1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-04 18:06:22 +03:00
occt/src/Graphic3d/Graphic3d_Camera.cxx
apl bf02aa7d7d 0026617: Visualization, Ray Tracing - adopt progressive rendering Path Tracing for rendering stereoscopic pair
- Use two different FBOs for accumulating frames for left/right eye projection.
- Added equality checks to camera modification methods to avoid camera updates when performing identity operations.
2015-10-22 11:00:08 +03:00

1270 lines
43 KiB
C++

// Created on: 2013-05-29
// Created by: Anton POLETAEV
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <gp_Pln.hxx>
#include <Standard_ShortReal.hxx>
#include <Graphic3d_Camera.hxx>
#include <Graphic3d_Vec4.hxx>
#include <Graphic3d_WorldViewProjState.hxx>
#include <Standard_Atomic.hxx>
#include <Standard_Assert.hxx>
#include <NCollection_Sequence.hxx>
namespace
{
// (degrees -> radians) * 0.5
static const Standard_Real DTR_HALF = 0.5 * 0.0174532925;
// default property values
static const Standard_Real DEFAULT_ZNEAR = 0.001;
static const Standard_Real DEFAULT_ZFAR = 3000.0;
// atomic state counter
static volatile Standard_Integer THE_STATE_COUNTER = 0;
// minimum camera distance
static const Standard_Real MIN_DISTANCE = Pow (0.1, ShortRealDigits() - 2);
// z-range tolerance compatible with for floating point.
static Standard_Real zEpsilon()
{
return FLT_EPSILON;
}
// relative z-range tolerance compatible with for floating point.
static Standard_Real zEpsilon (const Standard_Real theValue)
{
Standard_Real anAbsValue = Abs (theValue);
if (anAbsValue <= (double)FLT_MIN)
{
return FLT_MIN;
}
Standard_Real aLogRadix = Log10 (anAbsValue) / Log10 (FLT_RADIX);
Standard_Real aExp = Floor (aLogRadix);
return FLT_EPSILON * Pow (FLT_RADIX, aExp);
};
};
// =======================================================================
// function : Graphic3d_Camera
// purpose :
// =======================================================================
Graphic3d_Camera::Graphic3d_Camera()
: myUp (0.0, 1.0, 0.0),
myEye (0.0, 0.0, -1500.0),
myCenter (0.0, 0.0, 0.0),
myAxialScale (1.0, 1.0, 1.0),
myProjType (Projection_Orthographic),
myFOVy (45.0),
myZNear (DEFAULT_ZNEAR),
myZFar (DEFAULT_ZFAR),
myAspect (1.0),
myScale (1000.0),
myZFocus (1.0),
myZFocusType (FocusType_Relative),
myIOD (0.05),
myIODType (IODType_Relative)
{
myWorldViewProjState.Initialize ((Standard_Size)Standard_Atomic_Increment (&THE_STATE_COUNTER),
(Standard_Size)Standard_Atomic_Increment (&THE_STATE_COUNTER),
this);
}
// =======================================================================
// function : Graphic3d_Camera
// purpose :
// =======================================================================
Graphic3d_Camera::Graphic3d_Camera (const Handle(Graphic3d_Camera)& theOther)
{
myWorldViewProjState.Initialize (this);
Copy (theOther);
}
// =======================================================================
// function : CopyMappingData
// purpose :
// =======================================================================
void Graphic3d_Camera::CopyMappingData (const Handle(Graphic3d_Camera)& theOtherCamera)
{
SetFOVy (theOtherCamera->FOVy());
SetZRange (theOtherCamera->ZNear(), theOtherCamera->ZFar());
SetAspect (theOtherCamera->Aspect());
SetScale (theOtherCamera->Scale());
SetZFocus (theOtherCamera->ZFocusType(), theOtherCamera->ZFocus());
SetIOD (theOtherCamera->GetIODType(), theOtherCamera->IOD());
SetProjectionType (theOtherCamera->ProjectionType());
}
// =======================================================================
// function : CopyOrientationData
// purpose :
// =======================================================================
void Graphic3d_Camera::CopyOrientationData (const Handle(Graphic3d_Camera)& theOtherCamera)
{
SetUp (theOtherCamera->Up());
SetEye (theOtherCamera->Eye());
SetCenter (theOtherCamera->Center());
SetAxialScale (theOtherCamera->AxialScale());
}
// =======================================================================
// function : Copy
// purpose :
// =======================================================================
void Graphic3d_Camera::Copy (const Handle(Graphic3d_Camera)& theOther)
{
CopyMappingData (theOther);
CopyOrientationData (theOther);
}
// =======================================================================
// function : SetEye
// purpose :
// =======================================================================
void Graphic3d_Camera::SetEye (const gp_Pnt& theEye)
{
if (Eye().IsEqual (theEye, 0.0))
{
return;
}
myEye = theEye;
InvalidateOrientation();
}
// =======================================================================
// function : SetCenter
// purpose :
// =======================================================================
void Graphic3d_Camera::SetCenter (const gp_Pnt& theCenter)
{
if (Center().IsEqual (theCenter, 0.0))
{
return;
}
myCenter = theCenter;
InvalidateOrientation();
}
// =======================================================================
// function : SetUp
// purpose :
// =======================================================================
void Graphic3d_Camera::SetUp (const gp_Dir& theUp)
{
if (Up().IsEqual (theUp, 0.0))
{
return;
}
myUp = theUp;
InvalidateOrientation();
}
// =======================================================================
// function : SetAxialScale
// purpose :
// =======================================================================
void Graphic3d_Camera::SetAxialScale (const gp_XYZ& theAxialScale)
{
if (AxialScale().IsEqual (theAxialScale, 0.0))
{
return;
}
myAxialScale = theAxialScale;
InvalidateOrientation();
}
// =======================================================================
// function : SetDistance
// purpose :
// =======================================================================
void Graphic3d_Camera::SetDistance (const Standard_Real theDistance)
{
if (Distance() == theDistance)
{
return;
}
gp_Vec aCenter2Eye (Direction());
aCenter2Eye.Reverse();
// Camera should have non-zero distance.
