinScale, Min(0., aLScale));
|
|
}
|
|
else if (aLeft * aRight < 0)
|
|
{
|
|
// Point is inside allowed range.
|
|
theMaxScale = Min(theMaxScale, Max(aLScale, aRScale));
|
|
theMinScale = Max(theMinScale, Min(aLScale, aRScale));
|
|
}
|
|
else
|
|
// point is out of bounds
|
|
return Standard_False;
|
|
}
|
|
else
|
|
{
|
|
// Direction is parallel to the border.
|
|
// Check that the point is not out of bounds
|
|
if (aLeft > Precision::PConfusion() ||
|
|
aRight < -Precision::PConfusion())
|
|
{
|
|
return Standard_False;
|
|
}
|
|
}
|
|
}
|
|
return Standard_True;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : MinimizeDirection
|
|
//purpose : Solves 1D minimization problem when point and directions
|
|
// are known.
|
|
//=============================================================================
|
|
static Standard_Boolean MinimizeDirection(math_Vector& P,
|
|
Standard_Real F0,
|
|
math_Vector& Gr,
|
|
math_Vector& Dir,
|
|
Standard_Real& Result,
|
|
DirFunction& F,
|
|
Standard_Boolean isBounds,
|
|
const math_Vector& theLeft,
|
|
const math_Vector& theRight)
|
|
{
|
|
Standard_Real lambda;
|
|
if (!ComputeInitScale(F0, Dir, Gr, lambda))
|
|
return Standard_False;
|
|
|
|
// by default the scaling range is unlimited
|
|
Standard_Real aMinLambda = -Precision::Infinite();
|
|
Standard_Real aMaxLambda = Precision::Infinite();
|
|
if (isBounds)
|
|
{
|
|
// limit the scaling range taking into account the bounds
|
|
if (!ComputeMinMaxScale(P, Dir, theLeft, theRight, aMinLambda, aMaxLambda))
|
|
return Standard_False;
|
|
|
|
if (aMinLambda > -Precision::PConfusion() && aMaxLambda < Precision::PConfusion())
|
|
{
|
|
// Point is on the border and the direction shows outside.
|
|
// Make direction to go along the border
|
|
for (Standard_Integer anIdx = 1; anIdx <= theLeft.Upper(); anIdx++)
|
|
{
|
|
if ((Abs(P(anIdx) - theRight(anIdx)) < Precision::PConfusion() && Dir(anIdx) > 0.0) ||
|
|
(Abs(P(anIdx) - theLeft(anIdx)) < Precision::PConfusion() && Dir(anIdx) < 0.0))
|
|
{
|
|
Dir(anIdx) = 0.0;
|
|
}
|
|
}
|
|
|
|
// re-compute scale values with new direction
|
|
if (!ComputeInitScale(F0, Dir, Gr, lambda))
|
|
return Standard_False;
|
|
if (!ComputeMinMaxScale(P, Dir, theLeft, theRight, aMinLambda, aMaxLambda))
|
|
return Standard_False;
|
|
}
|
|
lambda = Min(lambda, aMaxLambda);
|
|
lambda = Max(lambda, aMinLambda);
|
|
}
|
|
|
|
F.Initialize(P, Dir);
|
|
Standard_Real F1;
|
|
if (!F.Value(lambda, F1))
|
|
return Standard_False;
|
|
|
|
math_BracketMinimum Bracket(0.0, lambda);
|
|
if (isBounds)
|
|
Bracket.SetLimits(aMinLambda, aMaxLambda);
|
|
Bracket.SetFA(F0);
|
|
Bracket.SetFB(F1);
|
|
Bracket.Perform(F);
|
|
if (Bracket.IsDone())
|
|
{
|
|
// find minimum inside the bracket
|
|
Standard_Real ax, xx, bx, Fax, Fxx, Fbx;
|
|
Bracket.Values(ax, xx, bx);
|
|
Bracket.FunctionValues(Fax, Fxx, Fbx);
|
|
|
|
Standard_Integer niter = 100;
|
|
Standard_Real tol = 1.e-03;
