mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-08-09 13:22:24 +03:00
AIS_LengthDimension interface was extended to allow setting a custom dimension direction. The value of dimension in this case is equal to projection of the distance between dimension attributes(points) to this direction. vlengthparam command is implemented to set custom length direction in DRAW.
712 lines
33 KiB
C++
Executable File
712 lines
33 KiB
C++
Executable File
// Created on: 2013-11-11
|
|
// Created by: Anastasia BORISOVA
|
|
// Copyright (c) 2013-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#ifndef _AIS_Dimension_HeaderFile
|
|
#define _AIS_Dimension_HeaderFile
|
|
|
|
#include <AIS_DimensionSelectionMode.hxx>
|
|
#include <AIS_DimensionOwner.hxx>
|
|
#include <AIS_DisplaySpecialSymbol.hxx>
|
|
#include <AIS_InteractiveObject.hxx>
|
|
#include <AIS_KindOfInteractive.hxx>
|
|
#include <AIS_KindOfDimension.hxx>
|
|
#include <AIS_KindOfSurface.hxx>
|
|
#include <Geom_Curve.hxx>
|
|
#include <gp_Pln.hxx>
|
|
#include <Prs3d_ArrowAspect.hxx>
|
|
#include <Prs3d_DimensionAspect.hxx>
|
|
#include <Prs3d_DimensionUnits.hxx>
|
|
#include <Prs3d_Drawer.hxx>
|
|
#include <Prs3d_LineAspect.hxx>
|
|
#include <Prs3d_Presentation.hxx>
|
|
#include <Prs3d_TextAspect.hxx>
|
|
#include <SelectMgr_EntityOwner.hxx>
|
|
#include <Standard.hxx>
|
|
#include <TCollection_ExtendedString.hxx>
|
|
#include <TColgp_HSequenceOfPnt.hxx>
|
|
#include <TopoDS_Edge.hxx>
|
|
#include <TopoDS_Face.hxx>
|
|
#include <TopoDS_Shape.hxx>
|
|
#include <NCollection_Sequence.hxx>
|
|
#include <NCollection_Handle.hxx>
|
|
|
|
class AIS_Dimension;
|
|
DEFINE_STANDARD_HANDLE(AIS_Dimension, AIS_InteractiveObject)
|
|
|
|
//! AIS_Dimension is a base class for 2D presentations of linear (length, diameter, radius)
|
|
//! and angular dimensions.
|
|
//!
|
|
//! The dimensions provide measurement of quantities, such as lengths or plane angles.
|
|
//! The measurement of dimension "value" is done in model space "as is".
|
|
//! These "value" are said to be represented in "model units", which can be specified by user.
|
|
//! During the display the measured value converted from "model units" to "display units".
|
|
//! The display and model units are stored in common Prs3d_Drawer (drawer of the context)
|
|
//! to share it between all dimensions.
|
|
//! The specified by user units are stored in the dimension's drawer.
|
|
//!
|
|
//! As a drawing, the dimension is composed from the following components:
|
|
//! - Attachment (binding) points. The points where the dimension lines attaches to, for
|
|
//! length dimensions the distances are measured between these points.
|
|
//! - Main dimension line. The which extends from the attachment points in "up" direction,
|
|
//! and which contains text label on it with value string.
|
|
//! - Flyouts. The lines connecting the attachment points with main dimension line.
|
|
//! - Extension. The lines used to extend the main dimension line in the cases when text
|
|
//! or arrows do not fit into the main dimension line due to their size.
|
|
//! - Arrows.
|
|
//!
|
|
//! <pre>
|
|
//! Linear dimensions:
|
|
//!
|
|
//! extension
|
|
//! line arrow
|
|
//! -->|------- main dimension line -------|<--
|
|
//! | |
|
|
//! |flyout flyout|
|
|
//! | |
|
|
//! +-----------------------------------+
|
|
//! attachment attachment
|
|
//! point point
|
|
//!
|
|
//! Angular dimensions:
|
|
//!
|
|
//! extension
|
|
//! line
|
|
//! -->|+++++
|
|
//! arrow | +++
|
|
//! | 90(deg) - main dimension line
|
|
//! flyout | +++
|
|
//! | +
|
|
//! o---flyout---
|
|
//! center ^
|
|
//! point | extension
|
|
//! line
|
|
//! </pre>
|
|
//!
