1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00
occt/src/STEPControl/STEPControl_ActorRead.cxx
Pasukhin Dmitry bd77f8af4a
Coding - Refactor ShapeHealingMap to NCollection #346
Update container type to OCCT to avoid allocation on creating.
Refactor shape processing parameter handling to use XSAlgo_ShapeProcessor for consistency.
2025-02-08 21:01:14 +00:00

2411 lines
92 KiB
C++

// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
//: k3 abv 25.11.98 rp1sd.stp
//: n4 abv 11.02.99 S4132: recognition of GeometricSet (instead of GeometricCurveSet)
// gka 05.04.99 S4136: eliminate parameter lastpreci
// gka,abv 14.04.99 S4136: maintain unit context, precision and maxtolerance values
#include <BRep_Builder.hxx>
#include <BRepCheck_Shell.hxx>
#include <BRepCheck_Status.hxx>
#include <Geom_Axis2Placement.hxx>
#include <gp_Ax3.hxx>
#include <gp_Trsf.hxx>
#include <HeaderSection_FileName.hxx>
#include <Interface_EntityIterator.hxx>
#include <Interface_Graph.hxx>
#include <Interface_InterfaceModel.hxx>
#include <Interface_Macros.hxx>
#include <Message_Messenger.hxx>
#include <Message_ProgressScope.hxx>
#include <OSD_Timer.hxx>
#include <Precision.hxx>
#include <Standard_ErrorHandler.hxx>
#include <Standard_Failure.hxx>
#include <Standard_Transient.hxx>
#include <Standard_Type.hxx>
#include <StepBasic_ProductDefinition.hxx>
#include <StepBasic_ProductRelatedProductCategory.hxx>
#include <STEPConstruct_Assembly.hxx>
#include <STEPConstruct_UnitContext.hxx>
#include <STEPControl_ActorRead.hxx>
#include <StepData_Factors.hxx>
#include <StepData_StepModel.hxx>
#include <StepDimTol_DatumFeature.hxx>
#include <StepDimTol_GeometricTolerance.hxx>
#include <StepDimTol_GeoTolAndGeoTolWthDatRefAndModGeoTolAndPosTol.hxx>
#include <StepGeom_Axis2Placement3d.hxx>
#include <StepGeom_CartesianTransformationOperator3d.hxx>
#include <StepGeom_Direction.hxx>
#include <StepGeom_GeometricRepresentationContextAndGlobalUnitAssignedContext.hxx>
#include <StepGeom_GeometricRepresentationItem.hxx>
#include <StepGeom_GeomRepContextAndGlobUnitAssCtxAndGlobUncertaintyAssCtx.hxx>
#include <StepRepr_GlobalUncertaintyAssignedContext.hxx>
#include <StepRepr_GlobalUnitAssignedContext.hxx>
#include <StepRepr_HArray1OfRepresentationItem.hxx>
#include <StepRepr_HSequenceOfRepresentationItem.hxx>
#include <StepRepr_ItemDefinedTransformation.hxx>
#include <StepRepr_MappedItem.hxx>
#include <StepRepr_NextAssemblyUsageOccurrence.hxx>
#include <StepRepr_ProductDefinitionShape.hxx>
#include <StepRepr_PropertyDefinition.hxx>
#include <StepRepr_Representation.hxx>
#include <StepRepr_RepresentationContext.hxx>
#include <StepRepr_RepresentationMap.hxx>
#include <StepRepr_RepresentationRelationship.hxx>
#include <StepRepr_ShapeAspect.hxx>
#include <StepRepr_ShapeRepresentationRelationship.hxx>
#include <StepRepr_ShapeRepresentationRelationshipWithTransformation.hxx>
#include <StepRepr_Transformation.hxx>
#include <StepShape_AdvancedBrepShapeRepresentation.hxx>
#include <StepShape_BrepWithVoids.hxx>
#include <StepShape_ContextDependentShapeRepresentation.hxx>
#include <StepShape_EdgeBasedWireframeModel.hxx>
#include <StepShape_EdgeBasedWireframeShapeRepresentation.hxx>
#include <StepShape_FaceBasedSurfaceModel.hxx>
#include <StepShape_FaceSurface.hxx>
#include <StepShape_FacetedBrep.hxx>
#include <StepShape_FacetedBrepAndBrepWithVoids.hxx>
#include <StepShape_FacetedBrepShapeRepresentation.hxx>
#include <StepShape_GeometricallyBoundedSurfaceShapeRepresentation.hxx>
#include <StepShape_GeometricallyBoundedWireframeShapeRepresentation.hxx>
#include <StepShape_GeometricSet.hxx>
#include <StepShape_ManifoldSolidBrep.hxx>
#include <StepShape_ManifoldSurfaceShapeRepresentation.hxx>
#include <StepShape_NonManifoldSurfaceShapeRepresentation.hxx>
#include <StepShape_ShapeDefinitionRepresentation.hxx>
#include <StepShape_ShapeRepresentation.hxx>
#include <StepShape_ShellBasedSurfaceModel.hxx>
#include <StepVisual_TriangulatedFace.hxx>
#include <StepVisual_TriangulatedSurfaceSet.hxx>
#include <StepVisual_TessellatedShell.hxx>
#include <StepVisual_TessellatedShapeRepresentation.hxx>
#include <StepVisual_TessellatedSolid.hxx>
#include <StepToGeom.hxx>
#include <StepToTopoDS_Builder.hxx>
#include <StepToTopoDS_DataMapOfTRI.hxx>
#include <StepToTopoDS_MakeTransformed.hxx>
#include <StepToTopoDS_Tool.hxx>
#include <StepToTopoDS_TranslateFace.hxx>
#include <TColStd_HSequenceOfTransient.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Compound.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Iterator.hxx>
#include <TopoDS_Shape.hxx>
#include <TopoDS_Shell.hxx>
#include <TopoDS_Solid.hxx>
#include <TopTools_IndexedMapOfShape.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_ListOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <Transfer_Binder.hxx>
#include <Transfer_TransientProcess.hxx>
#include <TransferBRep.hxx>
#include <TransferBRep_ShapeBinder.hxx>
#include <UnitsMethods.hxx>
#include <XSAlgo.hxx>
#include <XSAlgo_ShapeProcessor.hxx>
#include <StepRepr_ConstructiveGeometryRepresentationRelationship.hxx>
#include <StepRepr_ConstructiveGeometryRepresentation.hxx>
#include <StepRepr_MechanicalDesignAndDraughtingRelationship.hxx>
#include <Geom_Plane.hxx>
IMPLEMENT_STANDARD_RTTIEXT(STEPControl_ActorRead, Transfer_ActorOfTransientProcess)
// #include <Interface_InterfaceModel.hxx> // pour mise au point
// MappedItem :
// FaceSurface :
// Unites :
// #include <StepBasic_UncertaintyMeasureWithUnit.hxx>
// Representation Relationship & cie
// For non-manifold topology processing (ssv; 12.11.2010)
#define TRANSLOG
// ============================================================================
// Function: DumpWhatIs
// Purpose: Use it in debug mode to dump your shapes
// ============================================================================
#ifdef OCCT_DEBUG
static void DumpWhatIs(const TopoDS_Shape& S)
{
TopTools_MapOfShape aMapOfShape;
aMapOfShape.Add(S);
TopTools_ListOfShape aListOfShape;
aListOfShape.Append(S);
TopTools_ListIteratorOfListOfShape itL(aListOfShape);
Standard_Integer nbSolids = 0, nbShells = 0, nbOpenShells = 0, nbFaces = 0, nbWires = 0,
nbEdges = 0, nbVertexes = 0, nbCompounds = 0;
if (S.ShapeType() == TopAbs_COMPOUND)
nbCompounds++;
for (; itL.More(); itL.Next())
{
TopoDS_Iterator it(itL.Value());
for (; it.More(); it.Next())
{
TopoDS_Shape aSubShape = it.Value();
if (!aMapOfShape.Add(aSubShape))
continue;
aListOfShape.Append(aSubShape);
if (aSubShape.ShapeType() == TopAbs_COMPOUND)
nbCompounds++;
if (aSubShape.ShapeType() == TopAbs_SOLID)
nbSolids++;
if (aSubShape.ShapeType() == TopAbs_SHELL)
{
if (!aSubShape.Closed())
nbOpenShells++;
nbShells++;
}
if (aSubShape.ShapeType() == TopAbs_FACE)
nbFaces++;
if (aSubShape.ShapeType() == TopAbs_WIRE)
nbWires++;
if (aSubShape.ShapeType() == TopAbs_EDGE)
nbEdges++;
if (aSubShape.ShapeType() == TopAbs_VERTEX)
nbVertexes++;
}
}
std::cout << "//What is?// NB COMPOUNDS: " << nbCompounds << std::endl;
std::cout << "//What is?// NB SOLIDS: " << nbSolids << std::endl;
std::cout << "//What is?// NB SHELLS: " << nbShells << std::endl;
std::cout << "//What is?// OPEN SHELLS: " << nbOpenShells << std::endl;
std::cout << "//What is?// CLOSED SHELLS: " << nbShells - nbOpenShells << std::endl;
std::cout << "//What is?// NB FACES: " << nbFaces << std::endl;
std::cout << "//What is?// NB WIRES: " << nbWires << std::endl;
std::cout << "//What is?// NB EDGES: " << nbEdges << std::endl;
std::cout << "//What is?// NB VERTEXES: " << nbVertexes << std::endl;
}
#endif
namespace
{
// Set global var to inform outer methods that current representation item is non-manifold.
// The better way is to pass this information via binder or via TopoDS_Shape itself, however,
// this is very specific info to do so...
Standard_Boolean NM_DETECTED = Standard_False;
} // namespace
// ============================================================================
// Method : STEPControl_ActorRead::STEPControl_ActorRead ()
// Purpose : Empty constructor
// ============================================================================
STEPControl_ActorRead::STEPControl_ActorRead(const Handle(Interface_InterfaceModel)& theModel)
: myPrecision(0.0),
myMaxTol(0.0),
myModel(theModel)
{
}
// ============================================================================
// Method : STEPControl_ActorRead::Recognize
// Purpose : tells if an entity is valid for transfer by this Actor
// ============================================================================
Standard_Boolean STEPControl_ActorRead::Recognize(const Handle(Standard_Transient)& start)
{
if (start.IsNull())
return Standard_False;
if (start->IsKind(STANDARD_TYPE(StepBasic_ProductDefinition)))
return Standard_True;
if (start->IsKind(STANDARD_TYPE(StepRepr_NextAssemblyUsageOccurrence)))
return Standard_True;
Handle(StepData_StepModel) aStepModel = Handle(StepData_StepModel)::DownCast(myModel);
if (aStepModel.IsNull())
{
return false;
}
bool aProdMode = aStepModel->InternalParameters.ReadProductMode;
if (!aProdMode)
if (start->IsKind(STANDARD_TYPE(StepShape_ShapeDefinitionRepresentation)))
return Standard_True;
DeclareAndCast(StepShape_ShapeRepresentation, sr, start);
if (!sr.IsNull())
{
Standard_Integer i, nb = sr->NbItems();
for (i = 1; i <= nb; i++)
{
if (Recognize(sr->ItemsValue(i)))
return Standard_True;
}
return Standard_False;
}
const Standard_Boolean aCanReadTessGeom = aStepModel->InternalParameters.ReadTessellated != 0;
if (start->IsKind(STANDARD_TYPE(StepShape_FacetedBrep)))
return Standard_True;
if (start->IsKind(STANDARD_TYPE(StepShape_BrepWithVoids)))
return Standard_True;
if (start->IsKind(STANDARD_TYPE(StepShape_ManifoldSolidBrep)))
return Standard_True;
if (start->IsKind(STANDARD_TYPE(StepShape_ShellBasedSurfaceModel)))
return Standard_True;
if (start->IsKind(STANDARD_TYPE(StepShape_FacetedBrepAndBrepWithVoids)))
return Standard_True;
if (start->IsKind(STANDARD_TYPE(StepShape_GeometricSet)))
return Standard_True;
if (start->IsKind(STANDARD_TYPE(StepRepr_MappedItem)))
return Standard_True;
if (start->IsKind(STANDARD_TYPE(StepShape_FaceSurface)))
return Standard_True;
if (start->IsKind(STANDARD_TYPE(StepShape_EdgeBasedWireframeModel)))
return Standard_True;
if (start->IsKind(STANDARD_TYPE(StepShape_FaceBasedSurfaceModel)))
return Standard_True;
if (aCanReadTessGeom && start->IsKind(STANDARD_TYPE(StepVisual_TessellatedFace)))
return Standard_True;
if (aCanReadTessGeom && start->IsKind(STANDARD_TYPE(StepVisual_TessellatedSurfaceSet)))
return Standard_True;
if (aCanReadTessGeom && start->IsKind(STANDARD_TYPE(StepVisual_TessellatedShell)))
return Standard_True;
if (aCanReadTessGeom && start->IsKind(STANDARD_TYPE(StepVisual_TessellatedSolid)))
return Standard_True;
if (aCanReadTessGeom && start->IsKind(STANDARD_TYPE(StepVisual_TessellatedShapeRepresentation)))
return Standard_True;
// REPRESENTATION_RELATIONSHIP et consorts : on regarde le contenu ...