|
|
math_BrentMinimum Sol(tol, Fxx, niter, 1.e-08);
|
|
Sol.Perform(F, ax, xx, bx);
|
|
if (Sol.IsDone())
|
|
{
|
|
Standard_Real Scale = Sol.Location();
|
|
Result = Sol.Minimum();
|
|
Dir.Multiply(Scale);
|
|
P.Add(Dir);
|
|
return Standard_True;
|
|
}
|
|
}
|
|
else if (isBounds)
|
|
{
|
|
// Bracket definition is failure. If the bounds are defined then
|
|
// set current point to intersection with bounds
|
|
Standard_Real aFMin, aFMax;
|
|
if (!F.Value(aMinLambda, aFMin))
|
|
return Standard_False;
|
|
if (!F.Value(aMaxLambda, aFMax))
|
|
return Standard_False;
|
|
Standard_Real aBestLambda;
|
|
if (aFMin < aFMax)
|
|
{
|
|
aBestLambda = aMinLambda;
|
|
Result = aFMin;
|
|
}
|
|
else
|
|
{
|
|
aBestLambda = aMaxLambda;
|
|
Result = aFMax;
|
|
}
|
|
Dir.Multiply(aBestLambda);
|
|
P.Add(Dir);
|
|
return Standard_True;
|
|
}
|
|
return Standard_False;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Perform
|
|
//purpose : Performs minimization problem using BFGS method.
|
|
//=============================================================================
|
|
void math_BFGS::Perform(math_MultipleVarFunctionWithGradient& F,
|
|
const math_Vector& StartingPoint)
|
|
{
|
|
const Standard_Integer n = TheLocation.Length();
|
|
Standard_Boolean Good = Standard_True;
|
|
Standard_Integer j, i;
|
|
Standard_Real fae, fad, fac;
|
|
|
|
math_Vector xi(1, n), dg(1, n), hdg(1, n);
|
|
math_Matrix hessin(1, n, 1, n);
|
|
hessin.Init(0.0);
|
|
|
|
math_Vector Temp1(1, n);
|
|
math_Vector Temp2(1, n);
|
|
math_Vector Temp3(1, n);
|
|
math_Vector Temp4(1, n);
|
|
DirFunction F_Dir(Temp1, Temp2, Temp3, Temp4, F);
|
|
|
|
TheLocation = StartingPoint;
|
|
Good = F.Values(TheLocation, PreviousMinimum, TheGradient);
|
|
if (!Good)
|
|
{
|
|
Done = Standard_False;
|
|
TheStatus = math_FunctionError;
|
|
return;
|
|
}
|
|
for (i = 1; i <= n; i++)
|
|
{
|
|
hessin(i, i) = 1.0;
|
|
xi(i) = -TheGradient(i);
|
|
}
|
|
|
|
|
|
for (nbiter = 1; nbiter <= Itermax; nbiter++)
|
|
{
|
|
TheMinimum = PreviousMinimum;
|
|
const Standard_Boolean IsGood = MinimizeDirection(TheLocation, TheMinimum, TheGradient,
|
|
xi, TheMinimum, F_Dir, myIsBoundsDefined,
|
|
myLeft, myRight);
|
|
|
|
if (IsSolutionReached(F))
|
|
{
|
|
Done = Standard_True;
|
|
TheStatus = math_OK;
|
|
return;
|
|
}
|
|
|
|
if (!IsGood)
|
|
{
|
|
Done = Standard_False;
|
|
TheStatus = math_DirectionSearchError;
|
|
return;
|
|
}
|
|
PreviousMinimum = TheMinimum;
|
|
|
|
dg = TheGradient;
|
|
|
|
Good = F.Values(TheLocation, TheMinimum, TheGradient);
|
|
if (!Good)
|
|
{
|
|
Done = Standard_False;
|
|
TheStatus = math_FunctionError;
|
|
return;
|
|
}
|
|
|
|
for (i = 1; i <= n; i++)
|
|
dg(i) = TheGradient(i) - dg(i);
|
|
|
|
for (i = 1; i <= n; i++)
|
|
{
|
|
hdg(i) = 0.0;
|
|
for (j = 1; j <= n; j++)
|
|
hdg(i) += hessin(i, j) * dg(j);
|
|
}
|
|
|
|
fac = fae = 0.0;
|
|
for (i = 1; i <= n; i++)
|
|
{
|
|
fac += dg(i) * xi(i);
|
|