|
|
//! Being a 2D drawings, the dimensions are created on imaginary plane, called "dimension plane",
|
|
//! which can be thought of as reference system of axes (X,Y,N) for constructing the presentation.
|
|
//!
|
|
//! The role of axes of the dimension plane is to guide you through the encapsualted automations
|
|
//! of presentation building to help you understand how is the presentation will look and how it
|
|
//! will be oriented in model space during construction.
|
|
//!
|
|
//! Orientation of dimension line in model space relatively to the base shapes is defined
|
|
//! with the flyouts. Flyouts specify length of flyout lines and their orientation relatively
|
|
//! to the attachment points on the working plane.
|
|
//! For linear dimensions:
|
|
//! Direction of flyouts is specified with direction of main dimension line
|
|
//! (vector from the first attachment to the second attachment) and the normal of the dimension plane.
|
|
//! Positive direction of flyouts is defined by vector multiplication: AttachVector * PlaneNormal.
|
|
//! For angular dimensions:
|
|
//! Flyouts are defined by vectors from the center point to the attachment points.
|
|
//! These vectors directions are supposed to be the positive directions of flyouts.
|
|
//! Negative flyouts directions means that these vectors should be reversed
|
|
//! (and dimension will be built out of the angle constructed with center and two attach points).
|
|
//!
|
|
//! The dimension plane can be constructed automatically by application (where possible,
|
|
//! it depends on the measured geometry).
|
|
//! It can be also set by user. However, if the user-defined plane does not fit the
|
|
//! geometry of the dimension (attach points do not belong to it), the dimension could not
|
|
//! be built.
|
|
//! If it is not possible to compute automatic plane (for example, in case of length between
|
|
//! two points) the user is supposed to specify the custom plane.
|
|
//!
|
|
//! Since the dimensions feature automated construction procedures from an arbitrary shapes,
|
|
//! the interfaces to check the validness are also implemented. Once the measured geometry is
|
|
//! specified, the one can inquire the validness status by calling "IsValid()" method. If the result
|
|
//! is TRUE, then all of public parameters should be pre-computed and ready. The presentation
|
|
//! should be also computable. Otherwise, the parameters may return invalid values. In this case,
|
|
//! the presentation will not be computed and displayed.
|
|
//!
|
|
//! The dimension support two local selection modes: main dimension line selection and text label
|
|
//! selection. These modes can be used to develop interactive modification of dimension presentations.
|
|
//! The component highlighting in these selection modes is provided by AIS_DimensionOwner class.
|
|
//! Please note that selection is unavailable until the presentation is computed.
|
|
//!
|
|
//! The specific drawing attributes are controlled through Prs3d_DimensionAspect. The one can change
|
|
//! color, arrows, text and arrow style and specify positioning of value label by setting corresponding
|
|
//! values to the aspect.
|
|
//!
|
|
//! Such set of parameters that consists of:
|
|
//! - flyout size and direction,
|
|
//! - user-defined dimension plane,
|
|
//! - horizontal and vertical text alignment
|
|
//! can be uniquely replaced with text position in 3d space. Therefore, there are methods to convert
|
|
//! this set of parameters to the text position and vice versa:
|
|
//!
|
|
//! - If the fixed text position is defined by user, called SetTextPosition (theTextPos) method converts
|
|
//! this 3d point to the set of parameters including adjusting of the dimension plane (this plane will be
|
|
//! automatic plane, NOT user-defined one).
|
|
//! If the fixed text position is set, the flag myIsFixedTextPosition is set to TRUE.
|
|
//! ATTENSION! myIsFixedTextPosition fixes all parameters of the set from recomputing inside
|
|
//! SetMeasureGeometry() methods. Parameters in dimension aspect (they are horizontal text position
|
|
//! and extension size) are adjusted on presentation computing step, user-defined values in
|
|
//! dimension aspect are not changed.
|
|
//! But plane and flyout as dimension position parameters are changed by SetTextPosition() method
|
|
//! according with user-defined text position.