aCenter2Eye.Scale (Max (theDistance, MIN_DISTANCE));
SetEye (Center().Translated (aCenter2Eye));
}
// =======================================================================
// function : Distance
// purpose :
// =======================================================================
Standard_Real Graphic3d_Camera::Distance() const
{
return myEye.Distance (myCenter);
}
// =======================================================================
// function : SetDirection
// purpose :
// =======================================================================
void Graphic3d_Camera::SetDirection (const gp_Dir& theDir)
{
if (Direction().IsEqual (theDir, 0.0))
{
return;
}
gp_Vec aScaledDir (theDir);
aScaledDir.Scale (Distance());
aScaledDir.Reverse();
SetEye (Center().Translated (aScaledDir));
}
// =======================================================================
// function : Direction
// purpose :
// =======================================================================
gp_Dir Graphic3d_Camera::Direction() const
{
return gp_Dir (gp_Vec (myEye, myCenter));
}
// =======================================================================
// function : SetScale
// purpose :
// =======================================================================
void Graphic3d_Camera::SetScale (const Standard_Real theScale)
{
if (Scale() == theScale)
{
return;
}
myScale = theScale;
switch (myProjType)
{
case Projection_Perspective :
case Projection_Stereo :
case Projection_MonoLeftEye :
case Projection_MonoRightEye :
{
Standard_Real aDistance = theScale * 0.5 / Tan(myFOVy * M_PI / 360.0);
SetDistance (aDistance);
}
default :
break;
}
InvalidateProjection();
}
// =======================================================================
// function : Scale
// purpose :
// =======================================================================
Standard_Real Graphic3d_Camera::Scale() const
{
switch (myProjType)
{
case Projection_Orthographic :
return myScale;
// case Projection_Perspective :
// case Projection_Stereo :
// case Projection_MonoLeftEye :
// case Projection_MonoRightEye :
default :
return Distance() * 2.0 * Tan (myFOVy * M_PI / 360.0);
}
}
// =======================================================================
// function : SetProjectionType
// purpose :
// =======================================================================
void Graphic3d_Camera::SetProjectionType (const Projection theProjectionType)
{
Projection anOldType = ProjectionType();
if (anOldType == theProjectionType)
{
return;
}
if (anOldType == Projection_Orthographic)
{
if (myZNear <= RealEpsilon())
{
myZNear = DEFAULT_ZNEAR;
}
if (myZFar <= RealEpsilon())
{
myZFar = DEFAULT_ZFAR;
}
}
myProjType = theProjectionType;
InvalidateProjection();
}
// =======================================================================
// function : SetFOVy
// purpose :
// =======================================================================
void Graphic3d_Camera::SetFOVy (const Standard_Real theFOVy)
{
if (FOVy() == theFOVy)
{
return;
}
myFOVy = theFOVy;
InvalidateProjection();
}
// =======================================================================
// function : SetZRange
// purpose :
// =======================================================================
void Graphic3d_Camera::SetZRange (const Standard_Real theZNear,
const Standard_Real theZFar)
{
Standard_ASSERT_RAISE (theZFar > theZNear, "ZFar should be greater than ZNear");
if (!IsOrthographic())
{
Standard_ASSERT_RAISE (theZNear > 0.0, "Only positive Z-Near is allowed for perspective camera");
Standard_ASSERT_RAISE (theZFar > 0.0, "Only positive Z-Far is allowed for perspective camera");
}
if (ZNear() == theZNear
&& ZFar () == theZFar)
{
return;
}
myZNear = theZNear;
myZFar = theZFar;
InvalidateProjection();
}
// =======================================================================
// function : SetAspect
// purpose :
// =======================================================================
void Graphic3d_Camera::SetAspect (const Standard_Real theAspect)
{
if (Aspect() == theAspect)
{
return;
}
myAspect = theAspect;
InvalidateProjection();
}
// =======================================================================
// function : SetZFocus
// purpose :
// =======================================================================
void Graphic3d_Camera::SetZFocus(const FocusType theType, const Standard_Real theZFocus)
{
if (ZFocusType() == theType
&& ZFocus () == theZFocus)
{
return;
}
myZFocusType = theType;
myZFocus = theZFocus;
InvalidateProjection();
}
// =======================================================================
// function : SetIOD
// purpose :