// On prend WithTransformation ou non ...
if (start->IsKind(STANDARD_TYPE(StepRepr_ShapeRepresentationRelationship)))
{
DeclareAndCast(StepRepr_ShapeRepresentationRelationship, und, start);
// On prend son contenu
if (Recognize(und->Rep1()) || Recognize(und->Rep2()))
return Standard_True;
return Standard_False;
}
if (start->IsKind(STANDARD_TYPE(StepShape_ContextDependentShapeRepresentation)))
{
return Standard_True;
// on fait le pari que, si ce n est pas transferable tel quel,
// des CDSR implicitement references le sont ...
// Sinon cette entite n aurait pas grand sens ...
}
return Standard_False;
}
// ============================================================================
// Method : STEPControl_ActorRead::Transfer
// Purpose : recursive method that accesses the root entities and starts the
// mapping
// ============================================================================
Handle(Transfer_Binder) STEPControl_ActorRead::Transfer(const Handle(Standard_Transient)& start,
const Handle(Transfer_TransientProcess)& TP,
const Message_ProgressRange& theProgress)
{
// [BEGIN] Get version of preprocessor (to detect I-Deas case) (ssv; 23.11.2010)
StepData_Factors aLocalFactors;
Handle(StepData_StepModel) aStepModel = Handle(StepData_StepModel)::DownCast(TP->Model());
if (!aStepModel->IsInitializedUnit())
{
XSAlgo_ShapeProcessor::PrepareForTransfer(); // update unit info
aStepModel->SetLocalLengthUnit(UnitsMethods::GetCasCadeLengthUnit());
aLocalFactors.SetCascadeUnit(UnitsMethods::GetCasCadeLengthUnit());
}
aLocalFactors.SetCascadeUnit(aStepModel->LocalLengthUnit());
Interface_EntityIterator anEntIt = aStepModel->Header();
for (anEntIt.Start(); anEntIt.More(); anEntIt.Next())
{
DeclareAndCast(HeaderSection_FileName, aFileNameEntity, anEntIt.Value());
if (!aFileNameEntity.IsNull())
{
Handle(TCollection_HAsciiString) aPPVersion = aFileNameEntity->PreprocessorVersion();
if (aPPVersion.IsNull())
continue;
#ifdef OCCT_DEBUG
std::cout << "Preprocessor version detected: " << aPPVersion->ToCString() << std::endl;
#endif
Standard_Integer anIDeasResult = aPPVersion->Search("I-DEAS");
if (anIDeasResult != -1)
{
#ifdef OCCT_DEBUG
std::cout << "Recognized as I-DEAS STP" << std::endl;
#endif
myNMTool.SetIDEASCase(Standard_True);
}
}
}
// [END] Get version of preprocessor (to detect I-Deas case) (ssv; 23.11.2010)
Standard_Boolean aTrsfUse = (aStepModel->InternalParameters.ReadRootTransformation == 1);
return TransferShape(start, TP, aLocalFactors, Standard_True, aTrsfUse, theProgress);
}
// ============================================================================
// auxiliary function : ApplyTransformation
// ============================================================================
static void ApplyTransformation(TopoDS_Shape& shape, const gp_Trsf& Trsf)
{
if (Trsf.Form() == gp_Identity)
return;
TopLoc_Location theLoc(Trsf);
shape.Move(theLoc);
}
// ============================================================================
// auxiliary function : FindContext
// ============================================================================
static Handle(StepRepr_Representation) FindContext(const Handle(Standard_Transient)& start,
const Handle(Transfer_TransientProcess)& TP,
const Standard_Integer level = 10)
{
Handle(StepRepr_Representation) rep;
const Interface_Graph& graph = TP->Graph();
Interface_EntityIterator subs = graph.Sharings(start);
for (subs.Start(); subs.More() && rep.IsNull(); subs.Next())
{
rep = Handle(StepRepr_Representation)::DownCast(subs.Value());
if (rep.IsNull() && level > 0)
rep = FindContext(subs.Value(), TP, level - 1);
}
return rep;
}
//=======================================================================
// function : FindShapeReprType
// purpose : Returns integer corresponding to the type of the representation
// as defined in read.step.shape.repr_level parameter
//=======================================================================
static Standard_Integer FindShapeReprType(const Handle(Standard_Transient)& start)
{
if (start->IsKind(STANDARD_TYPE(StepShape_AdvancedBrepShapeRepresentation)))
return 2;
if (start->IsKind(STANDARD_TYPE(StepShape_ManifoldSurfaceShapeRepresentation)))
return 3;
if (start->IsKind(STANDARD_TYPE(StepShape_GeometricallyBoundedSurfaceShapeRepresentation)))
return 4;
if (start->IsKind(STANDARD_TYPE(StepShape_FacetedBrepShapeRepresentation)))
return 5;
if (start->IsKind(STANDARD_TYPE(StepShape_EdgeBasedWireframeShapeRepresentation)))
return 6;
if (start->IsKind(STANDARD_TYPE(StepShape_GeometricallyBoundedWireframeShapeRepresentation)))
return 7;
return 8;
}
//=======================================================================
// function : getListSDR
// purpose : Get SDRs assigned to ShapeAspect, which may potentially
// correspond to hybrid models in AP203 before 1998
//=======================================================================
static void getListSDR(const Handle(StepRepr_ShapeAspect)& sa,
Handle(TColStd_HSequenceOfTransient)& listSDR,
const Handle(Transfer_TransientProcess)& TP)
{
const Interface_Graph& graph = TP->Graph();
// check whether this ShapeAspect is used in G&DT, and if yes, ignore it
if (sa->IsKind(STANDARD_TYPE(StepDimTol_DatumFeature)))
return;
Interface_EntityIterator subs5 = graph.Sharings(sa);
for (subs5.Start(); subs5.More(); subs5.Next())
{
if (subs5.Value()->IsKind(STANDARD_TYPE(StepDimTol_GeometricTolerance)))
return;
}
// reiterate by referred entities and take all SDRs; note that SDRs that
// refer to sub-shapes of main SDR will be filtered out further during translation
subs5 = graph.Sharings(sa);
for (subs5.Start(); subs5.More(); subs5.Next())
{
Handle(StepRepr_PropertyDefinition) propd =
Handle(StepRepr_PropertyDefinition)::DownCast(subs5.Value());
if (propd.IsNull())
continue;
Interface_EntityIterator subs6 = graph.Sharings(propd);
for (subs6.Start(); subs6.More(); subs6.Next())
{
Handle(StepShape_ShapeDefinitionRepresentation) sdr =
Handle(StepShape_ShapeDefinitionRepresentation)::DownCast(subs6.Value());
if (!sdr.IsNull())
listSDR->Append(sdr);
}
}
}
//=======================================================================
// function : getSDR
// purpose : Find all SDRs related to given PDS
//=======================================================================
static void getSDR(const Handle(StepRepr_ProductDefinitionShape)& PDS,
Handle(TColStd_HSequenceOfTransient)& listSDR,
Handle(TColStd_HSequenceOfTransient)& listNAUO,
Handle(TColStd_HSequenceOfTransient)& listSDRAspect,
const Handle(Transfer_TransientProcess)& TP)
{
Handle(StepData_StepModel) aStepModel = Handle(StepData_StepModel)::DownCast(TP->Model());
// Flag indicating preferred shape representation type, to be chosen if
// several different representations are attached to the same shape
Standard_Integer delta = 100;
Standard_Integer ICS = aStepModel->InternalParameters.ReadShapeRepr;
Standard_Integer nbSDR0 = listSDR->Length();
// Iterate by entities referring PDS
const Interface_Graph& graph = TP->Graph();
Handle(StepShape_ShapeDefinitionRepresentation) NeedSDR;
Interface_EntityIterator subs4 = graph.Sharings(PDS);
for (subs4.Start(); subs4.More(); subs4.Next())
{
// Directly assigned SDR
Handle(StepShape_ShapeDefinitionRepresentation) sdr =
Handle(StepShape_ShapeDefinitionRepresentation)::DownCast(subs4.Value());
if (!sdr.IsNull())
{
Handle(StepRepr_Representation) rep = sdr->UsedRepresentation();
if (!rep.IsNull())
{
// if specific representation type is preferred, choose the
// representations of the closest type
if (ICS == 1) // translate all SDRs
listSDR->Append(sdr);
else
{
Standard_Integer iDiff = Abs(FindShapeReprType(rep) - ICS);
// if more suitable representation is found, drop previous if any selected
if (iDiff < delta)
{
while (listSDR->Length() > nbSDR0)
listSDR->Remove(listSDR->Length());
delta = iDiff;
}
// take all representations of preferred or closest type
if (iDiff <= delta)
listSDR->Append(sdr);
}
}
continue;
}
// SDRs assigned via ShapeAspect; may correspond to hybrid model in AP203 before 1998
Handle(StepRepr_ShapeAspect) sa = Handle(StepRepr_ShapeAspect)::DownCast(subs4.Value());
if (!sa.IsNull())
{
getListSDR(sa, listSDRAspect, TP);
continue;
}
// NAUO is used to find sub-assemblies
Handle(StepRepr_NextAssemblyUsageOccurrence) NAUO =
Handle(StepRepr_NextAssemblyUsageOccurrence)::DownCast(subs4.Value());
if (!NAUO.IsNull())
{
if (PDS->Definition().ProductDefinition() == NAUO->RelatingProductDefinition())
listNAUO->Append(NAUO);
continue;
}
}
}
//=================================================================================================
Handle(TransferBRep_ShapeBinder) STEPControl_ActorRead::TransferEntity(
const Handle(StepBasic_ProductDefinition)& PD,
const Handle(Transfer_TransientProcess)& TP,
const StepData_Factors& theLocalFactors,
const Standard_Boolean theUseTrsf,
const Message_ProgressRange& theProgress)
{
Message_Messenger::StreamBuffer sout = TP->Messenger()->SendInfo();
Handle(TransferBRep_ShapeBinder) shbinder;
TopoDS_Compound Cund;
TopoDS_Shape Result1;
BRep_Builder B;
B.MakeCompound(Cund);
// Find subcomponents of assembly (NAUO)
// and definitions of shape of the current product (SDR)