fae += dg(i) * hdg(i);
|
|
}
|
|
fac = 1.0 / fac;
|
|
fad = 1.0 / fae;
|
|
|
|
for (i = 1; i <= n; i++)
|
|
dg(i) = fac * xi(i) - fad * hdg(i);
|
|
|
|
for (i = 1; i <= n; i++)
|
|
{
|
|
for (j = 1; j <= n; j++)
|
|
hessin(i, j) += fac * xi(i) * xi(j) - fad * hdg(i) * hdg(j) + fae * dg(i) * dg(j);
|
|
}
|
|
|
|
for (i = 1; i <= n; i++)
|
|
{
|
|
xi(i) = 0.0;
|
|
for (j = 1; j <= n; j++)
|
|
xi(i) -= hessin(i, j) * TheGradient(j);
|
|
}
|
|
}
|
|
Done = Standard_False;
|
|
TheStatus = math_TooManyIterations;
|
|
return;
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : IsSolutionReached
|
|
//purpose : Checks whether solution reached or not.
|
|
//=============================================================================
|
|
Standard_Boolean math_BFGS::IsSolutionReached(math_MultipleVarFunctionWithGradient&) const
|
|
{
|
|
|
|
return 2.0 * fabs(TheMinimum - PreviousMinimum) <=
|
|
XTol * (fabs(TheMinimum) + fabs(PreviousMinimum) + EPSZ);
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : math_BFGS
|
|
//purpose : Constructor.
|
|
//=============================================================================
|
|
math_BFGS::math_BFGS(const Standard_Integer NbVariables,
|
|
const Standard_Real Tolerance,
|
|
const Standard_Integer NbIterations,
|
|
const Standard_Real ZEPS)
|
|
: TheStatus(math_OK),
|
|
TheLocation(1, NbVariables),
|
|
TheGradient(1, NbVariables),
|
|
PreviousMinimum(0.),
|
|
TheMinimum(0.),
|
|
XTol(Tolerance),
|
|
EPSZ(ZEPS),
|
|
nbiter(0),
|
|
myIsBoundsDefined(Standard_False),
|
|
myLeft(1, NbVariables, 0.0),
|
|
myRight(1, NbVariables, 0.0),
|
|
Done(Standard_False),
|
|
Itermax(NbIterations)
|
|
{
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : ~math_BFGS
|
|
//purpose : Destructor.
|
|
//=============================================================================
|
|
math_BFGS::~math_BFGS()
|
|
{
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : Dump
|
|
//purpose : Prints dump.
|
|
//=============================================================================
|
|
void math_BFGS::Dump(Standard_OStream& o) const
|
|
{
|
|
|
|
o << "math_BFGS resolution: ";
|
|
if (Done)
|
|
{
|
|
o << " Status = Done \n";
|
|
o << " Location Vector = " << Location() << "\n";
|
|
o << " Minimum value = " << Minimum() << "\n";
|
|
o << " Number of iterations = " << NbIterations() << "\n";
|
|
}
|
|
else
|
|
o << " Status = not Done because " << (Standard_Integer)TheStatus << "\n";
|
|
}
|
|
|
|
//=============================================================================
|
|
//function : SetBoundary
|
|
//purpose : Set boundaries for conditional optimization
|
|
//=============================================================================
|
|
void math_BFGS::SetBoundary(const math_Vector& theLeftBorder,
|
|
const math_Vector& theRightBorder)
|
|
{
|
|
myLeft = theLeftBorder;
|
|
myRight = theRightBorder;
|
|
myIsBoundsDefined = Standard_True;
|
|
}
|