// =======================================================================
void Graphic3d_Camera::SetIOD (const IODType theType, const Standard_Real theIOD)
{
if (GetIODType() == theType
&& IOD () == theIOD)
{
return;
}
myIODType = theType;
myIOD = theIOD;
InvalidateProjection();
}
// =======================================================================
// function : OrthogonalizeUp
// purpose :
// =======================================================================
void Graphic3d_Camera::OrthogonalizeUp()
{
SetUp (OrthogonalizedUp());
}
// =======================================================================
// function : OrthogonalizedUp
// purpose :
// =======================================================================
gp_Dir Graphic3d_Camera::OrthogonalizedUp() const
{
gp_Dir aDir = Direction();
gp_Dir aLeft = aDir.Crossed (Up());
// recompute up as: up = left x direction
return aLeft.Crossed (aDir);
}
// =======================================================================
// function : Transform
// purpose :
// =======================================================================
void Graphic3d_Camera::Transform (const gp_Trsf& theTrsf)
{
if (theTrsf.Form() == gp_Identity)
{
return;
}
SetUp (myUp.Transformed (theTrsf));
SetEye (myEye.Transformed (theTrsf));
SetCenter (myCenter.Transformed (theTrsf));
}
// =======================================================================
// function : safePointCast
// purpose :
// =======================================================================
static Graphic3d_Vec4d safePointCast (const gp_Pnt& thePnt)
{
Standard_Real aLim = 1e15f;
// have to deal with values greater then max float
gp_Pnt aSafePoint = thePnt;
const Standard_Real aBigFloat = aLim * 0.1f;
if (Abs (aSafePoint.X()) > aLim)
aSafePoint.SetX (aSafePoint.X() >= 0 ? aBigFloat : -aBigFloat);
if (Abs (aSafePoint.Y()) > aLim)
aSafePoint.SetY (aSafePoint.Y() >= 0 ? aBigFloat : -aBigFloat);
if (Abs (aSafePoint.Z()) > aLim)
aSafePoint.SetZ (aSafePoint.Z() >= 0 ? aBigFloat : -aBigFloat);
// convert point
Graphic3d_Vec4d aPnt (aSafePoint.X(), aSafePoint.Y(), aSafePoint.Z(), 1.0);
return aPnt;
}
// =======================================================================
// function : Project
// purpose :
// =======================================================================
gp_Pnt Graphic3d_Camera::Project (const gp_Pnt& thePnt) const
{
const Graphic3d_Mat4d& aViewMx = OrientationMatrix();
const Graphic3d_Mat4d& aProjMx = ProjectionMatrix();
// use compatible type of point
Graphic3d_Vec4d aPnt = safePointCast (thePnt);
aPnt = aViewMx * aPnt; // convert to view coordinate space
aPnt = aProjMx * aPnt; // convert to projection coordinate space
const Standard_Real aInvW = 1.0 / Standard_Real (aPnt.w());
return gp_Pnt (aPnt.x() * aInvW, aPnt.y() * aInvW, aPnt.z() * aInvW);
}
// =======================================================================
// function : UnProject
// purpose :
// =======================================================================
gp_Pnt Graphic3d_Camera::UnProject (const gp_Pnt& thePnt) const
{
const Graphic3d_Mat4d& aViewMx = OrientationMatrix();
const Graphic3d_Mat4d& aProjMx = ProjectionMatrix();
Graphic3d_Mat4d aInvView;
Graphic3d_Mat4d aInvProj;
// this case should never happen
if (!aViewMx.Inverted (aInvView) || !aProjMx.Inverted (aInvProj))
{
return gp_Pnt (0.0, 0.0, 0.0);
}
// use compatible type of point
Graphic3d_Vec4d aPnt = safePointCast (thePnt);
aPnt = aInvProj * aPnt; // convert to view coordinate space
aPnt = aInvView * aPnt; // convert to world coordinate space
const Standard_Real aInvW = 1.0 / Standard_Real (aPnt.w());
return gp_Pnt (aPnt.x() * aInvW, aPnt.y() * aInvW, aPnt.z() * aInvW);
}
// =======================================================================
// function : ConvertView2Proj
// purpose :
// =======================================================================
gp_Pnt Graphic3d_Camera::ConvertView2Proj (const gp_Pnt& thePnt) const
{
const Graphic3d_Mat4d& aProjMx = ProjectionMatrix();
// use compatible type of point
Graphic3d_Vec4d aPnt = safePointCast (thePnt);
aPnt = aProjMx * aPnt; // convert to projection coordinate space
const Standard_Real aInvW = 1.0 / Standard_Real (aPnt.w());
return gp_Pnt (aPnt.x() * aInvW, aPnt.y() * aInvW, aPnt.z() * aInvW);
}
// =======================================================================
// function : ConvertProj2View
// purpose :
// =======================================================================
gp_Pnt Graphic3d_Camera::ConvertProj2View (const gp_Pnt& thePnt) const
{
const Graphic3d_Mat4d& aProjMx = ProjectionMatrix();
Graphic3d_Mat4d aInvProj;
// this case should never happen, but...
