mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
- Provide DumpJson for geometrical, ocaf and visualization classes; - Change depth parameter of DumpJson (constant is not obligate here) - Introduce a new macro for transient objects to be called as the first row in DumpJson: OCCT_DUMP_TRANSIENT_CLASS_BEGIN. We need not put the class name in the macro, using get_type_name of Standard_Transient for it. - change implementation of OCCT_DUMP_CLASS_BEGIN and OCCT_DUMP_TRANSIENT_CLASS_BEGIN. It is not an sentry more and it does not create a new hierarchy level. It appends a new row into the output stream: "className": <className> - OCCT_DUMP_* does not require semicolon - class header is included first in source files of TDataStd, TDocStd, TCAFDoc
435 lines
14 KiB
C++
435 lines
14 KiB
C++
// Created by: Kirill GAVRILOV
|
|
// Copyright (c) 2013-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#ifndef _NCollection_Vec3_H__
|
|
#define _NCollection_Vec3_H__
|
|
|
|
#include <cstring>
|
|
#include <cmath>
|
|
#include <NCollection_Vec2.hxx>
|
|
#include <Standard_Dump.hxx>
|
|
|
|
//! Auxiliary macros to define couple of similar access components as vector methods
|
|
#define NCOLLECTION_VEC_COMPONENTS_3D(theX, theY, theZ) \
|
|
const NCollection_Vec3<Element_t> theX##theY##theZ() const { return NCollection_Vec3<Element_t>(theX(), theY(), theZ()); } \
|
|
const NCollection_Vec3<Element_t> theX##theZ##theY() const { return NCollection_Vec3<Element_t>(theX(), theZ(), theY()); } \
|
|
const NCollection_Vec3<Element_t> theY##theX##theZ() const { return NCollection_Vec3<Element_t>(theY(), theX(), theZ()); } \
|
|
const NCollection_Vec3<Element_t> theY##theZ##theX() const { return NCollection_Vec3<Element_t>(theY(), theZ(), theX()); } \
|
|
const NCollection_Vec3<Element_t> theZ##theY##theX() const { return NCollection_Vec3<Element_t>(theZ(), theY(), theX()); } \
|
|
const NCollection_Vec3<Element_t> theZ##theX##theY() const { return NCollection_Vec3<Element_t>(theZ(), theX(), theY()); }
|
|
|
|
//! Generic 3-components vector.
|
|
//! To be used as RGB color pixel or XYZ 3D-point.
|
|
//! The main target for this class - to handle raw low-level arrays (from/to graphic driver etc.).
|
|
template<typename Element_t>
|
|
class NCollection_Vec3
|
|
{
|
|
|
|
public:
|
|
|
|
//! Returns the number of components.
|
|
static int Length()
|
|
{
|
|
return 3;
|
|
}
|
|
|
|
//! Empty constructor. Construct the zero vector.
|
|
NCollection_Vec3()
|
|
{
|
|
std::memset (this, 0, sizeof(NCollection_Vec3));
|
|
}
|
|
|
|
//! Initialize ALL components of vector within specified value.
|
|
explicit NCollection_Vec3 (Element_t theValue)
|
|
{
|
|
v[0] = v[1] = v[2] = theValue;
|
|
}
|
|
|
|
//! Per-component constructor.
|
|
explicit NCollection_Vec3 (const Element_t theX,
|
|
const Element_t theY,
|
|
const Element_t theZ)
|
|
{
|
|
v[0] = theX;
|
|
v[1] = theY;
|
|
v[2] = theZ;
|
|
}
|
|
|
|
//! Constructor from 2-components vector + optional 3rd value.
|
|
explicit NCollection_Vec3 (const NCollection_Vec2<Element_t>& theVec2, Element_t theZ = Element_t(0))
|
|
{
|
|
v[0] = theVec2[0];
|
|
v[1] = theVec2[1];
|
|
v[2] = theZ;
|
|
}
|
|
|
|
//! Conversion constructor (explicitly converts some 3-component vector with other element type
|
|
//! to a new 3-component vector with the element type Element_t,
|
|
//! whose elements are static_cast'ed corresponding elements of theOtherVec3 vector)
|
|
//! @tparam OtherElement_t the element type of the other 3-component vector theOtherVec3
|
|
//! @param theOtherVec3 the 3-component vector that needs to be converted
|
|
template <typename OtherElement_t>
|
|
explicit NCollection_Vec3 (const NCollection_Vec3<OtherElement_t>& theOtherVec3)
|
|
{
|
|
v[0] = static_cast<Element_t> (theOtherVec3[0]);
|
|
v[1] = static_cast<Element_t> (theOtherVec3[1]);
|
|
v[2] = static_cast<Element_t> (theOtherVec3[2]);
|
|
}
|
|
|
|
//! Assign new values to the vector.