|
|
//! If parameters from the set are changed by user with calls of setters, it leads to disabling of
|
|
//! fixed text position (myIsFixedTextPosition is set to FALSE).
|
|
//! If the fixed text position is set and geometry is changed by user (SetMeasureGeometry() method
|
|
//! is called) and the geometry doesn't satisfy computed dimension plane, the dimension is not valid.
|
|
//!
|
|
//! - If the set of parameters was set by user (may be without the user-defined plane or with it),
|
|
//! it can be converted to the text position by calling the method GetTextPosition(). In this case
|
|
//! the text position is NOT fixed, and SetMeasureGeometry() without user-defined plane adjusts
|
|
//! the automatic plane according input geometry (if it is possible).
|
|
//!
|
|
class AIS_Dimension : public AIS_InteractiveObject
|
|
{
|
|
protected:
|
|
|
|
//! Geometry type defines type of shapes on which the dimension is to be built.
|
|
//! Some type of geometry allows automatic plane computing and
|
|
//! can be built without user-defined plane
|
|
//! Another types can't be built without user-defined plane.
|
|
enum GeometryType
|
|
{
|
|
GeometryType_UndefShapes,
|
|
GeometryType_Edge,
|
|
GeometryType_Face,
|
|
GeometryType_Points,
|
|
GeometryType_Edges,
|
|
GeometryType_Faces,
|
|
GeometryType_EdgeFace,
|
|
GeometryType_EdgeVertex
|
|
};
|
|
|
|
//! Specifies supported at base level horizontal and vertical
|
|
//! label positions for drawing extension lines and centered text.
|
|
enum LabelPosition
|
|
{
|
|
LabelPosition_None = 0x00,
|
|
|
|
LabelPosition_Left = 0x01,
|
|
LabelPosition_Right = 0x02,
|
|
LabelPosition_HCenter = 0x04,
|
|
LabelPosition_HMask = LabelPosition_Left | LabelPosition_Right | LabelPosition_HCenter,
|
|
|
|
LabelPosition_Above = 0x10,
|
|
LabelPosition_Below = 0x20,
|
|
LabelPosition_VCenter = 0x40,
|
|
LabelPosition_VMask = LabelPosition_Above | LabelPosition_Below | LabelPosition_VCenter
|
|
};
|
|
|
|
enum ValueType
|
|
{
|
|
ValueType_Computed,
|
|
ValueType_CustomReal,
|
|
ValueType_CustomText
|
|
};
|
|
|
|
public:
|
|
|
|
//! Specifies supported presentation compute modes.
|
|
//! Used to compute only parts of presentation for
|
|
//! advanced highlighting.
|
|
enum ComputeMode
|
|
{
|
|
ComputeMode_All = 0, //!< "0" is reserved as neutral mode
|
|
ComputeMode_Line = 1, //!< corresponds to selection mode
|
|
ComputeMode_Text = 2 //!< corresponds to selection mode
|
|
};
|
|
|
|
public:
|
|
|
|
//! Constructor with default parameters values.
|
|
//! @param theType [in] the type of dimension.
|
|
Standard_EXPORT AIS_Dimension (const AIS_KindOfDimension theType);
|
|
|
|
//! Gets dimension measurement value. If the value to display is not
|
|
//! specified by user, then the dimension object is responsible to
|
|
//! compute it on its own in model space coordinates.
|
|
//! @return the dimension value (in model units) which is used
|
|
//! during display of the presentation.
|
|
Standard_Real GetValue() const
|
|
{
|
|
return myValueType == ValueType_CustomReal ? myCustomValue : ComputeValue();
|
|
}
|
|
|
|
//! Sets computed dimension value. Resets custom value mode if it was set.
|
|
void SetComputedValue ()
|
|
{
|
|
myValueType = ValueType_Computed;
|
|
}
|
|
|
|
//! Sets user-defined dimension value.
|
|
//! The user-defined dimension value is specified in model space,
|
|
//! and affect by unit conversion during the display.
|
|
//! @param theValue [in] the user-defined value to display.
|
|
Standard_EXPORT void SetCustomValue (const Standard_Real theValue);
|
|
|
|
//! Sets user-defined dimension value.
|
|
//! Unit conversion during the display is not applyed.
|
|
//! @param theValue [in] the user-defined value to display.