if (!aProjMx.Inverted (aInvProj))
{
return gp_Pnt (0, 0, 0);
}
// use compatible type of point
Graphic3d_Vec4d aPnt = safePointCast (thePnt);
aPnt = aInvProj * aPnt; // convert to view coordinate space
const Standard_Real aInvW = 1.0 / Standard_Real (aPnt.w());
return gp_Pnt (aPnt.x() * aInvW, aPnt.y() * aInvW, aPnt.z() * aInvW);
}
// =======================================================================
// function : ConvertWorld2View
// purpose :
// =======================================================================
gp_Pnt Graphic3d_Camera::ConvertWorld2View (const gp_Pnt& thePnt) const
{
const Graphic3d_Mat4d& aViewMx = OrientationMatrix();
// use compatible type of point
Graphic3d_Vec4d aPnt = safePointCast (thePnt);
aPnt = aViewMx * aPnt; // convert to view coordinate space
const Standard_Real aInvW = 1.0 / Standard_Real (aPnt.w());
return gp_Pnt (aPnt.x() * aInvW, aPnt.y() * aInvW, aPnt.z() * aInvW);
}
// =======================================================================
// function : ConvertView2World
// purpose :
// =======================================================================
gp_Pnt Graphic3d_Camera::ConvertView2World (const gp_Pnt& thePnt) const
{
const Graphic3d_Mat4d& aViewMx = OrientationMatrix();
Graphic3d_Mat4d aInvView;
if (!aViewMx.Inverted (aInvView))
{
return gp_Pnt(0, 0, 0);
}
// use compatible type of point
Graphic3d_Vec4d aPnt = safePointCast (thePnt);
aPnt = aInvView * aPnt; // convert to world coordinate space
const Standard_Real aInvW = 1.0 / Standard_Real (aPnt.w());
return gp_Pnt (aPnt.x() * aInvW, aPnt.y() * aInvW, aPnt.z() * aInvW);
}
// =======================================================================
// function : ViewDimensions
// purpose :
// =======================================================================
gp_XYZ Graphic3d_Camera::ViewDimensions() const
{
// view plane dimensions
Standard_Real aSize = IsOrthographic() ? myScale : (2.0 * Distance() * Tan (DTR_HALF * myFOVy));
Standard_Real aSizeX, aSizeY;
if (myAspect > 1.0)
{
aSizeX = aSize * myAspect;
aSizeY = aSize;
}
else
{
aSizeX = aSize;
aSizeY = aSize / myAspect;
}
// and frustum depth
return gp_XYZ (aSizeX, aSizeY, myZFar - myZNear);
}
// =======================================================================
// function : Frustum
// purpose :
// =======================================================================
void Graphic3d_Camera::Frustum (gp_Pln& theLeft,
gp_Pln& theRight,
gp_Pln& theBottom,
gp_Pln& theTop,
gp_Pln& theNear,
gp_Pln& theFar) const
{
gp_Vec aProjection = gp_Vec (Direction());
gp_Vec anUp = OrthogonalizedUp();
gp_Vec aSide = aProjection ^ anUp;
Standard_ASSERT_RAISE (
!aProjection.IsParallel (anUp, Precision::Angular()),
"Can not derive SIDE = PROJ x UP - directions are parallel");
theNear = gp_Pln (Eye().Translated (aProjection * ZNear()), aProjection);
theFar = gp_Pln (Eye().Translated (aProjection * ZFar()), -aProjection);
Standard_Real aHScaleHor = Scale() * 0.5 * Aspect();
Standard_Real aHScaleVer = Scale() * 0.5;
gp_Pnt aPntLeft = Center().Translated (aHScaleHor * -aSide);
gp_Pnt aPntRight = Center().Translated (aHScaleHor * aSide);
gp_Pnt aPntBottom = Center().Translated (aHScaleVer * -anUp);
gp_Pnt aPntTop = Center().Translated (aHScaleVer * anUp);
gp_Vec aDirLeft = aSide;
gp_Vec aDirRight = -aSide;
gp_Vec aDirBottom = anUp;
gp_Vec aDirTop = -anUp;
if (!IsOrthographic())
{
Standard_Real aHFOVHor = ATan (Tan (DTR_HALF * FOVy()) * Aspect());
Standard_Real aHFOVVer = DTR_HALF * FOVy();
aDirLeft.Rotate (gp_Ax1 (gp::Origin(), anUp), aHFOVHor);
aDirRight.Rotate (gp_Ax1 (gp::Origin(), anUp), -aHFOVHor);
aDirBottom.Rotate (gp_Ax1 (gp::Origin(), aSide), -aHFOVVer);
aDirTop.Rotate (gp_Ax1 (gp::Origin(), aSide), aHFOVVer);
}
theLeft = gp_Pln (aPntLeft, aDirLeft);
theRight = gp_Pln (aPntRight, aDirRight);
theBottom = gp_Pln (aPntBottom, aDirBottom);
theTop = gp_Pln (aPntTop, aDirTop);
}
// =======================================================================
// function : OrientationMatrix
// purpose :
// =======================================================================
const Graphic3d_Mat4d& Graphic3d_Camera::OrientationMatrix() const
{
return *UpdateOrientation (myMatricesD).Orientation;
}
// =======================================================================
// function : OrientationMatrixF
// purpose :
// =======================================================================
const Graphic3d_Mat4& Graphic3d_Camera::OrientationMatrixF() const
{
return *UpdateOrientation (myMatricesF).Orientation;
}
// =======================================================================
// function : ProjectionMatrix
// purpose :
// =======================================================================