Handle(TColStd_HSequenceOfTransient) listSDR = new TColStd_HSequenceOfTransient;
Handle(TColStd_HSequenceOfTransient) listNAUO = new TColStd_HSequenceOfTransient;
Handle(TColStd_HSequenceOfTransient) listSDRAspect = new TColStd_HSequenceOfTransient;
const Interface_Graph& graph = TP->Graph();
Interface_EntityIterator subs3 = graph.Sharings(PD);
for (subs3.Start(); subs3.More(); subs3.Next())
{
// PDS is used to find shape definitions attached to this product
Handle(StepRepr_ProductDefinitionShape) PDS =
Handle(StepRepr_ProductDefinitionShape)::DownCast(subs3.Value());
if (!PDS.IsNull())
{
getSDR(PDS, listSDR, listNAUO, listSDRAspect, TP);
continue;
}
// NAUO is used to find sub-assemblies
Handle(StepRepr_NextAssemblyUsageOccurrence) NAUO =
Handle(StepRepr_NextAssemblyUsageOccurrence)::DownCast(subs3.Value());
if (!NAUO.IsNull())
{
if (PD == NAUO->RelatingProductDefinition())
listNAUO->Append(NAUO);
continue;
}
}
Handle(StepData_StepModel) aStepModel = Handle(StepData_StepModel)::DownCast(TP->Model());
// Flag indicating whether SDRs associated with the product`s main SDR
// by SRRs (which correspond to hybrid model representation in AP203 since 1998)
// should be taken into account
const bool readSRR = aStepModel->InternalParameters.ReadRelationship;
const bool readConstructiveGeomRR = aStepModel->InternalParameters.ReadConstrRelation;
// Flag indicating whether SDRs associated with the product`s main SDR
// by SAs (which correspond to hybrid model representation in AP203 before 1998)
// should be taken into account
Standard_Integer readSA = aStepModel->InternalParameters.ReadShapeAspect;
if (!readSA)
listSDRAspect->Clear();
// remember number of normal SDRs (not those found via ShapeAspect)
// and merge both lists in one
Standard_Integer nbNotAspect = listSDR->Length();
listSDR->Append(listSDRAspect);
// Flag indicating level of reading assemblies: only structure (3),
// structure with shapes of final parts (2), or everything, including shapes
// possibly attached directly to intermediate assemblies (1)
// Special mode (4) is used to translate shape attached to this product only,
// ignoring sub-assemblies if any
Standard_Integer readAssembly = aStepModel->InternalParameters.ReadAssemblyLevel;
if (readAssembly == 3 || (readAssembly == 2 && listNAUO->Length() > 0))
listSDR->Clear();
else if (readAssembly == 4)
listNAUO->Clear();
Standard_Integer nbEnt = listSDR->Length() + listNAUO->Length();
if (nbEnt <= 0)
return shbinder;
// common progress indicator for translation of own shapes and sub-assemblies
Message_ProgressScope PS(theProgress, "Part", nbEnt);
Standard_Integer nbComponents = 0;
// translate sub-assemblies
for (Standard_Integer nbNauo = 1; nbNauo <= listNAUO->Length() && PS.More(); nbNauo++)
{
Handle(StepRepr_NextAssemblyUsageOccurrence) NAUO =
Handle(StepRepr_NextAssemblyUsageOccurrence)::DownCast(listNAUO->Value(nbNauo));
#ifdef TRANSLOG
if (TP->TraceLevel() > 1)
sout << " -- Actor : Ent.n0 " << TP->Model()->Number(PD) << " -> Shared Ent.no"
<< TP->Model()->Number(NAUO) << std::endl;
#endif
Handle(Transfer_Binder) binder;
Message_ProgressRange aRange = PS.Next();
if (!TP->IsBound(NAUO))
binder = TransferEntity(NAUO, TP, theLocalFactors, aRange);
else
binder = TP->Find(NAUO);
TopoDS_Shape theResult = TransferBRep::ShapeResult(binder);
if (!theResult.IsNull())
{
Result1 = theResult;
// [BEGIN] ssv: OCCT#22436: extra compound in NMSSR case
if (NM_DETECTED && Result1.ShapeType() == TopAbs_COMPOUND)
{
TopoDS_Iterator it(Result1);
for (; it.More(); it.Next())
{
const TopoDS_Shape& aSubShape = it.Value();
B.Add(Cund, aSubShape);
}
}
else
B.Add(Cund, theResult);
// [END] ssv: OCCT#22436: extra compound in NMSSR case
nbComponents++;
}
}
// translate shapes assigned directly
for (Standard_Integer i = 1; i <= listSDR->Length() && PS.More(); i++)
{
Handle(StepShape_ShapeDefinitionRepresentation) sdr =
Handle(StepShape_ShapeDefinitionRepresentation)::DownCast(listSDR->Value(i));
Handle(StepShape_ShapeRepresentation) rep =
Handle(StepShape_ShapeRepresentation)::DownCast(sdr->UsedRepresentation());
if (rep.IsNull())
continue;
Message_ProgressScope aPS1(PS.Next(), NULL, 2);
// translate SDR representation
Standard_Boolean isBound = Standard_True;
// SKL for bug 29068: transformation need to applied only for "main"
// ShapeDefinitionRepresentation. Part of listSDR given by ShapeAspect must be ignored because
// all needed transformations will be applied during its transfer. Therefore flag for using Trsf
// must be updated.
Standard_Boolean useTrsf = theUseTrsf && (i <= nbNotAspect);
Handle(Transfer_Binder) binder = TP->Find(rep);
if (binder.IsNull())
binder = TransferEntity(rep, TP, theLocalFactors, isBound, useTrsf, aPS1.Next());
// if SDR is obtained from ShapeAspect and representation items have already been tramnslated,
// this means that that ShapeAspect is used to refer to sub-shape of the main shape
// (e.g. for validation properties), and we do not need to translate it actually;
// otherwise it is considered as part of hybrid representation in AP203 before 1998
if (i > nbNotAspect && isBound)
continue;
// record shape resulting from translation
TopoDS_Shape theResult;
if (!binder.IsNull())
{
theResult = TransferBRep::ShapeResult(binder);
if (!theResult.IsNull())
{
Result1 = theResult;
// [BEGIN] ssv: OCCT#22436: extra compound in NMSSR case
if (NM_DETECTED && Result1.ShapeType() == TopAbs_COMPOUND)
{
TopoDS_Iterator it(Result1);
for (; it.More(); it.Next())
{
const TopoDS_Shape& aSubShape = it.Value();
B.Add(Cund, aSubShape);
}
}
else
B.Add(Cund, theResult);
// [END] ssv: OCCT#22436: extra compound in NMSSR case
}
}
// translate possible shapes related by SRRs, which corresponds to
// way of writing hybrid models in AP203 since 1998, and AP209
// Note that both AP203 and AP209 allow main representation to be non-empty
if (readSRR && /*theResult.IsNull() &&*/ i <= nbNotAspect)
{
TopoDS_Shape aNewResult =
TransferRelatedSRR(TP, rep, useTrsf, readConstructiveGeomRR, theLocalFactors, Cund, aPS1);
if (!aNewResult.IsNull())
{
Result1 = aNewResult;
}
}
}
// make a warning if both own shape and sub-assemblies are present
if ((Cund.NbChildren() - nbComponents) > 0 && nbComponents > 0)
TP->AddWarning(PD, "Product has both sub-assemblies and directly assigned shape");
// if only single shape is read, add it as it is; otherwise add compound
if ((Cund.NbChildren() - nbComponents) == 1 && nbComponents == 0)
shbinder = new TransferBRep_ShapeBinder(Result1);
else
shbinder = new TransferBRep_ShapeBinder(Cund);
// TP->Unbind( PD ); //:j3: unbind start (let it be bound by TransferProcess)
TP->Bind(PD, shbinder);
return shbinder;
}
//=================================================================================================
Handle(TransferBRep_ShapeBinder) STEPControl_ActorRead::TransferEntity(
const Handle(StepRepr_NextAssemblyUsageOccurrence)& NAUO,
const Handle(Transfer_TransientProcess)& TP,
const StepData_Factors& theLocalFactors,
const Message_ProgressRange& theProgress)
{
Handle(TransferBRep_ShapeBinder) shbinder;
Handle(StepBasic_ProductDefinition) PD;
const Interface_Graph& graph = TP->Graph();
gp_Trsf Trsf;
Standard_Boolean iatrsf = Standard_False, SRRReversed = Standard_False, IsDepend = Standard_False;
Handle(StepRepr_ShapeRepresentationRelationship) SRR;
Interface_EntityIterator subs1 = graph.Sharings(NAUO);
for (subs1.Start(); subs1.More(); subs1.Next())
{
Handle(StepRepr_ProductDefinitionShape) PDS =
Handle(StepRepr_ProductDefinitionShape)::DownCast(subs1.Value());
if (PDS.IsNull())
continue;
Interface_EntityIterator subs2 = graph.Sharings(PDS);
for (subs2.Start(); subs2.More(); subs2.Next())
{
Handle(StepShape_ContextDependentShapeRepresentation) CDSR =
Handle(StepShape_ContextDependentShapeRepresentation)::DownCast(subs2.Value());
if (CDSR.IsNull())
continue;
IsDepend = Standard_True;
Handle(StepRepr_RepresentationRelationship) RR = CDSR->RepresentationRelation();
if (RR.IsNull())
continue;
SRRReversed = STEPConstruct_Assembly::CheckSRRReversesNAUO(graph, CDSR);
Handle(StepRepr_Representation) rep = (SRRReversed ? RR->Rep2() : RR->Rep1());
if (rep.IsNull())
continue;
iatrsf = ComputeSRRWT(RR, TP, Trsf, theLocalFactors);
// find real ProductDefinition used rep
Interface_EntityIterator subs3 = TP->Graph().Sharings(rep);
for (subs3.Start(); subs3.More(); subs3.Next())
{
const Handle(Standard_Transient)& aSubs3Val = subs3.Value();
if (Handle(StepShape_ShapeDefinitionRepresentation) SDR =
Handle(StepShape_ShapeDefinitionRepresentation)::DownCast(aSubs3Val))
{
Handle(StepRepr_ProductDefinitionShape) PDS1 =
Handle(StepRepr_ProductDefinitionShape)::DownCast(
SDR->Definition().PropertyDefinition());
if (PDS1.IsNull())
continue;
Interface_EntityIterator subs4 = graph.Shareds(PDS1);
for (subs4.Start(); PD.IsNull() && subs4.More(); subs4.Next())
{
PD = Handle(StepBasic_ProductDefinition)::DownCast(subs4.Value());
}
}
else if (aSubs3Val->IsKind(STANDARD_TYPE(StepRepr_ShapeRepresentationRelationship)))
{
// NB: C cast is used instead of DownCast() to improve performance on some cases.
// This saves ~10% of elapsed time on "testgrid perf de bug29* -parallel 0".