|
|
Standard_EXPORT void SetCustomValue (const TCollection_ExtendedString& theValue);
|
|
|
|
//! Gets user-defined dimension value.
|
|
//! @return dimension value string.
|
|
Standard_EXPORT const TCollection_ExtendedString& GetCustomValue () const;
|
|
|
|
//! Get the dimension plane in which the 2D dimension presentation is computed.
|
|
//! By default, if plane is not defined by user, it is computed automatically
|
|
//! after dimension geometry is computed.
|
|
//! If computed dimension geometry (points) can't be placed on the user-defined
|
|
//! plane, dimension geometry was set as invalid (validity flag is set to false)
|
|
//! and dimension presentation will not be computed.
|
|
//! If user-defined plane allow geometry placement on it, it will be used for
|
|
//! computing of the dimension presentation.
|
|
//! @return dimension plane used for presentation computing.
|
|
Standard_EXPORT const gp_Pln& GetPlane() const;
|
|
|
|
//! Geometry type defines type of shapes on which the dimension is to be built.
|
|
//! @return type of geometry on which the dimension will be built.
|
|
Standard_Integer GetGeometryType () const { return myGeometryType; }
|
|
|
|
//! Sets user-defined plane where the 2D dimension presentation will be placed.
|
|
//! Checks validity of this plane if geometry has been set already.
|
|
//! Validity of the plane is checked according to the geometry set
|
|
//! and has different criteria for different kinds of dimensions.
|
|
Standard_EXPORT virtual void SetCustomPlane (const gp_Pln& thePlane);
|
|
|
|
//! Unsets user-defined plane. Therefore the plane for dimension will be
|
|
//! computed automatically.
|
|
Standard_EXPORT void UnsetCustomPlane() { myIsPlaneCustom = Standard_False; }
|
|
|
|
//! @return TRUE if text position is set by user with method SetTextPosition().
|
|
Standard_Boolean IsTextPositionCustom() const
|
|
{
|
|
return myIsTextPositionFixed;
|
|
}
|
|
|
|
//! Fixes the absolute text position and adjusts flyout, plane and text alignment
|
|
//! according to it. Updates presentation if the text position is valid.
|
|
//! ATTENTION! It does not change vertical text alignment.
|
|
//! @param theTextPos [in] the point of text position.
|
|
virtual void SetTextPosition (const gp_Pnt& /*theTextPos*/) { }
|
|
|
|
//! Computes absolute text position from dimension parameters
|
|
//! (flyout, plane and text alignment).
|
|
virtual const gp_Pnt GetTextPosition () const { return gp_Pnt(); }
|
|
|
|
public:
|
|
|
|
//! Gets the dimension aspect from AIS object drawer.
|
|
//! Dimension aspect contains aspects of line, text and arrows for dimension presentation.
|
|
Handle(Prs3d_DimensionAspect) DimensionAspect() const
|
|
{
|
|
return myDrawer->DimensionAspect();
|
|
}
|
|
|
|
//! Sets new dimension aspect for the interactive object drawer.
|
|
//! The dimension aspect provides dynamic properties which are generally
|
|
//! used during computation of dimension presentations.
|
|
Standard_EXPORT void SetDimensionAspect (const Handle(Prs3d_DimensionAspect)& theDimensionAspect);
|
|
|
|
//! @return the kind of dimension.
|
|
AIS_KindOfDimension KindOfDimension() const
|
|
{
|
|
return myKindOfDimension;
|
|
}
|
|
|
|
//! @return the kind of interactive.
|
|
virtual AIS_KindOfInteractive Type() const Standard_OVERRIDE
|
|
{
|
|
return AIS_KOI_Dimension;
|
|
}
|
|
|
|
//! Returns true if the class of objects accepts the display mode theMode.
|
|
//! The interactive context can have a default mode of representation for
|
|
//! the set of Interactive Objects. This mode may not be accepted by object.
|
|
virtual Standard_Boolean AcceptDisplayMode (const Standard_Integer theMode) const Standard_OVERRIDE
|
|
{
|
|
return theMode == ComputeMode_All;
|
|
}
|
|
|
|
public:
|
|
|
|
//! @return dimension special symbol display options.