const Graphic3d_Mat4d& Graphic3d_Camera::ProjectionMatrix() const
{
return *UpdateProjection (myMatricesD).MProjection;
}
// =======================================================================
// function : ProjectionMatrixF
// purpose :
// =======================================================================
const Graphic3d_Mat4& Graphic3d_Camera::ProjectionMatrixF() const
{
return *UpdateProjection (myMatricesF).MProjection;
}
// =======================================================================
// function : ProjectionStereoLeft
// purpose :
// =======================================================================
const Graphic3d_Mat4d& Graphic3d_Camera::ProjectionStereoLeft() const
{
return *UpdateProjection (myMatricesD).LProjection;
}
// =======================================================================
// function : ProjectionStereoLeftF
// purpose :
// =======================================================================
const Graphic3d_Mat4& Graphic3d_Camera::ProjectionStereoLeftF() const
{
return *UpdateProjection (myMatricesF).LProjection;
}
// =======================================================================
// function : ProjectionStereoRight
// purpose :
// =======================================================================
const Graphic3d_Mat4d& Graphic3d_Camera::ProjectionStereoRight() const
{
return *UpdateProjection (myMatricesD).RProjection;
}
// =======================================================================
// function : ProjectionStereoRightF
// purpose :
// =======================================================================
const Graphic3d_Mat4& Graphic3d_Camera::ProjectionStereoRightF() const
{
return *UpdateProjection (myMatricesF).RProjection;
}
// =======================================================================
// function : UpdateProjection
// purpose :
// =======================================================================
template <typename Elem_t>
Graphic3d_Camera::TransformMatrices<Elem_t>&
Graphic3d_Camera::UpdateProjection (TransformMatrices<Elem_t>& theMatrices) const
{
if (theMatrices.IsProjectionValid())
{
return theMatrices; // for inline accessors
}
theMatrices.InitProjection();
// sets top of frustum based on FOVy and near clipping plane
Elem_t aScale = static_cast<Elem_t> (myScale);
Elem_t aZNear = static_cast<Elem_t> (myZNear);
Elem_t aZFar = static_cast<Elem_t> (myZFar);
Elem_t anAspect = static_cast<Elem_t> (myAspect);
Elem_t aDXHalf = 0.0, aDYHalf = 0.0;
if (IsOrthographic())
{
aDXHalf = aScale * Elem_t (0.5);
aDYHalf = aScale * Elem_t (0.5);
}
else
{
aDXHalf = aZNear * Elem_t (Tan (DTR_HALF * myFOVy));
aDYHalf = aZNear * Elem_t (Tan (DTR_HALF * myFOVy));
}
if (anAspect > 1.0)
{
aDXHalf *= anAspect;
}
else
{
aDYHalf /= anAspect;
}
// sets right of frustum based on aspect ratio
Elem_t aLeft = -aDXHalf;
Elem_t aRight = aDXHalf;
Elem_t aBot = -aDYHalf;
Elem_t aTop = aDYHalf;
Elem_t aIOD = myIODType == IODType_Relative
? static_cast<Elem_t> (myIOD * Distance())
: static_cast<Elem_t> (myIOD);
Elem_t aFocus = myZFocusType == FocusType_Relative
? static_cast<Elem_t> (myZFocus * Distance())
: static_cast<Elem_t> (myZFocus);
switch (myProjType)
{
case Projection_Orthographic :
OrthoProj (aLeft, aRight, aBot, aTop, aZNear, aZFar, *theMatrices.MProjection);
break;
case Projection_Perspective :
PerspectiveProj (aLeft, aRight, aBot, aTop, aZNear, aZFar, *theMatrices.MProjection);
break;
case Projection_MonoLeftEye :
{
StereoEyeProj (aLeft, aRight, aBot, aTop,
aZNear, aZFar, aIOD, aFocus,
Standard_True, *theMatrices.MProjection);
*theMatrices.LProjection = *theMatrices.MProjection;
break;
}
case Projection_MonoRightEye :
{
StereoEyeProj (aLeft, aRight, aBot, aTop,
aZNear, aZFar, aIOD, aFocus,
Standard_False, *theMatrices.MProjection);
*theMatrices.RProjection = *theMatrices.MProjection;
break;
}
case Projection_Stereo :
{
PerspectiveProj (aLeft, aRight, aBot, aTop, aZNear, aZFar, *theMatrices.MProjection);
StereoEyeProj (aLeft, aRight, aBot, aTop,
aZNear, aZFar, aIOD, aFocus,
Standard_True,
*theMatrices.LProjection);
StereoEyeProj (aLeft, aRight, aBot, aTop,
aZNear, aZFar, aIOD, aFocus,
Standard_False,
*theMatrices.RProjection);
break;
}
}
return theMatrices; // for inline accessors
}
// =======================================================================
// function : UpdateOrientation
// purpose :
// =======================================================================
template <typename Elem_t>
Graphic3d_Camera::TransformMatrices<Elem_t>&
Graphic3d_Camera::UpdateOrientation (TransformMatrices<Elem_t>& theMatrices) const
{
if (theMatrices.IsOrientationValid())
{
return theMatrices; // for inline accessors
