1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-08-09 13:22:24 +03:00
Files
occt/src/NCollection/NCollection_Vec4.hxx
nds bc73b00672 0031313: Foundation Classes - Dump improvement for classes
- Provide DumpJson for geometrical, ocaf and visualization classes;
- Change depth parameter of DumpJson (constant is not obligate here)
- Introduce a new macro for transient objects to be called as the first row in DumpJson: OCCT_DUMP_TRANSIENT_CLASS_BEGIN. We need not put the class name in the macro, using get_type_name of Standard_Transient for it.
- change implementation of OCCT_DUMP_CLASS_BEGIN and OCCT_DUMP_TRANSIENT_CLASS_BEGIN. It is not an sentry more and it does not create a new hierarchy level. It appends a new row into the output stream: "className": <className>
- OCCT_DUMP_* does not require semicolon
- class header is included first in source files of TDataStd, TDocStd, TCAFDoc
2020-01-31 17:13:40 +03:00

407 lines
12 KiB
C++

// Created by: Kirill GAVRILOV
// Copyright (c) 2013-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _NCollection_Vec4_H__
#define _NCollection_Vec4_H__
#include <NCollection_Vec3.hxx>
#include <Standard_Dump.hxx>
//! Generic 4-components vector.
//! To be used as RGBA color vector or XYZW 3D-point with special W-component
//! for operations with projection / model view matrices.
//! Use this class for 3D-points carefully because declared W-component may
//! results in incorrect results if used without matrices.
template<typename Element_t>
class NCollection_Vec4
{
public:
//! Returns the number of components.
static int Length()
{
return 4;
}
//! Empty constructor. Construct the zero vector.
NCollection_Vec4()
{
std::memset (this, 0, sizeof(NCollection_Vec4));
}
//! Initialize ALL components of vector within specified value.
explicit NCollection_Vec4 (const Element_t theValue)
{
v[0] = v[1] = v[2] = v[3] = theValue;
}
//! Per-component constructor.
explicit NCollection_Vec4 (const Element_t theX,
const Element_t theY,
const Element_t theZ,
const Element_t theW)
{
v[0] = theX;
v[1] = theY;
v[2] = theZ;
v[3] = theW;
}
//! Constructor from 2-components vector.
explicit NCollection_Vec4 (const NCollection_Vec2<Element_t>& theVec2)
{
v[0] = theVec2[0];
v[1] = theVec2[1];
v[2] = v[3] = Element_t (0);
}
//! Constructor from 3-components vector + optional 4th value.
explicit NCollection_Vec4(const NCollection_Vec3<Element_t>& theVec3, const Element_t theW = Element_t(0))
{
std::memcpy (this, &theVec3, sizeof(NCollection_Vec3<Element_t>));
v[3] = theW;
}
//! Conversion constructor (explicitly converts some 4-component vector with other element type
//! to a new 4-component vector with the element type Element_t,
//! whose elements are static_cast'ed corresponding elements of theOtherVec4 vector)
//! @tparam OtherElement_t the element type of the other 4-component vector theOtherVec4
//! @param theOtherVec4 the 4-component vector that needs to be converted
template <typename OtherElement_t>
explicit NCollection_Vec4 (const NCollection_Vec4<OtherElement_t>& theOtherVec4)
{
v[0] = static_cast<Element_t> (theOtherVec4[0]);
v[1] = static_cast<Element_t> (theOtherVec4[1]);
v[2] = static_cast<Element_t> (theOtherVec4[2]);
v[3] = static_cast<Element_t> (theOtherVec4[3]);
}
//! Assign new values to the vector.
void SetValues (const Element_t theX,
const Element_t theY,
const Element_t theZ,
const Element_t theW)
{
v[0] = theX;
v[1] = theY;
v[2] = theZ;
v[3] = theW;
}
//! Assign new values as 3-component vector and a 4-th value.
void SetValues (const NCollection_Vec3<Element_t>& theVec3, const Element_t theW)
{
v[0] = theVec3.x();
v[1] = theVec3.y();
v[2] = theVec3.z();
v[3] = theW;
}
//! Alias to 1st component as X coordinate in XYZW.
Element_t x() const { return v[0]; }
//! Alias to 1st component as RED channel in RGBA.
Element_t r() const { return v[0]; }
//! Alias to 2nd component as Y coordinate in XYZW.
Element_t y() const { return v[1]; }
//! Alias to 2nd component as GREEN channel in RGBA.
Element_t g() const { return v[1]; }
//! Alias to 3rd component as Z coordinate in XYZW.
Element_t z() const { return v[2]; }
//! Alias to 3rd component as BLUE channel in RGBA.
Element_t b() const { return v[2]; }
//! Alias to 4th component as W coordinate in XYZW.