SRR = (StepRepr_ShapeRepresentationRelationship*)(aSubs3Val.get());
}
}
}
}
Handle(Transfer_Binder) binder;
TopoDS_Shape theResult;
shbinder.Nullify();
if (IsDepend)
{
Message_ProgressScope aPS(theProgress, NULL, 2);
if (!PD.IsNull())
{
binder = TP->Find(PD);
if (binder.IsNull())
binder = TransferEntity(PD, TP, theLocalFactors, Standard_False, aPS.Next());
theResult = TransferBRep::ShapeResult(binder);
if (!theResult.IsNull())
{
if (iatrsf)
{
if (SRRReversed)
ApplyTransformation(theResult, Trsf.Inverted());
else
ApplyTransformation(theResult, Trsf);
}
shbinder = new TransferBRep_ShapeBinder(theResult);
}
}
if (theResult.IsNull() && !SRR.IsNull())
{
binder = TP->Find(SRR);
if (binder.IsNull())
{
binder = TransferEntity(SRR, TP, theLocalFactors, 0, Standard_False, aPS.Next());
theResult = TransferBRep::ShapeResult(binder);
if (!theResult.IsNull())
shbinder = new TransferBRep_ShapeBinder(theResult);
}
}
}
TP->Bind(NAUO, shbinder);
return shbinder;
}
//=================================================================================================
Handle(TransferBRep_ShapeBinder) STEPControl_ActorRead::TransferEntity(
const Handle(StepShape_ShapeRepresentation)& sr,
const Handle(Transfer_TransientProcess)& TP,
const StepData_Factors& theLocalFactors,
Standard_Boolean& isBound,
const Standard_Boolean theUseTrsf,
const Message_ProgressRange& theProgress)
{
NM_DETECTED = Standard_False;
Handle(TransferBRep_ShapeBinder) shbinder;
Handle(StepData_StepModel) aStepModel = Handle(StepData_StepModel)::DownCast(TP->Model());
if (!Recognize(sr))
return shbinder;
isBound = Standard_False;
Standard_Integer nb = sr->NbItems();
Standard_Integer nbTPitems = TP->NbMapped();
Message_Messenger::StreamBuffer sout = TP->Messenger()->SendInfo();
#ifdef TRANSLOG
if (TP->TraceLevel() > 2)
sout << " -- Actor : case ShapeRepr. NbItems=" << nb << std::endl;
#endif
// Compute unit conversion factors and geometric Accuracy
Handle(StepRepr_Representation) oldSRContext = mySRContext; //: S4136
StepData_Factors aLocalFactors = theLocalFactors;
PrepareUnits(sr, TP, aLocalFactors);
BRep_Builder B;
TopoDS_Compound comp;
B.MakeCompound(comp);
TopoDS_Shape OneResult;
Standard_Integer nsh = 0;
// [BEGIN] Proceed with non-manifold topology (ssv; 12.11.2010)
Standard_Boolean isNMMode = aStepModel->InternalParameters.ReadNonmanifold != 0;
Standard_Boolean isManifold = Standard_True;
if (isNMMode && sr->IsKind(STANDARD_TYPE(StepShape_NonManifoldSurfaceShapeRepresentation)))
{
isManifold = Standard_False;
NM_DETECTED = Standard_True;
#ifdef OCCT_DEBUG
Standard_Integer NMSSRItemsLen = sr->Items()->Length();
std::cout << "NMSSR with " << NMSSRItemsLen << " items detected" << std::endl;
#endif
}
// Special processing for I-DEAS STP case (ssv; 15.11.2010)
else
{
Standard_Integer isIDeasMode = aStepModel->InternalParameters.ReadIdeas;
if (isNMMode && myNMTool.IsIDEASCase() && isIDeasMode)
{
isManifold = Standard_False;
NM_DETECTED = Standard_True;
#ifdef OCCT_DEBUG
std::cout << "I-DEAS post processing for non-manifold topology ENABLED" << std::endl;
#endif
}
#ifdef OCCT_DEBUG
else if (myNMTool.IsIDEASCase())
std::cout << "I-DEAS post processing for non-manifold topology DISABLED" << std::endl;
#endif
}
myNMTool.CleanUp();
// Don't use NM tool in manifold cases (ssv; 24.11.2010)
myNMTool.SetActive(!isManifold && isNMMode);
// [END] Proceed with non-manifold topology (ssv; 12.11.2010)
gp_Trsf aTrsf;
Message_ProgressScope aPSRoot(theProgress, "Sub-assembly", isManifold ? 1 : 2);
Message_ProgressScope aPS(aPSRoot.Next(), "Transfer", nb);
TopTools_IndexedMapOfShape aCompoundedShapes;
for (Standard_Integer i = 1; i <= nb && aPS.More(); i++)
{
Message_ProgressRange aRange = aPS.Next();
#ifdef TRANSLOG
if (TP->TraceLevel() > 2)
sout << " -- Actor, shape_representation.item n0. " << i << std::endl;
#endif
Handle(StepRepr_RepresentationItem) anitem = sr->ItemsValue(i);
if (anitem.IsNull())
continue;
if (theUseTrsf)
{
if (anitem->IsKind(STANDARD_TYPE(StepGeom_Axis2Placement3d)))
{
const Interface_Graph& graph = TP->Graph();
Interface_EntityIterator subs3 = graph.Sharings(anitem);
for (subs3.Start(); subs3.More(); subs3.Next())
{
Handle(StepRepr_ItemDefinedTransformation) IDT =
Handle(StepRepr_ItemDefinedTransformation)::DownCast(subs3.Value());
if (!IDT.IsNull())
{
// current Axis2Placement is used for related ShapeRepresentation => ignore it
break;
}
}
if (!subs3.More())
{
Handle(StepGeom_Axis2Placement3d) aCS =
Handle(StepGeom_Axis2Placement3d)::DownCast(anitem);
Handle(Geom_Axis2Placement) aTargAP = StepToGeom::MakeAxis2Placement(aCS, aLocalFactors);
if (!aTargAP.IsNull())
{
const gp_Ax3 ax3Orig(gp_Pnt(0., 0., 0), gp_Vec(0., 0., 1.), gp_Vec(1., 0., 0.));
const gp_Ax3 ax3Targ(aTargAP->Ax2());
if (ax3Targ.Location().SquareDistance(ax3Orig.Location()) < Precision::SquareConfusion()
&& ax3Targ.Direction().IsEqual(ax3Orig.Direction(), Precision::Angular())
&& ax3Targ.XDirection().IsEqual(ax3Orig.XDirection(), Precision::Angular()))
{
continue;
}
aTrsf.SetTransformation(ax3Targ, ax3Orig);
}
continue;
}
}
}
Handle(Transfer_Binder) binder;
if (!TP->IsBound(anitem))
{
binder = TransferShape(anitem, TP, aLocalFactors, isManifold, Standard_False, aRange);
}
else
{
isBound = Standard_True;
binder = TP->Find(anitem);
}
TopoDS_Shape theResult = TransferBRep::ShapeResult(binder);
if (!theResult.IsNull())
{
OneResult = theResult;
if (!aCompoundedShapes.Contains(theResult))
{
aCompoundedShapes.Add(theResult);
TopExp::MapShapes(theResult, aCompoundedShapes, Standard_False, Standard_False);
B.Add(comp, theResult);
nsh++;
}
}
}
// [BEGIN] Proceed with non-manifold topology (ssv; 12.11.2010)
if (!isManifold)
{
Message_ProgressScope aPS1(aPSRoot.Next(), "Process", 1);
// Set tolerances for shape processing.
// These parameters are calculated inside STEPControl_ActorRead::Transfer() and cannot be set
// from outside.
XSAlgo_ShapeProcessor::ParameterMap aParameters = GetShapeFixParameters();
XSAlgo_ShapeProcessor::SetParameter("FixShape.Tolerance3d", myPrecision, true, aParameters);
XSAlgo_ShapeProcessor::SetParameter("FixShape.MaxTolerance3d", myMaxTol, true, aParameters);
XSAlgo_ShapeProcessor::SetParameter("FixShape.NonManifold", "1", true, aParameters);
XSAlgo_ShapeProcessor aShapeProcessor(aParameters);
TopoDS_Shape fixedResult =
aShapeProcessor.ProcessShape(comp, GetProcessingFlags().first, aPS1.Next());
aShapeProcessor.MergeTransferInfo(TP, nbTPitems);
if (fixedResult.ShapeType() == TopAbs_COMPOUND)
{
comp = TopoDS::Compound(fixedResult);
}
else
{
comp.Nullify();
B.MakeCompound(comp);
B.Add(comp, fixedResult);
}
BRep_Builder brepBuilder;
// [BEGIN] Try to close OPEN Shells in I-DEAS case (ssv; 17.11.2010)
if (myNMTool.IsIDEASCase())
{
// ==========================================================
// For each Shell (always OPEN in I-DEAS case) find all
// the possibilities to close it with adjacent non-manifold
// Shells which are stored separately in I-DEAS-like STP
// ==========================================================
TopTools_IndexedDataMapOfShapeListOfShape shellClosingsMap;
// Find possible closings for each shell
this->computeIDEASClosings(comp, shellClosingsMap);
// Make compound to store closed Shells
TopoDS_Compound compWithClosings;
brepBuilder.MakeCompound(compWithClosings);
// Attempt to close Shells one-by-one
for (Standard_Integer i = 1; i <= shellClosingsMap.Extent(); i++)
{
TopoDS_Shell adjustedShell =
this->closeIDEASShell(TopoDS::Shell(shellClosingsMap.FindKey(i)),
shellClosingsMap.FindFromIndex(i));
brepBuilder.Add(compWithClosings, adjustedShell);
}
// Put not suspected open Shells as they are (updated 23.11.2010)
TopExp_Explorer allShellsExp(comp, TopAbs_SHELL);
for (; allShellsExp.More(); allShellsExp.Next())
{
const TopoDS_Shape& aCurrentShell = allShellsExp.Current();
if (!myNMTool.IsPureNMShell(aCurrentShell) && !shellClosingsMap.Contains(aCurrentShell))
brepBuilder.Add(compWithClosings, aCurrentShell);
}
comp = compWithClosings;
}
// [END] Try to close OPEN Shells in I-DEAS case (ssv; 17.11.2010)
// [BEGIN] Reconstruct Solids from Closed Shells (ssv; 15.11.2010)
TopoDS_Compound reconstComp;
brepBuilder.MakeCompound(reconstComp);
TopExp_Explorer exp(comp, TopAbs_SHELL);
for (; exp.More(); exp.Next())
{
const TopoDS_Shape& aSubShape = exp.Current();
if (aSubShape.ShapeType() == TopAbs_SHELL && aSubShape.Closed())
{
TopoDS_Solid nextSolid;
brepBuilder.MakeSolid(nextSolid);
brepBuilder.Add(nextSolid, aSubShape);
brepBuilder.Add(reconstComp, nextSolid);
}
else if (aSubShape.ShapeType() == TopAbs_SHELL)
brepBuilder.Add(reconstComp, aSubShape);
}
comp = reconstComp;
// [END] Reconstruct Solids from Closed Shells (ssv; 15.11.2010)
}
// Bind the resulting shape
// if (nsh == 0) shbinder.Nullify();
// else if (nsh == 1) shbinder = new TransferBRep_ShapeBinder (OneResult);
// else shbinder = new TransferBRep_ShapeBinder (comp);
if (nsh == 0)
shbinder.Nullify();
else if (nsh == 1)
{
if (aTrsf.Form() != gp_Identity)
{
TopLoc_Location aLoc(aTrsf);
OneResult.Move(aLoc);
}
shbinder = new TransferBRep_ShapeBinder(OneResult);
}
else
{
if (aTrsf.Form() != gp_Identity)
{
TopLoc_Location aLoc(aTrsf);
comp.Move(aLoc);
}
shbinder = new TransferBRep_ShapeBinder(comp);
}
PrepareUnits(oldSRContext, TP, aLocalFactors); //: S4136
TP->Bind(sr, shbinder);
#ifdef OCCT_DEBUG
DumpWhatIs(comp);
#endif
return shbinder;
}
//=================================================================================================
Handle(TransferBRep_ShapeBinder) STEPControl_ActorRead::TransferEntity(
const Handle(StepShape_ContextDependentShapeRepresentation)& CDSR,
const Handle(Transfer_TransientProcess)& TP,
const StepData_Factors& theLocalFactors,
const Message_ProgressRange& theProgress)
{
Handle(TransferBRep_ShapeBinder) shbinder;
//: j2: treat SRRs here in order to compare them with NAUO
Handle(StepRepr_ShapeRepresentationRelationship) SRR = CDSR->RepresentationRelation();
if (SRR.IsNull())
return shbinder;
Standard_Boolean SRRReversed = STEPConstruct_Assembly::CheckSRRReversesNAUO(TP->Graph(), CDSR);
Handle(StepRepr_Representation) rep1 = (SRRReversed ? SRR->Rep2() : SRR->Rep1());
Handle(StepShape_ShapeRepresentation) rep = Handle(StepShape_ShapeRepresentation)::DownCast(rep1);
if (SRRReversed)
TP->AddWarning(SRR, "SRR reverses relation defined by NAUO; NAUO definition is taken");
TopoDS_Shape theResult;
gp_Trsf Trsf;
Standard_Boolean iatrsf = ComputeSRRWT(SRR, TP, Trsf, theLocalFactors);
Handle(Transfer_Binder) binder;
Standard_Boolean isBound = Standard_False;
if (!TP->IsBound(rep))
binder = TransferEntity(rep, TP, theLocalFactors, isBound, Standard_False, theProgress);
else
binder = TP->Find(rep);
theResult = TransferBRep::ShapeResult(binder);
if (!theResult.IsNull())
{
if (iatrsf)
{
if (SRRReversed)
ApplyTransformation(theResult, Trsf.Inverted());
else
ApplyTransformation(theResult, Trsf);
}
shbinder = new TransferBRep_ShapeBinder(theResult);
}
else
shbinder.Nullify();
TP->Bind(CDSR, shbinder);
return shbinder;
}
//=================================================================================================
Handle(TransferBRep_ShapeBinder) STEPControl_ActorRead::TransferEntity(
const Handle(StepRepr_ShapeRepresentationRelationship)& und,
const Handle(Transfer_TransientProcess)& TP,
const StepData_Factors& theLocalFactors,
const Standard_Integer nbrep,
const Standard_Boolean theUseTrsf,
const Message_ProgressRange& theProgress)
{
// REPRESENTATION_RELATIONSHIP et la famille
Handle(TransferBRep_ShapeBinder) shbinder;
if (und.IsNull())
return shbinder;
// On prend son contenu : Rep1 ou Rep2 , that is the question
// on prend les 2. Mais quoi faire des axes
TopoDS_Compound Cund;
TopoDS_Shape OneResult;
BRep_Builder B;
B.MakeCompound(Cund);
Standard_Integer nsh = 0;
gp_Trsf Trsf;
Standard_Boolean iatrsf = ComputeSRRWT(und, TP, Trsf, theLocalFactors);
// Transfert : que faut-il prendre au juste ?