}
theMatrices.InitOrientation();
NCollection_Vec3<Elem_t> anEye (static_cast<Elem_t> (myEye.X()),
static_cast<Elem_t> (myEye.Y()),
static_cast<Elem_t> (myEye.Z()));
NCollection_Vec3<Elem_t> aCenter (static_cast<Elem_t> (myCenter.X()),
static_cast<Elem_t> (myCenter.Y()),
static_cast<Elem_t> (myCenter.Z()));
NCollection_Vec3<Elem_t> anUp (static_cast<Elem_t> (myUp.X()),
static_cast<Elem_t> (myUp.Y()),
static_cast<Elem_t> (myUp.Z()));
NCollection_Vec3<Elem_t> anAxialScale (static_cast<Elem_t> (myAxialScale.X()),
static_cast<Elem_t> (myAxialScale.Y()),
static_cast<Elem_t> (myAxialScale.Z()));
LookOrientation (anEye, aCenter, anUp, anAxialScale, *theMatrices.Orientation);
return theMatrices; // for inline accessors
}
// =======================================================================
// function : InvalidateProjection
// purpose :
// =======================================================================
void Graphic3d_Camera::InvalidateProjection()
{
myMatricesD.ResetProjection();
myMatricesF.ResetProjection();
myWorldViewProjState.ProjectionState() = (Standard_Size)Standard_Atomic_Increment (&THE_STATE_COUNTER);
}
// =======================================================================
// function : InvalidateOrientation
// purpose :
// =======================================================================
void Graphic3d_Camera::InvalidateOrientation()
{
myMatricesD.ResetOrientation();
myMatricesF.ResetOrientation();
myWorldViewProjState.WorldViewState() = (Standard_Size)Standard_Atomic_Increment (&THE_STATE_COUNTER);
}
// =======================================================================
// function : OrthoProj
// purpose :
// =======================================================================
template <typename Elem_t>
void Graphic3d_Camera::OrthoProj (const Elem_t theLeft,
const Elem_t theRight,
const Elem_t theBottom,
const Elem_t theTop,
const Elem_t theNear,
const Elem_t theFar,
NCollection_Mat4<Elem_t>& theOutMx)
{
// row 0
theOutMx.ChangeValue (0, 0) = Elem_t (2.0) / (theRight - theLeft);
theOutMx.ChangeValue (0, 1) = Elem_t (0.0);
theOutMx.ChangeValue (0, 2) = Elem_t (0.0);
theOutMx.ChangeValue (0, 3) = - (theRight + theLeft) / (theRight - theLeft);
// row 1
theOutMx.ChangeValue (1, 0) = Elem_t (0.0);
theOutMx.ChangeValue (1, 1) = Elem_t (2.0) / (theTop - theBottom);
theOutMx.ChangeValue (1, 2) = Elem_t (0.0);
theOutMx.ChangeValue (1, 3) = - (theTop + theBottom) / (theTop - theBottom);
// row 2
theOutMx.ChangeValue (2, 0) = Elem_t (0.0);
theOutMx.ChangeValue (2, 1) = Elem_t (0.0);
theOutMx.ChangeValue (2, 2) = Elem_t (-2.0) / (theFar - theNear);
theOutMx.ChangeValue (2, 3) = - (theFar + theNear) / (theFar - theNear);
// row 3
theOutMx.ChangeValue (3, 0) = Elem_t (0.0);
theOutMx.ChangeValue (3, 1) = Elem_t (0.0);
theOutMx.ChangeValue (3, 2) = Elem_t (0.0);
theOutMx.ChangeValue (3, 3) = Elem_t (1.0);
}
// =======================================================================
// function : PerspectiveProj
// purpose :
// =======================================================================
template <typename Elem_t>
void Graphic3d_Camera::PerspectiveProj (const Elem_t theLeft,
const Elem_t theRight,
const Elem_t theBottom,
const Elem_t theTop,
const Elem_t theNear,
const Elem_t theFar,
NCollection_Mat4<Elem_t>& theOutMx)
{
// column 0
theOutMx.ChangeValue (0, 0) = (Elem_t (2.0) * theNear) / (theRight - theLeft);
theOutMx.ChangeValue (1, 0) = Elem_t (0.0);
theOutMx.ChangeValue (2, 0) = Elem_t (0.0);
theOutMx.ChangeValue (3, 0) = Elem_t (0.0);
// column 1
theOutMx.ChangeValue (0, 1) = Elem_t (0.0);
theOutMx.ChangeValue (1, 1) = (Elem_t (2.0) * theNear) / (theTop - theBottom);
theOutMx.ChangeValue (2, 1) = Elem_t (0.0);
theOutMx.ChangeValue (3, 1) = Elem_t (0.0);
// column 2
theOutMx.ChangeValue (0, 2) = (theRight + theLeft) / (theRight - theLeft);
theOutMx.ChangeValue (1, 2) = (theTop + theBottom) / (theTop - theBottom);
theOutMx.ChangeValue (2, 2) = -(theFar + theNear) / (theFar - theNear);
theOutMx.ChangeValue (3, 2) = Elem_t (-1.0);
// column 3
theOutMx.ChangeValue (0, 3) = Elem_t (0.0);
theOutMx.ChangeValue (1, 3) = Elem_t (0.0);
theOutMx.ChangeValue (2, 3) = -(Elem_t (2.0) * theFar * theNear) / (theFar - theNear);
theOutMx.ChangeValue (3, 3) = Elem_t (0.0);
}
// =======================================================================
// function : StereoEyeProj
// purpose :
// =======================================================================
template <typename Elem_t>
void Graphic3d_Camera::StereoEyeProj (const Elem_t theLeft,
const Elem_t theRight,
const Elem_t theBottom,
const Elem_t theTop,
const Elem_t theNear,
const Elem_t theFar,
const Elem_t theIOD,