|
|
AIS_DisplaySpecialSymbol DisplaySpecialSymbol() const
|
|
{
|
|
return myDisplaySpecialSymbol;
|
|
}
|
|
|
|
//! Specifies whether to display special symbol or not.
|
|
Standard_EXPORT void SetDisplaySpecialSymbol (const AIS_DisplaySpecialSymbol theDisplaySpecSymbol);
|
|
|
|
//! @return special symbol.
|
|
Standard_ExtCharacter SpecialSymbol() const
|
|
{
|
|
return mySpecialSymbol;
|
|
}
|
|
|
|
//! Specifies special symbol.
|
|
Standard_EXPORT void SetSpecialSymbol (const Standard_ExtCharacter theSpecialSymbol);
|
|
|
|
Standard_EXPORT virtual const TCollection_AsciiString& GetDisplayUnits() const;
|
|
|
|
Standard_EXPORT virtual const TCollection_AsciiString& GetModelUnits() const;
|
|
|
|
Standard_EXPORT virtual void SetDisplayUnits (const TCollection_AsciiString& /*theUnits*/) { }
|
|
|
|
Standard_EXPORT virtual void SetModelUnits (const TCollection_AsciiString& /*theUnits*/) { }
|
|
|
|
//! Unsets user defined text positioning and enables text positioning
|
|
//! by other parameters: text alignment, extension size, flyout and custom plane.
|
|
Standard_EXPORT void UnsetFixedTextPosition();
|
|
|
|
public:
|
|
|
|
//! Returns selection tolerance for text2d:
|
|
//! For 2d text selection detection sensitive point with tolerance is used
|
|
//! Important! Only for 2d text.
|
|
Standard_Real SelToleranceForText2d() const
|
|
{
|
|
return mySelToleranceForText2d;
|
|
}
|
|
|
|
//! Sets selection tolerance for text2d:
|
|
//! For 2d text selection detection sensitive point with tolerance is used
|
|
//! to change this tolerance use this method
|
|
//! Important! Only for 2d text.
|
|
Standard_EXPORT void SetSelToleranceForText2d (const Standard_Real theTol);
|
|
|
|
//! @return flyout value for dimension.
|
|
Standard_Real GetFlyout() const
|
|
{
|
|
return myFlyout;
|
|
}
|
|
|
|
//! Sets flyout value for dimension.
|
|
Standard_EXPORT void SetFlyout (const Standard_Real theFlyout);
|
|
|
|
//! Check that the input geometry for dimension is valid and the
|
|
//! presentation can be successfully computed.
|
|
//! @return TRUE if dimension geometry is ok.
|
|
virtual Standard_Boolean IsValid() const
|
|
{
|
|
return myIsGeometryValid && CheckPlane (GetPlane());
|
|
}
|
|
|
|
public:
|
|
|
|
DEFINE_STANDARD_RTTIEXT(AIS_Dimension,AIS_InteractiveObject)
|
|
|
|
protected:
|
|
|
|
Standard_EXPORT Standard_Real ValueToDisplayUnits() const;
|
|
|
|
//! Get formatted value string and its model space width.
|
|
//! @param theWidth [out] the model space with of the string.
|
|
//! @return formatted dimension value string.
|
|
Standard_EXPORT TCollection_ExtendedString GetValueString (Standard_Real& theWidth) const;
|
|
|
|
//! Performs drawing of 2d or 3d arrows on the working plane
|
|
//! @param theLocation [in] the location of the arrow tip.
|
|
//! @param theDirection [in] the direction from the tip to the bottom of the arrow.
|
|
Standard_EXPORT void DrawArrow (const Handle(Prs3d_Presentation)& thePresentation,
|
|
const gp_Pnt& theLocation,
|
|
const gp_Dir& theDirection);
|
|
|
|
//! Performs drawing of 2d or 3d text on the working plane
|
|
//! @param theTextPos [in] the position of the text label.
|
|
//! @param theTestDir [in] the direction of the text label.
|
|
//! @param theText [in] the text label string.
|
|
//! @param theLabelPosition [in] the text label vertical and horizontal positioning option
|
|
//! respectively to the main dimension line.
|
|
//! @return text width relative to the dimension working plane. For 2d text this value will be zero.