|
|
void SetValues (const Element_t theX,
|
|
const Element_t theY,
|
|
const Element_t theZ)
|
|
{
|
|
v[0] = theX;
|
|
v[1] = theY;
|
|
v[2] = theZ;
|
|
}
|
|
|
|
//! Assign new values to the vector.
|
|
void SetValues (const NCollection_Vec2<Element_t>& theVec2, Element_t theZ)
|
|
{
|
|
v[0] = theVec2.x();
|
|
v[1] = theVec2.y();
|
|
v[2] = theZ;
|
|
}
|
|
|
|
//! Alias to 1st component as X coordinate in XYZ.
|
|
Element_t x() const { return v[0]; }
|
|
|
|
//! Alias to 1st component as RED channel in RGB.
|
|
Element_t r() const { return v[0]; }
|
|
|
|
//! Alias to 2nd component as Y coordinate in XYZ.
|
|
Element_t y() const { return v[1]; }
|
|
|
|
//! Alias to 2nd component as GREEN channel in RGB.
|
|
Element_t g() const { return v[1]; }
|
|
|
|
//! Alias to 3rd component as Z coordinate in XYZ.
|
|
Element_t z() const { return v[2]; }
|
|
|
|
//! Alias to 3rd component as BLUE channel in RGB.
|
|
Element_t b() const { return v[2]; }
|
|
|
|
//! @return 2 components by their names in specified order (in GLSL-style)
|
|
NCOLLECTION_VEC_COMPONENTS_2D(x, y)
|
|
NCOLLECTION_VEC_COMPONENTS_2D(x, z)
|
|
NCOLLECTION_VEC_COMPONENTS_2D(y, z)
|
|
|
|
//! @return 3 components by their names in specified order (in GLSL-style)
|
|
NCOLLECTION_VEC_COMPONENTS_3D(x, y, z)
|
|
|
|
//! Alias to 1st component as X coordinate in XYZ.
|
|
Element_t& x() { return v[0]; }
|
|
|
|
//! Alias to 1st component as RED channel in RGB.
|
|
Element_t& r() { return v[0]; }
|
|
|
|
//! Alias to 2nd component as Y coordinate in XYZ.
|
|
Element_t& y() { return v[1]; }
|
|
|
|
//! Alias to 2nd component as GREEN channel in RGB.
|
|
Element_t& g() { return v[1]; }
|
|
|
|
//! Alias to 3rd component as Z coordinate in XYZ.
|
|
Element_t& z() { return v[2]; }
|
|
|
|
//! Alias to 3rd component as BLUE channel in RGB.
|
|
Element_t& b() { return v[2]; }
|
|
|
|
//! Check this vector with another vector for equality (without tolerance!).
|
|
bool IsEqual (const NCollection_Vec3& theOther) const
|
|
{
|
|
return v[0] == theOther.v[0]
|
|
&& v[1] == theOther.v[1]
|
|
&& v[2] == theOther.v[2];
|
|
}
|
|
|
|
//! Check this vector with another vector for equality (without tolerance!).
|
|
bool operator== (const NCollection_Vec3& theOther) { return IsEqual (theOther); }
|
|
bool operator== (const NCollection_Vec3& theOther) const { return IsEqual (theOther); }
|
|
|
|
//! Check this vector with another vector for non-equality (without tolerance!).
|
|
bool operator!= (const NCollection_Vec3& theOther) { return !IsEqual (theOther); }
|
|
bool operator!= (const NCollection_Vec3& theOther) const { return !IsEqual (theOther); }
|
|
|
|
//! Raw access to the data (for OpenGL exchange).
|
|
const Element_t* GetData() const { return v; }
|
|
Element_t* ChangeData() { return v; }
|
|
operator const Element_t*() const { return v; }
|
|
operator Element_t*() { return v; }
|
|
|
|
//! Compute per-component summary.
|
|
NCollection_Vec3& operator+= (const NCollection_Vec3& theAdd)
|
|
{
|
|
v[0] += theAdd.v[0];
|
|
v[1] += theAdd.v[1];
|
|
v[2] += theAdd.v[2];
|
|
return *this;
|
|
}
|
|
|
|
//! Compute per-component summary.
|
|
friend NCollection_Vec3 operator+ (const NCollection_Vec3& theLeft,
|
|
const NCollection_Vec3& theRight)
|
|
{
|
|
NCollection_Vec3 aSumm = NCollection_Vec3 (theLeft);
|
|
return aSumm += theRight;
|
|
}
|
|
|
|
//! Unary -.
|
|
NCollection_Vec3 operator-() const
|
|
{
|
|
return NCollection_Vec3 (-x(), -y(), -z());
|
|
}
|
|
|
|
//! Compute per-component subtraction.