Message_ProgressScope aPS(theProgress, NULL, 2);
for (Standard_Integer i = 1; i <= 2 && aPS.More(); i++)
{
Message_ProgressRange aRange = aPS.Next();
if (nbrep && nbrep != i)
continue;
Handle(StepRepr_Representation) anitemt;
if (i == 1)
anitemt = und->Rep1();
if (i == 2)
anitemt = und->Rep2();
Handle(StepShape_ShapeRepresentation) anitem =
Handle(StepShape_ShapeRepresentation)::DownCast(anitemt);
Handle(Transfer_Binder) binder;
Standard_Boolean isBound = Standard_False;
if (!TP->IsBound(anitem))
binder = TransferEntity(anitem, TP, theLocalFactors, isBound, theUseTrsf, aRange);
else
binder = TP->Find(anitem);
TopoDS_Shape theResult = TransferBRep::ShapeResult(binder);
if (!theResult.IsNull())
{
OneResult = theResult;
B.Add(Cund, theResult);
nsh++;
}
}
// La Transformation : selon les cas
// Appliquer la transformation
if (iatrsf)
{
if (nsh == 1)
ApplyTransformation(OneResult, Trsf);
else if (nsh > 1)
ApplyTransformation(Cund, Trsf);
}
if (nsh == 0)
shbinder.Nullify();
else if (nsh == 1)
shbinder = new TransferBRep_ShapeBinder(OneResult);
else
shbinder = new TransferBRep_ShapeBinder(Cund);
TP->Bind(und, shbinder);
return shbinder;
}
//=================================================================================================
Handle(TransferBRep_ShapeBinder) STEPControl_ActorRead::TransferEntity(
const Handle(StepRepr_ConstructiveGeometryRepresentationRelationship)& theCGRR,
const Handle(Transfer_TransientProcess)& theTP,
const StepData_Factors& theLocalFactors)
{
Handle(TransferBRep_ShapeBinder) shbinder;
if (theCGRR.IsNull())
return shbinder;
Standard_Boolean resetUnits = Standard_False;
Handle(StepRepr_Representation) oldSRContext = mySRContext;
StepData_Factors aLocalFactors = theLocalFactors;
TopoDS_Compound aComp;
BRep_Builder aB;
aB.MakeCompound(aComp);
for (Standard_Integer i = 1; i <= 2; i++)
{
Handle(StepRepr_ConstructiveGeometryRepresentation) aCRepr =
Handle(StepRepr_ConstructiveGeometryRepresentation)::DownCast(i == 1 ? theCGRR->Rep1()
: theCGRR->Rep2());
if (aCRepr.IsNull())
continue;
if (mySRContext.IsNull() || aCRepr->ContextOfItems() != mySRContext->ContextOfItems())
{
PrepareUnits(aCRepr, theTP, aLocalFactors);
resetUnits = Standard_True;
}
Standard_Integer j = 1;
Handle(StepGeom_Axis2Placement3d) anAxis1;
Handle(StepGeom_Axis2Placement3d) anAxis2;
for (; j <= aCRepr->NbItems(); j++)
{
Handle(StepRepr_RepresentationItem) anItem = aCRepr->ItemsValue(j);
Handle(StepGeom_Axis2Placement3d) aStepAxis =
Handle(StepGeom_Axis2Placement3d)::DownCast(anItem);
if (!aStepAxis.IsNull())
{
Handle(Geom_Axis2Placement) anAxis =
StepToGeom::MakeAxis2Placement(aStepAxis, aLocalFactors);
if (anAxis.IsNull())
continue;
Handle(Geom_Plane) aPlane = new Geom_Plane(gp_Ax3(anAxis->Ax2()));
TopoDS_Face aPlaneFace;
aB.MakeFace(aPlaneFace, aPlane, Precision::Confusion());
Handle(TransferBRep_ShapeBinder) axisbinder = new TransferBRep_ShapeBinder(aPlaneFace);
theTP->Bind(aStepAxis, axisbinder);
aB.Add(aComp, aPlaneFace);
}
}
}
shbinder = new TransferBRep_ShapeBinder(aComp);
mySRContext = oldSRContext;
if (oldSRContext.IsNull() || resetUnits)
PrepareUnits(oldSRContext, theTP, aLocalFactors);
theTP->Bind(theCGRR, shbinder);
return shbinder;
}
//=================================================================================================
Handle(TransferBRep_ShapeBinder) STEPControl_ActorRead::TransferEntity(
const Handle(StepRepr_MechanicalDesignAndDraughtingRelationship)& theMDADR,
const Handle(Transfer_TransientProcess)& theTP,
const StepData_Factors& theLocalFactors,
const Message_ProgressRange& theProgress)
{
Handle(TransferBRep_ShapeBinder) aShBinder;
if (theMDADR.IsNull())
return aShBinder;
Standard_Boolean aResetUnits = Standard_False;
Handle(StepRepr_Representation) anOldSRContext = mySRContext;
StepData_Factors aLocalFactors = theLocalFactors;
TopoDS_Compound aComp;
BRep_Builder aBuilder;
aBuilder.MakeCompound(aComp);
Message_ProgressScope aPS(theProgress, NULL, 2);
for (Standard_Integer anIndex = 1; anIndex <= 2; anIndex++)
{
Message_ProgressRange aRange = aPS.Next();
Handle(StepRepr_Representation) aRepr = (anIndex == 1) ? theMDADR->Rep1() : theMDADR->Rep2();
if (aRepr.IsNull())
continue;
if (mySRContext.IsNull() || aRepr->ContextOfItems() != mySRContext->ContextOfItems())
{
PrepareUnits(aRepr, theTP, aLocalFactors);
aResetUnits = Standard_True;
}
Handle(Transfer_Binder) aBinder;
if (aRepr->IsKind(STANDARD_TYPE(StepShape_ShapeRepresentation)))
{
Handle(StepShape_ShapeRepresentation) aShapeRepr =
Handle(StepShape_ShapeRepresentation)::DownCast(aRepr);
Standard_Boolean isBound = Standard_False;
if (!theTP->IsBound(aShapeRepr))
{
aBinder = TransferEntity(aShapeRepr, theTP, theLocalFactors, isBound, false, aRange);
}
else
{
aBinder = theTP->Find(aShapeRepr);
}
}
TopoDS_Shape aResult = TransferBRep::ShapeResult(aBinder);
if (!aResult.IsNull())
{
aBuilder.Add(aComp, aResult);
}
}
aShBinder = new TransferBRep_ShapeBinder(aComp);
mySRContext = anOldSRContext;
if (anOldSRContext.IsNull() || aResetUnits)
{
PrepareUnits(anOldSRContext, theTP, aLocalFactors);
}
theTP->Bind(theMDADR, aShBinder);
return aShBinder;
}
//=================================================================================================
static Standard_Boolean IsNeedRepresentation(const Handle(StepRepr_ShapeAspect)& sa,
const Handle(StepRepr_Representation)& repA,
const Handle(Transfer_TransientProcess)& TP)
{
Standard_Boolean IsSDRaspect = Standard_True;
Handle(StepRepr_ProductDefinitionShape) PDSA = sa->OfShape();
const Interface_Graph& graph = TP->Graph();
Interface_EntityIterator subs7 = graph.Sharings(PDSA);
for (subs7.Start(); !PDSA.IsNull() && subs7.More(); subs7.Next())
{
Handle(StepShape_ShapeDefinitionRepresentation) sdrA =
Handle(StepShape_ShapeDefinitionRepresentation)::DownCast(subs7.Value());
if (sdrA.IsNull())
continue;
// abv 23 Feb 00: use iterator to take into account AP203 hybrid models
Interface_EntityIterator subs8 = graph.Shareds(sdrA);
for (subs8.Start(); subs8.More(); subs8.Next())
{
Handle(StepRepr_Representation) rep2 =
Handle(StepRepr_Representation)::DownCast(subs8.Value());
if (rep2.IsNull())
{
Handle(StepRepr_ShapeRepresentationRelationship) SRR =
Handle(StepRepr_ShapeRepresentationRelationship)::DownCast(subs8.Value());
if (SRR.IsNull())
continue;
rep2 = (sdrA->UsedRepresentation() == SRR->Rep1() ? SRR->Rep2() : SRR->Rep1());
}
Standard_Integer i, j; // svv Jan 11 2000 : porting on DEC
for (i = 1; i <= repA->NbItems(); i++)
{
Handle(StepRepr_RepresentationItem) it = repA->ItemsValue(i);
for (j = 1; j <= rep2->NbItems(); j++)
if (it == rep2->ItemsValue(j))
break;
if (j > rep2->NbItems())
break;
}
if (i > repA->NbItems())
IsSDRaspect = Standard_False;
}
}
return IsSDRaspect;
}
//=================================================================================================
Handle(TransferBRep_ShapeBinder) STEPControl_ActorRead::OldWay(
const Handle(Standard_Transient)& start,
const Handle(Transfer_TransientProcess)& TP,
const Message_ProgressRange& theProgress)
{
Message_Messenger::StreamBuffer sout = TP->Messenger()->SendInfo();
const Interface_Graph& graph = TP->Graph();
Handle(TransferBRep_ShapeBinder) shbinder;
DeclareAndCast(StepShape_ShapeDefinitionRepresentation, sdr, start);
Handle(StepRepr_Representation) rep = sdr->UsedRepresentation();
// abv 7 Oct 99: TRJ2: skip SDRs used only for defining SHAPE_ASPECT (validation properties)
// BUT ONLY if they have representation duplicated with other SDR,
// (SHAPE_ASPECT also used by some systems to define geometry)
Handle(StepRepr_PropertyDefinition) PD = sdr->Definition().PropertyDefinition();
if (!PD.IsNull())
{
Handle(StepRepr_ShapeAspect) SA = PD->Definition().ShapeAspect();
if (!SA.IsNull())
{
if (!IsNeedRepresentation(SA, rep, TP))
return shbinder;
}
}
Message_ProgressScope aPSRoot(theProgress, NULL, 2);
#ifdef TRANSLOG
if (TP->TraceLevel() > 2)
sout << " -- Actor : case shape_definition_representation." << std::endl;
#endif
Handle(Transfer_Binder) binder = TP->Find(rep);
{
Message_ProgressRange aRange = aPSRoot.Next();
if (binder.IsNull())
{
binder = TP->Transferring(rep, aRange);
}
}
if (aPSRoot.UserBreak())
return shbinder;
//: j2 if (!binder.IsNull()) return binder;
// SDR designant des CDSR (lien implicite, via la UsedRepr)
TopoDS_Compound Cund;
TopoDS_Shape OneResult;
BRep_Builder B;
B.MakeCompound(Cund);
Standard_Integer nsh = 0;
//: j2
shbinder = new TransferBRep_ShapeBinder;
// clang-format off
TP->Bind ( start, shbinder ); //:j3 abv 23 Oct 98: rp1sd.stp: bind something to protect against loops
// clang-format on
if (!binder.IsNull())
{
TopoDS_Shape theResult = TransferBRep::ShapeResult(binder);
if (!theResult.IsNull())
{
OneResult = theResult;
B.Add(Cund, theResult);
nsh++;
shbinder->SetResult(theResult);
}
}
// process subcomponents of assembly (CDSR) and hybrid models (SRR)
Interface_EntityIterator subs = graph.Shareds(start);
Handle(Standard_Type) tCDSR = STANDARD_TYPE(StepShape_ContextDependentShapeRepresentation);
Handle(Standard_Type) tSRR = STANDARD_TYPE(StepRepr_ShapeRepresentationRelationship);
Standard_Integer nbitem = 0;
for (subs.Start(); subs.More(); subs.Next())
nbitem++;
Message_ProgressScope PS(aPSRoot.Next(), "Sub", nbitem);
for (subs.Start(); subs.More() && PS.More(); subs.Next())
{
Message_ProgressRange aRange = PS.Next();