|
|
Standard_EXPORT void drawText (const Handle(Prs3d_Presentation)& thePresentation,
|
|
const gp_Pnt& theTextPos,
|
|
const gp_Dir& theTextDir,
|
|
const TCollection_ExtendedString& theText,
|
|
const Standard_Integer theLabelPosition);
|
|
|
|
//! Performs computing of dimension linear extension with text
|
|
//! @param thePresentation [in] the presentation to fill with graphical primitives.
|
|
//! @param theExtensionSize [in] the size of extension line.
|
|
//! @param theExtensionStart [in] the point where extension line connects to dimension.
|
|
//! @param theExtensionDir [in] the direction of extension line.
|
|
//! @param theLabelString [in] the string with value.
|
|
//! @param theLabelWidth [in] the geometrical width computed for value string.
|
|
//! @param theMode [in] the display mode.
|
|
//! @param theLabelPosition [in] position flags for the text label.
|
|
Standard_EXPORT void DrawExtension (const Handle(Prs3d_Presentation)& thePresentation,
|
|
const Standard_Real theExtensionSize,
|
|
const gp_Pnt& theExtensionStart,
|
|
const gp_Dir& theExtensionDir,
|
|
const TCollection_ExtendedString& theLabelString,
|
|
const Standard_Real theLabelWidth,
|
|
const Standard_Integer theMode,
|
|
const Standard_Integer theLabelPosition);
|
|
|
|
//! Performs computing of linear dimension (for length, diameter, radius and so on).
|
|
//! Please note that this method uses base dimension properties, like working plane
|
|
//! flyout length, drawer attributes.
|
|
//! @param thePresentation [in] the presentation to fill with primitives.
|
|
//! @param theMode [in] the presentation compute mode.
|
|
//! @param theFirstPoint [in] the first attach point of linear dimension.
|
|
//! @param theSecondPoint [in] the second attach point of linear dimension.
|
|
//! @param theIsOneSide [in] specifies whether the dimension has only one flyout line.
|
|
Standard_EXPORT void DrawLinearDimension (const Handle(Prs3d_Presentation)& thePresentation,
|
|
const Standard_Integer theMode,
|
|
const gp_Pnt& theFirstPoint,
|
|
const gp_Pnt& theSecondPoint,
|
|
const Standard_Boolean theIsOneSide = Standard_False);
|
|
|
|
//! Computes points bounded the flyout line for linear dimension.
|
|
//! @param theFirstPoint [in] the first attach point of linear dimension.
|
|
//! @param theSecondPoint [in] the second attach point of linear dimension.
|
|
//! @param theLineBegPoint [out] the first attach point of linear dimension.
|
|
//! @param theLineEndPoint [out] the second attach point of linear dimension.
|
|
Standard_EXPORT virtual void ComputeFlyoutLinePoints (const gp_Pnt& theFirstPoint, const gp_Pnt& theSecondPoint,
|
|
gp_Pnt& theLineBegPoint, gp_Pnt& theLineEndPoint);
|
|
|
|
//! Compute selection sensitives for linear dimension flyout lines (length, diameter, radius).
|
|
//! Please note that this method uses base dimension properties: working plane and flyout length.
|
|
//! @param theSelection [in] the selection structure to fill with selection primitives.
|
|
//! @param theOwner [in] the selection entity owner.
|
|
//! @param theFirstPoint [in] the first attach point of linear dimension.
|
|
//! @param theSecondPoint [in] the second attach point of linear dimension.
|
|
Standard_EXPORT void ComputeLinearFlyouts (const Handle(SelectMgr_Selection)& theSelection,
|
|
const Handle(SelectMgr_EntityOwner)& theOwner,
|
|
const gp_Pnt& theFirstPoint,
|
|
const gp_Pnt& theSecondPoint);
|
|
|
|
|
|
//! Performs initialization of circle and middle arc point from the passed
|
|
//! shape which is assumed to contain circular geometry.
|
|
//! @param theShape [in] the shape to explore.
|
|
//! @param theCircle [out] the circle geometry.
|
|
//! @param theMiddleArcPoint [out] the middle point of the arc.
|
|
//! @param theIsClosed [out] returns TRUE if the geometry is closed circle.