Element_t w() const { return v[3]; }
//! Alias to 4th component as ALPHA channel in RGBA.
Element_t a() const { return v[3]; }
//! @return 2 of XYZW components in specified order as vector in GLSL-style
NCOLLECTION_VEC_COMPONENTS_2D(x, y)
NCOLLECTION_VEC_COMPONENTS_2D(x, z)
NCOLLECTION_VEC_COMPONENTS_2D(x, w)
NCOLLECTION_VEC_COMPONENTS_2D(y, z)
NCOLLECTION_VEC_COMPONENTS_2D(y, w)
NCOLLECTION_VEC_COMPONENTS_2D(z, w)
//! @return 3 of XYZW components in specified order as vector in GLSL-style
NCOLLECTION_VEC_COMPONENTS_3D(x, y, z)
NCOLLECTION_VEC_COMPONENTS_3D(x, y, w)
NCOLLECTION_VEC_COMPONENTS_3D(x, z, w)
NCOLLECTION_VEC_COMPONENTS_3D(y, z, w)
//! @return RGB components as vector
NCOLLECTION_VEC_COMPONENTS_3D(r, g, b)
//! Alias to 1st component as X coordinate in XYZW.
Element_t& x() { return v[0]; }
//! Alias to 1st component as RED channel in RGBA.
Element_t& r() { return v[0]; }
//! Alias to 2nd component as Y coordinate in XYZW.
Element_t& y() { return v[1]; }
//! Alias to 2nd component as GREEN channel in RGBA.
Element_t& g() { return v[1]; } // Green color
//! Alias to 3rd component as Z coordinate in XYZW.
Element_t& z() { return v[2]; }
//! Alias to 3rd component as BLUE channel in RGBA.
Element_t& b() { return v[2]; }
//! Alias to 4th component as W coordinate in XYZW.
Element_t& w() { return v[3]; }
//! Alias to 4th component as ALPHA channel in RGBA.
Element_t& a() { return v[3]; }
//! Check this vector with another vector for equality (without tolerance!).
bool IsEqual (const NCollection_Vec4& theOther) const
{
return v[0] == theOther.v[0]
&& v[1] == theOther.v[1]
&& v[2] == theOther.v[2]
&& v[3] == theOther.v[3];
}
//! Check this vector with another vector for equality (without tolerance!).
bool operator== (const NCollection_Vec4& theOther) { return IsEqual (theOther); }
bool operator== (const NCollection_Vec4& theOther) const { return IsEqual (theOther); }
//! Check this vector with another vector for non-equality (without tolerance!).
bool operator!= (const NCollection_Vec4& theOther) { return !IsEqual (theOther); }
bool operator!= (const NCollection_Vec4& theOther) const { return !IsEqual (theOther); }
//! Raw access to the data (for OpenGL exchange).
const Element_t* GetData() const { return v; }
Element_t* ChangeData() { return v; }
operator const Element_t*() const { return v; }
operator Element_t*() { return v; }
//! Compute per-component summary.
NCollection_Vec4& operator+= (const NCollection_Vec4& theAdd)
{
v[0] += theAdd.v[0];
v[1] += theAdd.v[1];
v[2] += theAdd.v[2];
v[3] += theAdd.v[3];
return *this;
}
//! Compute per-component summary.
friend NCollection_Vec4 operator+ (const NCollection_Vec4& theLeft,
const NCollection_Vec4& theRight)
{
NCollection_Vec4 aSumm = NCollection_Vec4 (theLeft);
return aSumm += theRight;
}
//! Unary -.
NCollection_Vec4 operator-() const
{
return NCollection_Vec4 (-x(), -y(), -z(), -w());
}
//! Compute per-component subtraction.
NCollection_Vec4& operator-= (const NCollection_Vec4& theDec)
{
v[0] -= theDec.v[0];
v[1] -= theDec.v[1];
v[2] -= theDec.v[2];
v[3] -= theDec.v[3];
return *this;
}
//! Compute per-component subtraction.
friend NCollection_Vec4 operator- (const NCollection_Vec4& theLeft,
const NCollection_Vec4& theRight)
{
NCollection_Vec4 aSumm = NCollection_Vec4 (theLeft);
return aSumm -= theRight;
}
//! Compute per-component multiplication.
NCollection_Vec4& operator*= (const NCollection_Vec4& theRight)
{
v[0] *= theRight.v[0];
v[1] *= theRight.v[1];
v[2] *= theRight.v[2];
v[3] *= theRight.v[3];
return *this;
}
//! Compute per-component multiplication.
friend NCollection_Vec4 operator* (const NCollection_Vec4& theLeft,
const NCollection_Vec4& theRight)
{
NCollection_Vec4 aResult = NCollection_Vec4 (theLeft);
return aResult *= theRight;
}
//! Compute per-component multiplication.
void Multiply (const Element_t theFactor)
{
v[0] *= theFactor;
v[1] *= theFactor;
v[2] *= theFactor;
v[3] *= theFactor;
}
//! Compute per-component multiplication.