const Elem_t theZFocus,
const Standard_Boolean theIsLeft,
NCollection_Mat4<Elem_t>& theOutMx)
{
Elem_t aDx = theIsLeft ? Elem_t (0.5) * theIOD : Elem_t (-0.5) * theIOD;
Elem_t aDXStereoShift = aDx * theNear / theZFocus;
// construct eye projection matrix
PerspectiveProj (theLeft + aDXStereoShift,
theRight + aDXStereoShift,
theBottom, theTop, theNear, theFar,
theOutMx);
if (theIOD != Elem_t (0.0))
{
// X translation to cancel parallax
theOutMx.Translate (NCollection_Vec3<Elem_t> (aDx, Elem_t (0.0), Elem_t (0.0)));
}
}
// =======================================================================
// function : LookOrientation
// purpose :
// =======================================================================
template <typename Elem_t>
void Graphic3d_Camera::LookOrientation (const NCollection_Vec3<Elem_t>& theEye,
const NCollection_Vec3<Elem_t>& theLookAt,
const NCollection_Vec3<Elem_t>& theUpDir,
const NCollection_Vec3<Elem_t>& theAxialScale,
NCollection_Mat4<Elem_t>& theOutMx)
{
NCollection_Vec3<Elem_t> aForward = theLookAt - theEye;
aForward.Normalize();
// side = forward x up
NCollection_Vec3<Elem_t> aSide = NCollection_Vec3<Elem_t>::Cross (aForward, theUpDir);
aSide.Normalize();
// recompute up as: up = side x forward
NCollection_Vec3<Elem_t> anUp = NCollection_Vec3<Elem_t>::Cross (aSide, aForward);
NCollection_Mat4<Elem_t> aLookMx;
aLookMx.SetRow (0, aSide);
aLookMx.SetRow (1, anUp);
aLookMx.SetRow (2, -aForward);
theOutMx.InitIdentity();
theOutMx.Multiply (aLookMx);
theOutMx.Translate (-theEye);
NCollection_Mat4<Elem_t> anAxialScaleMx;
anAxialScaleMx.ChangeValue (0, 0) = theAxialScale.x();
anAxialScaleMx.ChangeValue (1, 1) = theAxialScale.y();
anAxialScaleMx.ChangeValue (2, 2) = theAxialScale.z();
theOutMx.Multiply (anAxialScaleMx);
}
//=============================================================================
//function : ZFitAll
//purpose :
//=============================================================================
bool Graphic3d_Camera::ZFitAll (const Standard_Real theScaleFactor,
const Bnd_Box& theMinMax,
const Bnd_Box& theGraphicBB,
Standard_Real& theZNear,
Standard_Real& theZFar) const
{
Standard_ASSERT_RAISE (theScaleFactor > 0.0, "Zero or negative scale factor is not allowed.");
// Method changes zNear and zFar parameters of camera so as to fit graphical structures
// by their graphical boundaries. It precisely fits min max boundaries of primary application
// objects (second argument), while it can sacrifice the real graphical boundaries of the
// scene with infinite or helper objects (third argument) for the sake of perspective projection.
if (theGraphicBB.IsVoid())
{
theZNear = DEFAULT_ZNEAR;
theZFar = DEFAULT_ZFAR;
return false;
}
// Measure depth of boundary points from camera eye.
NCollection_Sequence<gp_Pnt> aPntsToMeasure;
Standard_Real aGraphicBB[6];
theGraphicBB.Get (aGraphicBB[0], aGraphicBB[1], aGraphicBB[2], aGraphicBB[3], aGraphicBB[4], aGraphicBB[5]);
aPntsToMeasure.Append (gp_Pnt (aGraphicBB[0], aGraphicBB[1], aGraphicBB[2]));
aPntsToMeasure.Append (gp_Pnt (aGraphicBB[0], aGraphicBB[1], aGraphicBB[5]));
aPntsToMeasure.Append (gp_Pnt (aGraphicBB[0], aGraphicBB[4], aGraphicBB[2]));
aPntsToMeasure.Append (gp_Pnt (aGraphicBB[0], aGraphicBB[4], aGraphicBB[5]));
aPntsToMeasure.Append (gp_Pnt (aGraphicBB[3], aGraphicBB[1], aGraphicBB[2]));
aPntsToMeasure.Append (gp_Pnt (aGraphicBB[3], aGraphicBB[1], aGraphicBB[5]));
aPntsToMeasure.Append (gp_Pnt (aGraphicBB[3], aGraphicBB[4], aGraphicBB[2]));
aPntsToMeasure.Append (gp_Pnt (aGraphicBB[3], aGraphicBB[4], aGraphicBB[5]));
Standard_Boolean isFiniteMinMax = !theMinMax.IsVoid() && !theMinMax.IsWhole();
if (isFiniteMinMax)
{
Standard_Real aMinMax[6];
theMinMax.Get (aMinMax[0], aMinMax[1], aMinMax[2], aMinMax[3], aMinMax[4], aMinMax[5]);
aPntsToMeasure.Append (gp_Pnt (aMinMax[0], aMinMax[1], aMinMax[2]));
aPntsToMeasure.Append (gp_Pnt (aMinMax[0], aMinMax[1], aMinMax[5]));
aPntsToMeasure.Append (gp_Pnt (aMinMax[0], aMinMax[4], aMinMax[2]));
aPntsToMeasure.Append (gp_Pnt (aMinMax[0], aMinMax[4], aMinMax[5]));
aPntsToMeasure.Append (gp_Pnt (aMinMax[3], aMinMax[1], aMinMax[2]));
aPntsToMeasure.Append (gp_Pnt (aMinMax[3], aMinMax[1], aMinMax[5]));
aPntsToMeasure.Append (gp_Pnt (aMinMax[3], aMinMax[4], aMinMax[2]));
aPntsToMeasure.Append (gp_Pnt (aMinMax[3], aMinMax[4], aMinMax[5]));
}
// Camera eye plane.
gp_Dir aCamDir = Direction();
gp_Pnt aCamEye = myEye;
gp_Pln aCamPln (aCamEye, aCamDir);
Standard_Real aModelMinDist = RealLast();
Standard_Real aModelMaxDist = RealFirst();
Standard_Real aGraphMinDist = RealLast();
Standard_Real aGraphMaxDist = RealFirst();
const gp_XYZ& anAxialScale = myAxialScale;
// Get minimum and maximum distances to the eye plane.