|
|
//! @return TRUE if the the circle is successfully got from the input shape.
|
|
Standard_EXPORT Standard_Boolean InitCircularDimension (const TopoDS_Shape& theShape,
|
|
gp_Circ& theCircle,
|
|
gp_Pnt& theMiddleArcPoint,
|
|
Standard_Boolean& theIsClosed);
|
|
|
|
//! Produce points for triangular arrow face.
|
|
//! @param thePeakPnt [in] the arrow peak position.
|
|
//! @param theDirection [in] the arrow direction.
|
|
//! @param thePlane [in] the face plane.
|
|
//! @param theArrowLength [in] the length of arrow.
|
|
//! @param theArrowAngle [in] the angle of arrow.
|
|
//! @param theSidePnt1 [out] the first side point.
|
|
//! @param theSidePnt2 [out] the second side point.
|
|
Standard_EXPORT void PointsForArrow (const gp_Pnt& thePeakPnt,
|
|
const gp_Dir& theDirection,
|
|
const gp_Dir& thePlane,
|
|
const Standard_Real theArrowLength,
|
|
const Standard_Real theArrowAngle,
|
|
gp_Pnt& theSidePnt1,
|
|
gp_Pnt& theSidePnt2);
|
|
|
|
//! Compute point of text position for dimension parameters
|
|
//! for linear kinds of dimensions (length, radius, diameter).
|
|
Standard_EXPORT gp_Pnt GetTextPositionForLinear (const gp_Pnt& theFirstPoint,
|
|
const gp_Pnt& theSecondPoint,
|
|
const Standard_Boolean theIsOneSide = Standard_False) const;
|
|
|
|
//! Fits text alignment relatively to the dimension line.
|
|
//! @param theFirstPoint [in] the first attachment point.
|
|
//! @param theSecondPoint [in] the second attachment point.
|
|
//! @param theIsOneSide [in] is the arrow displayed only on the one side of the dimension.
|
|
//! @param theHorizontalTextPos [in] the text horizontal position (alignment).
|
|
//! @param theLabelPosition [out] the label position, contains bits that defines
|
|
//! vertical and horizontal alignment. (for internal usage in count text position)
|
|
//! @param theIsArrowExternal [out] is the arrows external,
|
|
//! if arrow orientation in the dimension aspect is Prs3d_DAO_Fit, it fits arrow
|
|
//! orientation automatically.
|
|
Standard_EXPORT void FitTextAlignmentForLinear (const gp_Pnt& theFirstPoint,
|
|
const gp_Pnt& theSecondPoint,
|
|
const Standard_Boolean theIsOneSide,
|
|
const Prs3d_DimensionTextHorizontalPosition& theHorizontalTextPos,
|
|
Standard_Integer& theLabelPosition,
|
|
Standard_Boolean& theIsArrowsExternal) const;
|
|
|
|
//! Adjusts aspect parameters according the text position:
|
|
//! extension size, vertical text alignment and flyout.
|
|
//! @param theTextPos [in] the user defined 3d point of text position
|
|
//! @param theFirstPoint [in] the first point of linear measurement.
|
|
//! @param theSecondPoint [in] the second point of linear measurement.
|
|
//! @param theExtensionSize [out] the adjusted extension size
|
|
//! @param theAlignment [out] the horizontal label alignment.
|
|
//! @param theFlyout [out] the adjusted value of flyout.
|
|
//! @param thePlane [out] the new plane that contains theTextPos and attachment points.
|
|
//! @param theIsPlaneOld [out] shows if new plane is computed.
|
|
Standard_EXPORT Standard_Boolean AdjustParametersForLinear (const gp_Pnt& theTextPos,
|
|
const gp_Pnt& theFirstPoint,
|
|
const gp_Pnt& theSecondPoint,
|
|
Standard_Real& theExtensionSize,
|
|
Prs3d_DimensionTextHorizontalPosition& theAlignment,
|
|
Standard_Real& theFlyout,
|
|
gp_Pln& thePlane,
|
|
Standard_Boolean& theIsPlaneOld) const;
|
|
|
|
protected: //! @name Static auxilliary methods for geometry extraction
|
|
|
|
//! If it is possible extracts circle from planar face.