const Handle(Standard_Transient)& anitem = subs.Value();
if (anitem->DynamicType() != tCDSR && anitem->DynamicType() != tSRR)
continue;
// DeclareAndCast(StepShape_ContextDependentShapeRepresentation,anitem,subs.Value());
// if (anitem.IsNull()) continue;
#ifdef TRANSLOG
if (TP->TraceLevel() > 1)
sout << " -- Actor : Ent.n0 " << TP->Model()->Number(start) << " -> Shared Ent.no"
<< TP->Model()->Number(anitem) << std::endl;
#endif
if (!TP->IsBound(anitem))
binder = TP->Transferring(anitem, aRange);
else
binder = TP->Find(anitem);
TopoDS_Shape theResult = TransferBRep::ShapeResult(binder);
if (!theResult.IsNull())
{
OneResult = theResult;
B.Add(Cund, theResult);
nsh += 2; // abv 11.10.00: 2 instead of 1 in order to keep assembly structure
}
}
if (nsh == 0)
shbinder = new TransferBRep_ShapeBinder(Cund); // shbinder.Nullify();
else if (nsh == 1)
shbinder = new TransferBRep_ShapeBinder(OneResult);
else
shbinder = new TransferBRep_ShapeBinder(Cund);
TP->Unbind(start); //: j3: unbind start (let it be bound by TransferProcess)
return shbinder;
}
//=================================================================================================
Handle(TransferBRep_ShapeBinder) STEPControl_ActorRead::TransferEntity(
const Handle(StepGeom_GeometricRepresentationItem)& start,
const Handle(Transfer_TransientProcess)& TP,
const StepData_Factors& theLocalFactors,
const Standard_Boolean isManifold,
const Message_ProgressRange& theProgress)
{
Message_Messenger::StreamBuffer sout = TP->Messenger()->SendInfo();
Handle(TransferBRep_ShapeBinder) shbinder;
Standard_Boolean found = Standard_False;
StepToTopoDS_Builder myShapeBuilder;
TopoDS_Shape mappedShape;
Standard_Integer nbTPitems = TP->NbMapped();
#ifdef TRANSLOG
OSD_Timer chrono;
if (TP->TraceLevel() > 2)
sout << "Begin transfer STEP -> CASCADE, Type " << start->DynamicType()->Name() << std::endl;
chrono.Start();
#endif
Handle(StepData_StepModel) aStepModel = Handle(StepData_StepModel)::DownCast(TP->Model());
//: S4136
StepData_Factors aLocalFactors = theLocalFactors;
Handle(StepRepr_Representation) oldSRContext = mySRContext;
if (mySRContext.IsNull())
{ // if no context, try to find it (ex: r0701_ug.stp #4790)
Handle(StepRepr_Representation) context = FindContext(start, TP);
if (context.IsNull())
{
TP->AddWarning(start, "Entity with no unit context; default units taken");
ResetUnits(aStepModel, aLocalFactors);
}
else
PrepareUnits(context, TP, aLocalFactors);
}
myShapeBuilder.SetPrecision(myPrecision);
myShapeBuilder.SetMaxTol(myMaxTol);
// Start progress scope (no need to check if progress exists -- it is safe)
Message_ProgressScope aPS(theProgress, "Transfer stage", isManifold ? 2 : 1);
const Standard_Boolean aReadTessellatedWhenNoBRepOnly =
(aStepModel->InternalParameters.ReadTessellated == 2);
Standard_Boolean aHasGeom = Standard_True;
try
{
OCC_CATCH_SIGNALS
Message_ProgressRange aRange = aPS.Next();
if (start->IsKind(STANDARD_TYPE(StepShape_FacetedBrep)))
{
myShapeBuilder.Init(GetCasted(StepShape_FacetedBrep, start), TP, aLocalFactors, aRange);
found = Standard_True;
}
else if (start->IsKind(STANDARD_TYPE(StepShape_BrepWithVoids)))
{
myShapeBuilder.Init(GetCasted(StepShape_BrepWithVoids, start), TP, aLocalFactors, aRange);
found = Standard_True;
}
else if (start->IsKind(STANDARD_TYPE(StepShape_ManifoldSolidBrep)))
{
myShapeBuilder.Init(GetCasted(StepShape_ManifoldSolidBrep, start), TP, aLocalFactors, aRange);
found = Standard_True;
}
else if (start->IsKind(STANDARD_TYPE(StepShape_ShellBasedSurfaceModel)))
{
myShapeBuilder.Init(GetCasted(StepShape_ShellBasedSurfaceModel, start),
TP,
myNMTool,
aLocalFactors,
aRange);
found = Standard_True;
}
else if (start->IsKind(STANDARD_TYPE(StepShape_FacetedBrepAndBrepWithVoids)))
{
myShapeBuilder.Init(GetCasted(StepShape_FacetedBrepAndBrepWithVoids, start),
TP,
aLocalFactors,
aRange);
found = Standard_True;
}
else if (start->IsKind(STANDARD_TYPE(StepShape_GeometricSet)))
{
myShapeBuilder.Init(GetCasted(StepShape_GeometricSet, start),
TP,
aLocalFactors,
this,
isManifold,
aRange);
found = Standard_True;
}
else if (start->IsKind(STANDARD_TYPE(StepShape_EdgeBasedWireframeModel)))
{
myShapeBuilder.Init(GetCasted(StepShape_EdgeBasedWireframeModel, start), TP, aLocalFactors);
found = Standard_True;
}
else if (start->IsKind(STANDARD_TYPE(StepShape_FaceBasedSurfaceModel)))
{
myShapeBuilder.Init(GetCasted(StepShape_FaceBasedSurfaceModel, start), TP, aLocalFactors);
found = Standard_True;
}
// TODO: Normally, StepVisual_Tessellated* entities should be processed after
// StepShape_* entities in order to resolve links to BRep topological objects.
// Currently it is not guaranteed and might require changes in the processing order.
else if (start->IsKind(STANDARD_TYPE(StepVisual_TessellatedSolid)))
{
myShapeBuilder.Init(GetCasted(StepVisual_TessellatedSolid, start),
TP,
aReadTessellatedWhenNoBRepOnly,
aHasGeom,
aLocalFactors,
aRange);
found = Standard_True;
}
else if (start->IsKind(STANDARD_TYPE(StepVisual_TessellatedShell)))
{
myShapeBuilder.Init(GetCasted(StepVisual_TessellatedShell, start),
TP,
aReadTessellatedWhenNoBRepOnly,
aHasGeom,
aLocalFactors,
aRange);
found = Standard_True;
}
else if (start->IsKind(STANDARD_TYPE(StepVisual_TessellatedFace)))
{
myShapeBuilder.Init(GetCasted(StepVisual_TessellatedFace, start),
TP,
aReadTessellatedWhenNoBRepOnly,
aHasGeom,
aLocalFactors);
found = Standard_True;
}
else if (start->IsKind(STANDARD_TYPE(StepVisual_TessellatedSurfaceSet)))
{
myShapeBuilder.Init(GetCasted(StepVisual_TessellatedSurfaceSet, start),
TP,
aHasGeom,
aLocalFactors);
found = Standard_True;
}
}
catch (Standard_Failure const&)
{
TP->AddFail(start, "Exception is raised. Entity was not translated.");
TP->Bind(start, shbinder);
return shbinder;
}
if (aPS.UserBreak())
return shbinder;
if (found && myShapeBuilder.IsDone())
{
mappedShape = myShapeBuilder.Value();
// Apply ShapeFix (on manifold shapes only. Non-manifold topology is processed separately:
// ssv; 13.11.2010)
if (isManifold && aHasGeom)
{
// Set tolerances for shape processing.
// These parameters are calculated inside STEPControl_ActorRead::Transfer() and cannot be set
// from outside.
XSAlgo_ShapeProcessor::ParameterMap aParameters = GetShapeFixParameters();
XSAlgo_ShapeProcessor::SetParameter("FixShape.Tolerance3d", myPrecision, true, aParameters);
XSAlgo_ShapeProcessor::SetParameter("FixShape.MaxTolerance3d", myMaxTol, true, aParameters);
XSAlgo_ShapeProcessor aShapeProcessor(aParameters);
mappedShape =
aShapeProcessor.ProcessShape(mappedShape, GetProcessingFlags().first, aPS.Next());
aShapeProcessor.MergeTransferInfo(TP, nbTPitems);
}
}
found = !mappedShape.IsNull();
if (found && shbinder.IsNull())
shbinder = new TransferBRep_ShapeBinder(mappedShape);
#ifdef TRANSLOG
chrono.Stop();
if (TP->TraceLevel() > 2)
sout << "End transfer STEP -> CASCADE :" << (found ? "OK" : " : no result") << std::endl;
if (TP->TraceLevel() > 2)
chrono.Show();
#endif
if (oldSRContext.IsNull() && !mySRContext.IsNull()) //: S4136
PrepareUnits(oldSRContext, TP, aLocalFactors);
TP->Bind(start, shbinder);
return shbinder;
}
//=================================================================================================
Handle(TransferBRep_ShapeBinder) STEPControl_ActorRead::TransferEntity(
const Handle(StepRepr_MappedItem)& mapit,
const Handle(Transfer_TransientProcess)& TP,
const StepData_Factors& theLocalFactors,
const Message_ProgressRange& theProgress)
{
Handle(TransferBRep_ShapeBinder) shbinder;
// --------------------------------------------------------------
// On se trouve ici dans un contexte " d'assemblage geometrique "
// - MappedItem
// --------------------------------------------------------------
//: S4136: abv 20 Apr 99: as1ug.stp: MAPPED_ITEM transformation computed
// taking into account units of origin and target SHAPE_REPRESENTATIONs
// La Shape, et la mise en position
Handle(StepShape_ShapeRepresentation) maprep =
Handle(StepShape_ShapeRepresentation)::DownCast(mapit->MappingSource()->MappedRepresentation());
Standard_Boolean isBound = Standard_False;
Message_ProgressScope aPSRoot(theProgress, NULL, 2);
Handle(Transfer_Binder) binder = TP->Find(maprep);
if (binder.IsNull())
binder = TransferEntity(maprep, TP, theLocalFactors, isBound, Standard_False, theProgress);
shbinder = Handle(TransferBRep_ShapeBinder)::DownCast(binder);
if (shbinder.IsNull())
TP->AddWarning(mapit, "No Shape Produced");
else
{
TopoDS_Shape mappedShape = shbinder->Result();
if (!mappedShape.IsNull())
{
// Positionnement : 2 formules
// 1/ Ax2 dans Source et comme Target : passage de Source a Target
// 2/ CartesianOperator3d comme Target : on applique
gp_Trsf Trsf;
Standard_Boolean ok = Standard_False;
Handle(StepGeom_CartesianTransformationOperator3d) CartOp =
Handle(StepGeom_CartesianTransformationOperator3d)::DownCast(mapit->MappingTarget());
if (!CartOp.IsNull())
{
ok = StepToGeom::MakeTransformation3d(CartOp, Trsf, theLocalFactors);
}
else
{
Handle(StepGeom_Axis2Placement3d) Origin =
Handle(StepGeom_Axis2Placement3d)::DownCast(mapit->MappingSource()->MappingOrigin());
Handle(StepGeom_Axis2Placement3d) Target =
Handle(StepGeom_Axis2Placement3d)::DownCast(mapit->MappingTarget());
if (!Origin.IsNull() && !Target.IsNull())
{
ok = Standard_True;
Handle(StepRepr_Representation) rep = mySRContext; // NOTE: copy of handle !