|
|
NCollection_Vec3& operator-= (const NCollection_Vec3& theDec)
|
|
{
|
|
v[0] -= theDec.v[0];
|
|
v[1] -= theDec.v[1];
|
|
v[2] -= theDec.v[2];
|
|
return *this;
|
|
}
|
|
|
|
//! Compute per-component subtraction.
|
|
friend NCollection_Vec3 operator- (const NCollection_Vec3& theLeft,
|
|
const NCollection_Vec3& theRight)
|
|
{
|
|
NCollection_Vec3 aSumm = NCollection_Vec3 (theLeft);
|
|
return aSumm -= theRight;
|
|
}
|
|
|
|
//! Compute per-component multiplication by scale factor.
|
|
void Multiply (const Element_t theFactor)
|
|
{
|
|
v[0] *= theFactor;
|
|
v[1] *= theFactor;
|
|
v[2] *= theFactor;
|
|
}
|
|
|
|
//! Compute per-component multiplication.
|
|
NCollection_Vec3& operator*= (const NCollection_Vec3& theRight)
|
|
{
|
|
v[0] *= theRight.v[0];
|
|
v[1] *= theRight.v[1];
|
|
v[2] *= theRight.v[2];
|
|
return *this;
|
|
}
|
|
|
|
//! Compute per-component multiplication.
|
|
friend NCollection_Vec3 operator* (const NCollection_Vec3& theLeft,
|
|
const NCollection_Vec3& theRight)
|
|
{
|
|
NCollection_Vec3 aResult = NCollection_Vec3 (theLeft);
|
|
return aResult *= theRight;
|
|
}
|
|
|
|
//! Compute per-component multiplication by scale factor.
|
|
NCollection_Vec3& operator*= (const Element_t theFactor)
|
|
{
|
|
Multiply (theFactor);
|
|
return *this;
|
|
}
|
|
|
|
//! Compute per-component multiplication by scale factor.
|
|
NCollection_Vec3 operator* (const Element_t theFactor) const
|
|
{
|
|
return Multiplied (theFactor);
|
|
}
|
|
|
|
//! Compute per-component multiplication by scale factor.
|
|
NCollection_Vec3 Multiplied (const Element_t theFactor) const
|
|
{
|
|
NCollection_Vec3 aCopyVec3 (*this);
|
|
aCopyVec3 *= theFactor;
|
|
return aCopyVec3;
|
|
}
|
|
|
|
//! Compute component-wise minimum of two vectors.
|
|
NCollection_Vec3 cwiseMin (const NCollection_Vec3& theVec) const
|
|
{
|
|
return NCollection_Vec3 (v[0] < theVec.v[0] ? v[0] : theVec.v[0],
|
|
v[1] < theVec.v[1] ? v[1] : theVec.v[1],
|
|
v[2] < theVec.v[2] ? v[2] : theVec.v[2]);
|
|
}
|
|
|
|
//! Compute component-wise maximum of two vectors.
|
|
NCollection_Vec3 cwiseMax (const NCollection_Vec3& theVec) const
|
|
{
|
|
return NCollection_Vec3 (v[0] > theVec.v[0] ? v[0] : theVec.v[0],
|
|
v[1] > theVec.v[1] ? v[1] : theVec.v[1],
|
|
v[2] > theVec.v[2] ? v[2] : theVec.v[2]);
|
|
}
|
|
|
|
//! Compute component-wise modulus of the vector.
|
|
NCollection_Vec3 cwiseAbs() const
|
|
{
|
|
return NCollection_Vec3 (std::abs (v[0]),
|
|
std::abs (v[1]),
|
|
std::abs (v[2]));
|
|
}
|
|
|
|
//! Compute maximum component of the vector.
|
|
Element_t maxComp() const
|
|
{
|
|
return v[0] > v[1] ? (v[0] > v[2] ? v[0] : v[2])
|
|
: (v[1] > v[2] ? v[1] : v[2]);
|
|
}
|
|
|
|
//! Compute minimum component of the vector.
|
|
Element_t minComp() const
|
|
{
|
|
return v[0] < v[1] ? (v[0] < v[2] ? v[0] : v[2])
|
|
: (v[1] < v[2] ? v[1] : v[2]);
|
|
}
|
|
|
|
//! Compute per-component division by scale factor.
|
|
NCollection_Vec3& operator/= (const Element_t theInvFactor)
|
|
{
|
|
v[0] /= theInvFactor;
|
|
v[1] /= theInvFactor;
|
|
v[2] /= theInvFactor;
|
|
return *this;
|
|
}
|
|
|
|
//! Compute per-component division.
|
|
NCollection_Vec3& operator/= (const NCollection_Vec3& theRight)
|
|
{
|
|
v[0] /= theRight.v[0];
|
|
v[1] /= theRight.v[1];
|
|
v[2] /= theRight.v[2];
|
|
return *this;
|
|
}
|
|
|
|
//! Compute per-component division by scale factor.