NCollection_Vec4& operator*=(const Element_t theFactor)
{
Multiply (theFactor);
return *this;
}
//! Compute per-component multiplication.
NCollection_Vec4 operator* (const Element_t theFactor) const
{
return Multiplied (theFactor);
}
//! Compute per-component multiplication.
NCollection_Vec4 Multiplied (const Element_t theFactor) const
{
NCollection_Vec4 aCopyVec4 (*this);
aCopyVec4 *= theFactor;
return aCopyVec4;
}
//! Compute component-wise minimum of two vectors.
NCollection_Vec4 cwiseMin (const NCollection_Vec4& theVec) const
{
return NCollection_Vec4 (v[0] < theVec.v[0] ? v[0] : theVec.v[0],
v[1] < theVec.v[1] ? v[1] : theVec.v[1],
v[2] < theVec.v[2] ? v[2] : theVec.v[2],
v[3] < theVec.v[3] ? v[3] : theVec.v[3]);
}
//! Compute component-wise maximum of two vectors.
NCollection_Vec4 cwiseMax (const NCollection_Vec4& theVec) const
{
return NCollection_Vec4 (v[0] > theVec.v[0] ? v[0] : theVec.v[0],
v[1] > theVec.v[1] ? v[1] : theVec.v[1],
v[2] > theVec.v[2] ? v[2] : theVec.v[2],
v[3] > theVec.v[3] ? v[3] : theVec.v[3]);
}
//! Compute component-wise modulus of the vector.
NCollection_Vec4 cwiseAbs() const
{
return NCollection_Vec4 (std::abs (v[0]),
std::abs (v[1]),
std::abs (v[2]),
std::abs (v[3]));
}
//! Compute maximum component of the vector.
Element_t maxComp() const
{
const Element_t aMax1 = v[0] > v[1] ? v[0] : v[1];
const Element_t aMax2 = v[2] > v[3] ? v[2] : v[3];
return aMax1 > aMax2 ? aMax1 : aMax2;
}
//! Compute minimum component of the vector.
Element_t minComp() const
{
const Element_t aMin1 = v[0] < v[1] ? v[0] : v[1];
const Element_t aMin2 = v[2] < v[3] ? v[2] : v[3];
return aMin1 < aMin2 ? aMin1 : aMin2;
}
//! Computes the dot product.
Element_t Dot (const NCollection_Vec4& theOther) const
{
return x() * theOther.x() +
y() * theOther.y() +
z() * theOther.z() +
w() * theOther.w();
}
//! Compute per-component division by scale factor.
NCollection_Vec4& operator/= (const Element_t theInvFactor)
{
v[0] /= theInvFactor;
v[1] /= theInvFactor;
v[2] /= theInvFactor;
v[3] /= theInvFactor;
return *this;
}
//! Compute per-component division.
NCollection_Vec4& operator/= (const NCollection_Vec4& theRight)
{
v[0] /= theRight.v[0];
v[1] /= theRight.v[1];
v[2] /= theRight.v[2];
v[3] /= theRight.v[3];
return *this;
}
//! Compute per-component division by scale factor.
NCollection_Vec4 operator/ (const Element_t theInvFactor)
{
NCollection_Vec4 aResult(*this);
return aResult /= theInvFactor;
}
//! Compute per-component division.
friend NCollection_Vec4 operator/ (const NCollection_Vec4& theLeft,
const NCollection_Vec4& theRight)
{
NCollection_Vec4 aResult = NCollection_Vec4 (theLeft);
return aResult /= theRight;
}
//! Dumps the content of me into the stream
void DumpJson (Standard_OStream& theOStream, Standard_Integer theDepth = -1) const
{
(void)theDepth;
OCCT_DUMP_FIELD_VALUES_NUMERICAL (theOStream, "Vec4", 4, v[0], v[1], v[2], v[3])
}
private:
Element_t v[4]; //!< define the vector as array to avoid structure alignment issues
};
//! Optimized concretization for float type.
template<> inline NCollection_Vec4<float>& NCollection_Vec4<float>::operator/= (const float theInvFactor)
{
Multiply (1.0f / theInvFactor);
return *this;
}
//! Optimized concretization for double type.
template<> inline NCollection_Vec4<double>& NCollection_Vec4<double>::operator/= (const double theInvFactor)
{
Multiply (1.0 / theInvFactor);
return *this;
}
#endif // _NCollection_Vec4_H__