ComputeTransformation(Origin, Target, maprep, rep, TP, Trsf, theLocalFactors);
ok = Standard_True;
}
}
if (ok)
ApplyTransformation(mappedShape, Trsf);
else
TP->AddWarning(mapit, "Mapped Item, case not recognized, location ignored");
shbinder = new TransferBRep_ShapeBinder(mappedShape);
}
}
TopoDS_Compound aCund;
TopoDS_Shape aResult;
BRep_Builder aBuilder;
aBuilder.MakeCompound(aCund);
if (!shbinder.IsNull())
{
aResult = TransferBRep::ShapeResult(shbinder);
aBuilder.Add(aCund, aResult);
}
// translate possible shapes related by SRRs, which corresponds to
// way of writing hybrid models in AP203 since 1998, and AP209
Handle(StepData_StepModel) aStepModel = Handle(StepData_StepModel)::DownCast(TP->Model());
if (aStepModel->InternalParameters.ReadRelationship)
{
const Interface_Graph& aGraph = TP->Graph();
Standard_Integer aSRRnum = 0;
for (Interface_EntityIterator aSubsIt(aGraph.Sharings(maprep)); aSubsIt.More(); aSubsIt.Next())
++aSRRnum;
Message_ProgressScope aPS(aPSRoot.Next(), "Part", aSRRnum);
TopoDS_Shape aNewResult = TransferRelatedSRR(TP,
maprep,
Standard_False,
aStepModel->InternalParameters.ReadConstrRelation,
theLocalFactors,
aCund,
aPS);
if (!aNewResult.IsNull())
{
aResult = aNewResult;
}
// if only single shape is read, add it as it is; otherwise add compound
if (aCund.NbChildren() == 1)
shbinder = new TransferBRep_ShapeBinder(aResult);
else if (aCund.NbChildren() > 1)
{
shbinder = new TransferBRep_ShapeBinder(aCund);
}
}
TP->Bind(mapit, shbinder);
return shbinder;
}
//=================================================================================================
Handle(TransferBRep_ShapeBinder) STEPControl_ActorRead::TransferEntity(
const Handle(StepShape_FaceSurface)& fs,
const Handle(Transfer_TransientProcess)& TP,
const StepData_Factors& theLocalFactors,
const Message_ProgressRange& theProgress)
{
// Cas bien utile meme si non reconnu explicitement
Handle(TransferBRep_ShapeBinder) sb;
Standard_Integer nbTPitems = TP->NbMapped();
try
{
OCC_CATCH_SIGNALS
StepToTopoDS_Tool myTool;
StepToTopoDS_DataMapOfTRI aMap;
myTool.Init(aMap, TP);
StepToTopoDS_TranslateFace myTF;
myTF.SetPrecision(myPrecision);
myTF.SetMaxTol(myMaxTol);
// Non-manifold topology is not processed here (ssv; 15.11.2010)
StepToTopoDS_NMTool dummyNMTool;
myTF.Init(fs, myTool, dummyNMTool, theLocalFactors);
Handle(StepRepr_Representation) oldSRContext = mySRContext;
StepData_Factors aLocalFactors = theLocalFactors;
Handle(StepData_StepModel) aStepModel = Handle(StepData_StepModel)::DownCast(TP->Model());
if (mySRContext.IsNull())
{ // if no context, try to find it (ex: r0701_ug.stp #4790)
Handle(StepRepr_Representation) context = FindContext(fs, TP);
if (context.IsNull())
{
TP->AddWarning(fs, "Entity with no unit context; default units taken");
ResetUnits(aStepModel, aLocalFactors);
}
else
PrepareUnits(context, TP, aLocalFactors);
}
// Apply ShapeFix
Handle(Transfer_Binder) binder = TP->Find(fs);
sb = Handle(TransferBRep_ShapeBinder)::DownCast(binder);
if (!sb.IsNull() && !sb->Result().IsNull())
{
TopoDS_Shape S = sb->Result();
XSAlgo_ShapeProcessor::ParameterMap aParameters = GetShapeFixParameters();
XSAlgo_ShapeProcessor::SetParameter("FixShape.Tolerance3d", myPrecision, true, aParameters);
XSAlgo_ShapeProcessor::SetParameter("FixShape.MaxTolerance3d", myMaxTol, true, aParameters);
XSAlgo_ShapeProcessor aShapeProcessor(aParameters);
TopoDS_Shape shape = aShapeProcessor.ProcessShape(S, GetProcessingFlags().first, theProgress);
aShapeProcessor.MergeTransferInfo(TP, nbTPitems);
if (shape != S)
{
sb->SetResult(shape);
}
aShapeProcessor.MergeTransferInfo(TP, nbTPitems);
}
if (oldSRContext.IsNull() && !mySRContext.IsNull()) //: S4136
PrepareUnits(oldSRContext, TP, aLocalFactors);
TP->Bind(fs, sb);
return sb; // TP->Find (start);
}
catch (Standard_Failure const&)
{
TP->AddFail(fs, "Exception is raised. Entity was not translated.");
sb.Nullify();
TP->Bind(fs, sb);
return sb;
}
}
//=================================================================================================
Handle(Transfer_Binder) STEPControl_ActorRead::TransferShape(
const Handle(Standard_Transient)& start,
const Handle(Transfer_TransientProcess)& TP,
const StepData_Factors& theLocalFactors,
const Standard_Boolean isManifold,
const Standard_Boolean theUseTrsf,
const Message_ProgressRange& theProgress)
{
if (start.IsNull())
return NullResult();
Message_Messenger::StreamBuffer sout = TP->Messenger()->SendInfo();
#ifdef TRANSLOG
// POUR MISE AU POINT, a supprimer ensuite
if (TP->TraceLevel() > 1)
sout << " -- Actor : Transfer Ent.n0 " << TP->Model()->Number(start) << " Type "
<< start->DynamicType()->Name() << std::endl;
#endif
Handle(TransferBRep_ShapeBinder) shbinder;
Handle(StepData_StepModel) aStepModel = Handle(StepData_StepModel)::DownCast(TP->Model());
// Product Definition Entities
// They should be treated with Design Manager
// case ShapeDefinitionRepresentation if ProductMode != ON
bool aProdMode = aStepModel->InternalParameters.ReadProductMode;
if (!aProdMode && start->IsKind(STANDARD_TYPE(StepShape_ShapeDefinitionRepresentation)))
shbinder = OldWay(start, TP, theProgress);
// skl
else if (start->IsKind(STANDARD_TYPE(StepBasic_ProductDefinition)))
{
Handle(StepBasic_ProductDefinition) PD = Handle(StepBasic_ProductDefinition)::DownCast(start);
shbinder = TransferEntity(PD, TP, theLocalFactors, theUseTrsf, theProgress);
}
// NextAssemblyUsageOccurrence
else if (start->IsKind(STANDARD_TYPE(StepRepr_NextAssemblyUsageOccurrence)))
{
Handle(StepRepr_NextAssemblyUsageOccurrence) NAUO =
Handle(StepRepr_NextAssemblyUsageOccurrence)::DownCast(start);
shbinder = TransferEntity(NAUO, TP, theLocalFactors, theProgress);
}
// end skl
// Shape Representation
else if (start->IsKind(STANDARD_TYPE(StepShape_ShapeRepresentation)))
{
DeclareAndCast(StepShape_ShapeRepresentation, sr, start);
Standard_Boolean isBound = Standard_False;
shbinder = TransferEntity(sr, TP, theLocalFactors, isBound, Standard_False, theProgress);
}
// --------------------------------------------------------------
// On se trouve ici aussi dans un contexte " d'assemblage geometrique "
// - ShapeRepresentationRelationship + Transformation ou non
// --------------------------------------------------------------
else if (start->IsKind(STANDARD_TYPE(StepShape_ContextDependentShapeRepresentation)))
{
DeclareAndCast(StepShape_ContextDependentShapeRepresentation, CDSR, start);
shbinder = TransferEntity(CDSR, TP, theLocalFactors, theProgress);
}
else if (start->IsKind(STANDARD_TYPE(StepRepr_ShapeRepresentationRelationship)))
{
// REPRESENTATION_RELATIONSHIP et la famille
DeclareAndCast(StepRepr_ShapeRepresentationRelationship, und, start);
shbinder = TransferEntity(und, TP, theLocalFactors, 0, Standard_False, theProgress);
}
else if (start->IsKind(STANDARD_TYPE(StepGeom_GeometricRepresentationItem)))
{
// Here starts the entity to be treated : Shape Representation Subtype
// It can be also other Root entities
DeclareAndCast(StepGeom_GeometricRepresentationItem, git, start);
shbinder = TransferEntity(git, TP, theLocalFactors, isManifold, theProgress);
}
else if (start->IsKind(STANDARD_TYPE(StepRepr_MappedItem)))
{
DeclareAndCast(StepRepr_MappedItem, mapit, start);
shbinder = TransferEntity(mapit, TP, theLocalFactors, theProgress);
}
else if (start->IsKind(STANDARD_TYPE(StepShape_FaceSurface)))
{
DeclareAndCast(StepShape_FaceSurface, fs, start);
shbinder = TransferEntity(fs, TP, theLocalFactors, theProgress);
}
// if (!shbinder.IsNull()) TP->Bind(start,binder);
return shbinder;
}
// ============================================================================
// Method : STEPControl_ActorRead::PrepareUnits
// Purpose : Set the unit conversion factors
// ============================================================================
void STEPControl_ActorRead::PrepareUnits(const Handle(StepRepr_Representation)& rep,
const Handle(Transfer_TransientProcess)& TP,
StepData_Factors& theLocalFactors)
{
mySRContext = rep;
Handle(StepData_StepModel) aModel = Handle(StepData_StepModel)::DownCast(TP->Model());
Standard_Integer stat1, stat2 = 0; // sera alimente par STEPControl_Unit
if (rep.IsNull())
{
ResetUnits(aModel, theLocalFactors);
return;
}
// Get Units Applied to this model
Handle(StepRepr_RepresentationContext) theRepCont = rep->ContextOfItems();
if (theRepCont.IsNull())
{
TP->AddWarning(rep, "Bad RepresentationContext, default unit taken");
ResetUnits(aModel, theLocalFactors);
return;
}
// --------------------------------------------------
// Complex ENTITY : GeometricRepresentationContext &&
// GlobalUnitAssignedContext
// --------------------------------------------------
STEPConstruct_UnitContext myUnit;
Handle(StepRepr_GlobalUnitAssignedContext) theGUAC;
Handle(StepRepr_GlobalUncertaintyAssignedContext) aTol;
if (theRepCont->IsKind(
STANDARD_TYPE(StepGeom_GeometricRepresentationContextAndGlobalUnitAssignedContext)))
{
DeclareAndCast(StepGeom_GeometricRepresentationContextAndGlobalUnitAssignedContext,
theGRCAGAUC,
theRepCont);
theGUAC = theGRCAGAUC->GlobalUnitAssignedContext();
}
// ----------------------------------------------------
// Complex ENTITY : GeometricRepresentationContext &&
// GlobalUnitAssignedContext &&
// GlobalUncertaintyAssignedContext
// ----------------------------------------------------
if (theRepCont->IsKind(
STANDARD_TYPE(StepGeom_GeomRepContextAndGlobUnitAssCtxAndGlobUncertaintyAssCtx)))
{
DeclareAndCast(StepGeom_GeomRepContextAndGlobUnitAssCtxAndGlobUncertaintyAssCtx,
theGRCAGAUC,
theRepCont);
theGUAC = theGRCAGAUC->GlobalUnitAssignedContext();
aTol = theGRCAGAUC->GlobalUncertaintyAssignedContext();
}
Handle(StepData_StepModel) aStepModel = Handle(StepData_StepModel)::DownCast(TP->Model());
// ----------------------------------------------------
// Decoding and Setting the Values
// ----------------------------------------------------
if (!theGUAC.IsNull())
{
stat1 = myUnit.ComputeFactors(theGUAC, theLocalFactors);
Standard_Integer anglemode = aStepModel->InternalParameters.AngleUnit;
Standard_Real angleFactor = (anglemode == 0 ? myUnit.PlaneAngleFactor()
: anglemode == 1 ? 1.