|
|
NCollection_Vec3 operator/ (const Element_t theInvFactor) const
|
|
{
|
|
NCollection_Vec3 aResult (*this);
|
|
return aResult /= theInvFactor;
|
|
}
|
|
|
|
//! Compute per-component division.
|
|
friend NCollection_Vec3 operator/ (const NCollection_Vec3& theLeft,
|
|
const NCollection_Vec3& theRight)
|
|
{
|
|
NCollection_Vec3 aResult = NCollection_Vec3 (theLeft);
|
|
return aResult /= theRight;
|
|
}
|
|
|
|
//! Computes the dot product.
|
|
Element_t Dot (const NCollection_Vec3& theOther) const
|
|
{
|
|
return x() * theOther.x() + y() * theOther.y() + z() * theOther.z();
|
|
}
|
|
|
|
//! Computes the vector modulus (magnitude, length).
|
|
Element_t Modulus() const
|
|
{
|
|
return std::sqrt (x() * x() + y() * y() + z() * z());
|
|
}
|
|
|
|
//! Computes the square of vector modulus (magnitude, length).
|
|
//! This method may be used for performance tricks.
|
|
Element_t SquareModulus() const
|
|
{
|
|
return x() * x() + y() * y() + z() * z();
|
|
}
|
|
|
|
//! Normalize the vector.
|
|
void Normalize()
|
|
{
|
|
Element_t aModulus = Modulus();
|
|
if (aModulus != Element_t(0)) // just avoid divide by zero
|
|
{
|
|
x() = x() / aModulus;
|
|
y() = y() / aModulus;
|
|
z() = z() / aModulus;
|
|
}
|
|
}
|
|
|
|
//! Normalize the vector.
|
|
NCollection_Vec3 Normalized() const
|
|
{
|
|
NCollection_Vec3 aCopy (*this);
|
|
aCopy.Normalize();
|
|
return aCopy;
|
|
}
|
|
|
|
//! Computes the cross product.
|
|
static NCollection_Vec3 Cross (const NCollection_Vec3& theVec1,
|
|
const NCollection_Vec3& theVec2)
|
|
{
|
|
return NCollection_Vec3(theVec1.y() * theVec2.z() - theVec1.z() * theVec2.y(),
|
|
theVec1.z() * theVec2.x() - theVec1.x() * theVec2.z(),
|
|
theVec1.x() * theVec2.y() - theVec1.y() * theVec2.x());
|
|
}
|
|
|
|
//! Compute linear interpolation between to vectors.
|
|
//! @param theT - interpolation coefficient 0..1;
|
|
//! @return interpolation result.
|
|
static NCollection_Vec3 GetLERP (const NCollection_Vec3& theFrom,
|
|
const NCollection_Vec3& theTo,
|
|
const Element_t theT)
|
|
{
|
|
return theFrom * (Element_t(1) - theT) + theTo * theT;
|
|
}
|
|
|
|
//! Constuct DX unit vector.
|
|
static NCollection_Vec3 DX()
|
|
{
|
|
return NCollection_Vec3 (Element_t(1), Element_t(0), Element_t(0));
|
|
}
|
|
|
|
//! Constuct DY unit vector.
|
|
static NCollection_Vec3 DY()
|
|
{
|
|
return NCollection_Vec3 (Element_t(0), Element_t(1), Element_t(0));
|
|
}
|
|
|
|
//! Constuct DZ unit vector.
|
|
static NCollection_Vec3 DZ()
|
|
{
|
|
return NCollection_Vec3 (Element_t(0), Element_t(0), Element_t(1));
|
|
}
|
|
|
|
//! Dumps the content of me into the stream
|
|
void DumpJson (Standard_OStream& theOStream, Standard_Integer theDepth = -1) const
|
|
{
|
|
(void)theDepth;
|
|
OCCT_DUMP_FIELD_VALUES_NUMERICAL (theOStream, "Vec3", 3, v[0], v[1], v[2])
|
|
}
|
|
|
|
private:
|
|
|
|
Element_t v[3]; //!< define the vector as array to avoid structure alignment issues
|
|
|
|
};
|
|
|
|
//! Optimized concretization for float type.
|
|
template<> inline NCollection_Vec3<float>& NCollection_Vec3<float>::operator/= (const float theInvFactor)
|
|
{
|
|
Multiply (1.0f / theInvFactor);
|
|
return *this;
|
|
}
|
|
|
|
//! Optimized concretization for double type.
|
|
template<> inline NCollection_Vec3<double>& NCollection_Vec3<double>::operator/= (const double theInvFactor)
|
|
{
|
|
Multiply (1.0 / theInvFactor);
|
|
return *this;
|
|
}
|
|
|
|
#endif // _NCollection_Vec3_H__
|