Standard_Integer aCounter = 0;
NCollection_Sequence<gp_Pnt>::Iterator aPntIt(aPntsToMeasure);
for (; aPntIt.More(); aPntIt.Next())
{
gp_Pnt aMeasurePnt = aPntIt.Value();
aMeasurePnt = gp_Pnt (aMeasurePnt.X() * anAxialScale.X(),
aMeasurePnt.Y() * anAxialScale.Y(),
aMeasurePnt.Z() * anAxialScale.Z());
Standard_Real aDistance = aCamPln.Distance (aMeasurePnt);
// Check if the camera is intruded into the scene.
if (aCamDir.IsOpposite (gp_Vec (aCamEye, aMeasurePnt), M_PI * 0.5))
{
aDistance *= -1;
}
// The first eight points are from theGraphicBB, the last eight points are from theMinMax (can be absent).
Standard_Real& aChangeMinDist = aCounter >= 8 ? aModelMinDist : aGraphMinDist;
Standard_Real& aChangeMaxDist = aCounter >= 8 ? aModelMaxDist : aGraphMaxDist;
aChangeMinDist = Min (aDistance, aChangeMinDist);
aChangeMaxDist = Max (aDistance, aChangeMaxDist);
aCounter++;
}
// Compute depth of bounding box center.
Standard_Real aMidDepth = (aGraphMinDist + aGraphMaxDist) * 0.5;
Standard_Real aHalfDepth = (aGraphMaxDist - aGraphMinDist) * 0.5;
// Compute enlarged or shrank near and far z ranges.
Standard_Real aZNear = aMidDepth - aHalfDepth * theScaleFactor;
Standard_Real aZFar = aMidDepth + aHalfDepth * theScaleFactor;
if (!IsOrthographic())
{
// Everything is behind the perspective camera.
if (aZFar < zEpsilon())
{
theZNear = DEFAULT_ZNEAR;
theZFar = DEFAULT_ZFAR;
return false;
}
}
//
// Consider clipping errors due to double to single precision floating-point conversion.
//
// Model to view transformation performs translation of points against eye position
// in three dimensions. Both point coordinate and eye position values are converted from
// double to single precision floating point numbers producing conversion errors.
// Epsilon (Mod) * 3.0 should safely compensate precision error for z coordinate after
// translation assuming that the:
// Epsilon (Eye.Mod()) * 3.0 > Epsilon (Eye.X()) + Epsilon (Eye.Y()) + Epsilon (Eye.Z()).
Standard_Real aEyeConf = 3.0 * zEpsilon (myEye.XYZ().Modulus());
// Model to view transformation performs rotation of points according to view direction.
// New z coordinate is computed as a multiplication of point's x, y, z coordinates by the
// "forward" direction vector's x, y, z coordinates. Both point's and "z" direction vector's
// values are converted from double to single precision floating point numbers producing
// conversion errors.
// Epsilon (Mod) * 6.0 should safely compensate the precision errors for the multiplication
// of point coordinates by direction vector.
gp_Pnt aGraphicMin = theGraphicBB.CornerMin();
gp_Pnt aGraphicMax = theGraphicBB.CornerMax();
Standard_Real aModelConf = 6.0 * zEpsilon (aGraphicMin.XYZ().Modulus()) +
6.0 * zEpsilon (aGraphicMax.XYZ().Modulus());
// Compensate floating point conversion errors by increasing zNear, zFar to avoid clipping.
aZNear -= zEpsilon (aZNear) + aEyeConf + aModelConf;
aZFar += zEpsilon (aZFar) + aEyeConf + aModelConf;
if (!IsOrthographic())
{
// For perspective projection, the value of z in normalized device coordinates is non-linear
// function of eye z coordinate. For fixed-point depth representation resolution of z in
// model-view space will grow towards zFar plane and its scale depends mostly on how far is zNear
// against camera's eye. The purpose of the code below is to select most appropriate zNear distance
// to balance between clipping (less zNear, more chances to observe closely small models without clipping)
// and resolution of depth. A well applicable criteria to this is a ratio between resolution of z at center
// of model boundaries and the distance to that center point. The ratio is chosen empirically and validated
// by tests database. It is considered to be ~0.001 (0.1%) for 24 bit depth buffer, for less depth bitness
// the zNear will be placed similarly giving lower resolution.
// Approximation of the formula for respectively large z range is:
// zNear = [z * (1 + k) / (k * c)],
// where:
// z - distance to center of model boundaries;
// k - chosen ratio, c - capacity of depth buffer;
// k = 0.001, k * c = 1677.216, (1 + k) / (k * c) ~ 5.97E-4
//
// The function uses center of model boundaries computed from "theMinMax" boundaries (instead of using real
// graphical boundaries of all displayed objects). That means that it can sacrifice resolution of presentation
// of non primary ("infinite") application graphical objects in favor of better perspective projection of the
// small applicative objects measured with "theMinMax" values.
Standard_Real aZRange = isFiniteMinMax ? aModelMaxDist - aModelMinDist : aGraphMaxDist - aGraphMinDist;
Standard_Real aZMin = isFiniteMinMax ? aModelMinDist : aGraphMinDist;
Standard_Real aZ = aZMin < 0 ? aZRange / 2.0 : aZRange / 2.0 + aZMin;
Standard_Real aZNearMin = aZ * 5.97E-4;
if (aZNear < aZNearMin)
{
// Clip zNear according to the minimum value matching the quality.
aZNear = aZNearMin;
}
else
{
// Compensate zNear conversion errors for perspective projection.
aZNear -= aZFar * zEpsilon (aZNear) / (aZFar - zEpsilon (aZNear));
}
// Compensate zFar conversion errors for perspective projection.
aZFar += zEpsilon (aZFar);
// Ensure that after all the zNear is not a negative value.
if (aZNear < zEpsilon())
{
aZNear = zEpsilon();
}
}
theZNear = aZNear;
theZFar = aZFar;
return true;
}