: M_PI / 180.);
theLocalFactors.InitializeFactors(myUnit.LengthFactor(),
angleFactor,
myUnit.SolidAngleFactor());
if (stat1 != 0)
TP->AddWarning(theRepCont, myUnit.StatusMessage(stat1));
}
if (!aTol.IsNull())
{
stat2 = myUnit.ComputeTolerance(aTol);
if (stat2 != 0)
TP->AddWarning(theRepCont, myUnit.StatusMessage(stat2));
}
// myPrecision = Precision::Confusion();
if (aStepModel->InternalParameters.ReadPrecisionMode == 1) //: i1 gka S4136 05.04.99
myPrecision = aStepModel->InternalParameters.ReadPrecisionVal;
else if (myUnit.HasUncertainty())
myPrecision = myUnit.Uncertainty() * myUnit.LengthFactor();
else
{
TP->AddWarning(theRepCont, "No Length Uncertainty, value of read.precision.val is taken");
myPrecision = aStepModel->InternalParameters.ReadPrecisionVal;
}
myMaxTol = Max(myPrecision, aStepModel->InternalParameters.ReadMaxPrecisionVal);
// Assign uncertainty
#ifdef TRANSLOG
if (TP->TraceLevel() > 1)
TP->Messenger()->SendInfo() << " Cc1ToTopoDS : Length Unit = " << myUnit.LengthFactor()
<< " Tolerance CASCADE = " << myPrecision << std::endl;
#endif
}
//=================================================================================================
void STEPControl_ActorRead::ResetUnits(Handle(StepData_StepModel)& theModel,
StepData_Factors& theLocalFactors)
{
theLocalFactors.InitializeFactors(1, 1, 1);
myPrecision = theModel->InternalParameters.ReadPrecisionVal;
myMaxTol = Max(myPrecision, theModel->InternalParameters.ReadMaxPrecisionVal);
}
//=================================================================================================
//: S4136 abv 20 Apr 99: as1ug.stp: compute transformation taking units into account
Standard_Boolean STEPControl_ActorRead::ComputeTransformation(
const Handle(StepGeom_Axis2Placement3d)& Origin,
const Handle(StepGeom_Axis2Placement3d)& Target,
const Handle(StepRepr_Representation)& OrigContext,
const Handle(StepRepr_Representation)& TargContext,
const Handle(Transfer_TransientProcess)& TP,
gp_Trsf& Trsf,
const StepData_Factors& theLocalFactors)
{
Trsf = gp_Trsf(); // reinit
if (Origin.IsNull() || Target.IsNull())
return Standard_False;
//: abv 31.10.01: TEST_MCI_2.step: check that Ax1 and Ax2 belong to
// corresponding reps and fix case of inversion error
Handle(StepGeom_Axis2Placement3d) org = Origin;
Handle(StepGeom_Axis2Placement3d) trg = Target;
Standard_Boolean isOKOrigin = Standard_False, isSwapOrigin = Standard_False;
Standard_Boolean isOKTarget = Standard_False, isSwapTarget = Standard_False;
for (Standard_Integer i = 1; i <= OrigContext->NbItems(); i++)
{
if (OrigContext->ItemsValue(i) == org)
isOKOrigin = Standard_True;
else if (OrigContext->ItemsValue(i) == trg)
isSwapTarget = Standard_True;
}
for (Standard_Integer i = 1; i <= TargContext->NbItems(); i++)
{
if (TargContext->ItemsValue(i) == trg)
isOKTarget = Standard_True;
else if (TargContext->ItemsValue(i) == org)
isSwapOrigin = Standard_True;
}
if (!isOKOrigin || !isOKTarget)
{
if (isSwapOrigin && isSwapTarget)
{
std::swap(org, trg);
TP->AddWarning(org, "Axis placements are swapped in SRRWT; corrected");
}
else
{
TP->AddWarning(
(isOKOrigin ? trg : org),
"Axis placement used by SRRWT does not belong to corresponding representation");
}
}
// translate axis_placements taking units into account
Handle(StepRepr_Representation) oldSRContext = mySRContext;
StepData_Factors aLocalFactors = theLocalFactors;
if (OrigContext != oldSRContext)
PrepareUnits(OrigContext, TP, aLocalFactors);
Handle(Geom_Axis2Placement) theOrig = StepToGeom::MakeAxis2Placement(org, aLocalFactors);
if (TargContext != OrigContext)
PrepareUnits(TargContext, TP, aLocalFactors);
Handle(Geom_Axis2Placement) theTarg = StepToGeom::MakeAxis2Placement(trg, aLocalFactors);
if (oldSRContext != TargContext)
PrepareUnits(oldSRContext, TP, aLocalFactors);
gp_Ax3 ax3Orig(theOrig->Ax2());
gp_Ax3 ax3Targ(theTarg->Ax2());
// ne pas se tromper de sens !
Trsf.SetTransformation(ax3Targ, ax3Orig);
return Trsf.Form() != gp_Identity;
}
//=================================================================================================
//: j2 abv 22 Oct 98: auxiliary function: reading transformation from SRRWT
Standard_Boolean STEPControl_ActorRead::ComputeSRRWT(
const Handle(StepRepr_RepresentationRelationship)& SRR,
const Handle(Transfer_TransientProcess)& TP,
gp_Trsf& Trsf,
const StepData_Factors& theLocalFactors)
{
Trsf = gp_Trsf(); // init
DeclareAndCast(StepRepr_ShapeRepresentationRelationshipWithTransformation, srwt, SRR);
if (srwt.IsNull())
return Standard_False;
StepRepr_Transformation SelectTrans = srwt->TransformationOperator();
StepData_Factors aLocalFactors = theLocalFactors;
// cartesian transformation
Handle(StepGeom_CartesianTransformationOperator3d) CartOp =
Handle(StepGeom_CartesianTransformationOperator3d)::DownCast(SelectTrans.Value());
if (!CartOp.IsNull())
{
// reset units (by Rep2 - ?)
Handle(StepRepr_Representation) oldSRContext = mySRContext;
if (SRR->Rep2() != oldSRContext)
PrepareUnits(SRR->Rep2(), TP, aLocalFactors);
StepToGeom::MakeTransformation3d(CartOp, Trsf, aLocalFactors);
if (SRR->Rep2() != oldSRContext)
PrepareUnits(oldSRContext, TP, aLocalFactors);
return Trsf.Form() != gp_Identity;
}
// item-defined transformation
Handle(StepRepr_ItemDefinedTransformation) ItemDef = SelectTrans.ItemDefinedTransformation();
if (ItemDef.IsNull())
return Standard_False;
Handle(StepGeom_Axis2Placement3d) Ax1 =
Handle(StepGeom_Axis2Placement3d)::DownCast(ItemDef->TransformItem1());
Handle(StepGeom_Axis2Placement3d) Ax2 =
Handle(StepGeom_Axis2Placement3d)::DownCast(ItemDef->TransformItem2());
if (Ax1.IsNull() || Ax2.IsNull())
return Standard_False;
return ComputeTransformation(Ax1, Ax2, SRR->Rep1(), SRR->Rep2(), TP, Trsf, aLocalFactors);
}
//=======================================================================
// Method : closeIDEASShell
// Purpose : Attempts to close the passed Shell with the passed closing
// Shells. Cuts redundant Faces from the closing Shells if any
//=======================================================================
TopoDS_Shell STEPControl_ActorRead::closeIDEASShell(const TopoDS_Shell& shell,
const TopTools_ListOfShape& closingShells)
{
// Make Shell to provide closeness adjustments
TopoDS_Shell result;
BRep_Builder brepBuilder;
brepBuilder.MakeShell(result);
// Firstly, add all existing faces to the new Shell
TopExp_Explorer currentFExp(shell, TopAbs_FACE);
for (; currentFExp.More(); currentFExp.Next())
{
TopoDS_Face currentFace = TopoDS::Face(currentFExp.Current());
brepBuilder.Add(result, currentFace);
}
TopTools_ListIteratorOfListOfShape itL(closingShells);
TopTools_ListOfShape closingFaces;
// Then add the closing faces
for (; itL.More(); itL.Next())
{
TopoDS_Shape currentClosing = itL.Value();
TopExp_Explorer faceExp(currentClosing, TopAbs_FACE);
for (; faceExp.More(); faceExp.Next())
{
TopoDS_Face currentFace = TopoDS::Face(faceExp.Current());
brepBuilder.Add(result, currentFace);
// Store each added closing face for subsequent processing
closingFaces.Append(currentFace);
}
}
// Check if the result is closed
BRepCheck_Shell checker(TopoDS::Shell(result));
BRepCheck_Status checkStatus = checker.Closed();
if (checkStatus == BRepCheck_NoError)
result.Closed(Standard_True);
else
return shell; // Cannot close this shell, skip it so...
// Try to remove redundant Faces
for (itL.Initialize(closingFaces); itL.More(); itL.Next())
{
TopoDS_Face currentFace = TopoDS::Face(itL.Value());
// Remove face to see if Shell is still closed
brepBuilder.Remove(result, currentFace);
BRepCheck_Shell subChecker(TopoDS::Shell(result));
BRepCheck_Status subCheckStatus = subChecker.Closed();
// If Shell becomes open, just put the deleted face back
if (subCheckStatus != BRepCheck_NoError)
brepBuilder.Add(result, currentFace);
else
{
#ifdef OCCT_DEBUG
std::cout << "Redundant closing face detected: REMOVED from shell";
#endif
}
}
return result;
}
//=======================================================================
// Method : computeIDEASClosings
// Purpose : For each Shell from the compound passed (comp), find all
// non-manifold adjacent Shells and put the results into
// the passed map (shellClosingMap)
//=======================================================================
void STEPControl_ActorRead::computeIDEASClosings(
const TopoDS_Compound& comp,
TopTools_IndexedDataMapOfShapeListOfShape& shellClosingsMap)
{
TopExp_Explorer shellExpA(comp, TopAbs_SHELL);
for (; shellExpA.More(); shellExpA.Next())
{
const TopoDS_Shape& shellA = shellExpA.Current();
TopExp_Explorer shellExpB(comp, TopAbs_SHELL);
TopTools_ListOfShape closingShells;
for (; shellExpB.More(); shellExpB.Next())
{
const TopoDS_Shape& shellB = shellExpB.Current();
if (shellA.IsSame(shellB))
continue;
// Check whether ShellB is non-manifold and adjacent to ShellA.
// If so, ShellA has a chance to be closed with ShellB
if (myNMTool.IsSuspectedAsClosing(shellA, shellB))
closingShells.Append(shellB);
}
if (!closingShells.IsEmpty())
shellClosingsMap.Add(shellA, closingShells);
}
}
//=======================================================================
// Method : SetModel
// Purpose :
//=======================================================================
void STEPControl_ActorRead::SetModel(const Handle(Interface_InterfaceModel)& theModel)
{
myModel = theModel;
}
//=======================================================================
// Method : TransferRelatedSRR
// Purpose : Helper method to transfer SRR related to the representation
//=======================================================================
TopoDS_Shape STEPControl_ActorRead::TransferRelatedSRR(
const Handle(Transfer_TransientProcess)& theTP,
const Handle(StepShape_ShapeRepresentation)& theRep,
const Standard_Boolean theUseTrsf,
const Standard_Boolean theReadConstructiveGeomRR,
const StepData_Factors& theLocalFactors,
TopoDS_Compound& theCund,
Message_ProgressScope& thePS)
{
BRep_Builder aBuilder;
TopoDS_Shape aResult;
const Interface_Graph& aGraph = theTP->Graph();
for (Interface_EntityIterator aSubsIt(aGraph.Sharings(theRep)); aSubsIt.More() && thePS.More();
aSubsIt.Next())
{
Handle(Standard_Transient) anItem = aSubsIt.Value();
if (!anItem->IsKind(STANDARD_TYPE(StepRepr_RepresentationRelationship)))
continue;
Handle(Transfer_Binder) aBinder;
if (anItem->DynamicType() == STANDARD_TYPE(StepRepr_ShapeRepresentationRelationship))
{
Handle(StepRepr_ShapeRepresentationRelationship) aSRR =
Handle(StepRepr_ShapeRepresentationRelationship)::DownCast(anItem);
Standard_Integer aNbRep = (theRep == aSRR->Rep1() ? 2 : 1);
aBinder = TransferEntity(aSRR, theTP, theLocalFactors, aNbRep, theUseTrsf, thePS.Next());
}
else if (anItem->DynamicType()
== STANDARD_TYPE(StepRepr_MechanicalDesignAndDraughtingRelationship))
{
Handle(StepRepr_MechanicalDesignAndDraughtingRelationship) aMDADR =
Handle(StepRepr_MechanicalDesignAndDraughtingRelationship)::DownCast(anItem);
aBinder = TransferEntity(aMDADR, theTP, theLocalFactors, thePS.Next());
}
else if (theReadConstructiveGeomRR
&& anItem->DynamicType()
== STANDARD_TYPE(StepRepr_ConstructiveGeometryRepresentationRelationship))
{
Handle(StepRepr_ConstructiveGeometryRepresentationRelationship) aCGRR =
Handle(StepRepr_ConstructiveGeometryRepresentationRelationship)::DownCast(anItem);
aBinder = TransferEntity(aCGRR, theTP, theLocalFactors);
}
if (!aBinder.IsNull())
{
aResult = TransferBRep::ShapeResult(aBinder);
aBuilder.Add(theCund, aResult);
}
}
return aResult;
}