|
|
//! @param theFace [in] the planar face
|
|
//! @param theCurve [out] the circular curve
|
|
//! @param theFirstPoint [out] the point of the first parameter of the circlular curve
|
|
//! @param theSecondPoint [out] the point of the last parameter of the circlular curve
|
|
//! @return TRUE in case of successful circle extraction
|
|
static Standard_Boolean CircleFromPlanarFace (const TopoDS_Face& theFace,
|
|
Handle(Geom_Curve)& theCurve,
|
|
gp_Pnt& theFirstPoint,
|
|
gp_Pnt& theLastPoint);
|
|
|
|
//! If it is possible extracts circle from the edge.
|
|
//! @param theEdge [in] input edge to extract circle from
|
|
//! @param theCircle [out] circle
|
|
//! @param theFirstPoint [out] the point of the first parameter of the circlular curve
|
|
//! @param theSecondPoint [out] the point of the last parameter of the circlular curve
|
|
//! @return TRUE in case of successful circle extraction.
|
|
static Standard_Boolean CircleFromEdge (const TopoDS_Edge& theEdge,
|
|
gp_Circ& theCircle,
|
|
gp_Pnt& theFirstPoint,
|
|
gp_Pnt& theLastPoint);
|
|
|
|
protected: //! @name Behavior to implement
|
|
|
|
//! Override this method to check if user-defined plane
|
|
//! is valid for the dimension geometry.
|
|
//! @param thePlane [in] the working plane for positioning every
|
|
//! dimension in the application.
|
|
//! @return true is the plane is suitable for building dimension
|
|
//! with computed dimension geometry.
|
|
virtual Standard_Boolean CheckPlane (const gp_Pln& /*thePlane*/) const { return Standard_True; }
|
|
|
|
//! Override this method to computed value of dimension.
|
|
//! @return value from the measured geometry.
|
|
virtual Standard_Real ComputeValue() const
|
|
{
|
|
return 0.0;
|
|
}
|
|
|
|
//! Override this method to compute selection primitives for
|
|
//! flyout lines (if the dimension provides it).
|
|
//! This callback is a only a part of base selection
|
|
//! computation routine.
|
|
virtual void ComputeFlyoutSelection (const Handle(SelectMgr_Selection)&,
|
|
const Handle(SelectMgr_EntityOwner)&) {}
|
|
|
|
|
|
//! Base procedure of computing selection (based on selection geometry data).
|
|
//! @param theSelection [in] the selection structure to will with primitives.
|
|
//! @param theMode [in] the selection mode.
|
|
Standard_EXPORT virtual void ComputeSelection (const Handle(SelectMgr_Selection)& theSelection,
|
|
const Standard_Integer theMode) Standard_OVERRIDE;
|
|
|
|
protected: //! @name Selection geometry
|
|
|
|
//! Selection geometry of dimension presentation. The structure is filled with data
|
|
//! during compute of presentation, then this data is used to generate selection
|
|
//! sensitives when computing selection.
|
|
struct SelectionGeometry
|
|
{
|
|
//! Arrows are represented by directed triangles.
|
|
struct Arrow
|
|
{
|
|
gp_Pnt Position;
|
|
gp_Dir Direction;
|
|
};
|
|
typedef NCollection_Sequence<gp_Pnt> Curve;
|
|
typedef NCollection_Handle<Curve> HCurve;
|
|
typedef NCollection_Handle<Arrow> HArrow;
|
|
typedef NCollection_Sequence<HCurve> SeqOfCurves;
|
|
typedef NCollection_Sequence<HArrow> SeqOfArrows;
|
|
|
|
gp_Pnt TextPos; //!< Center of text label.
|
|
gp_Dir TextDir; //!< Direction of text label.
|
|
Standard_Real TextWidth; //!< Width of text label.
|
|
Standard_Real TextHeight; //!< Height of text label.
|
|
SeqOfCurves DimensionLine; //!< Sequence of points for composing the segments of dimension line.
|
|
SeqOfArrows Arrows; //!< Sequence of arrow geometries.
|
|
Standard_Boolean IsComputed; //!< Shows if the selection geometry was filled.
|
|
|
|
public:
|
|
|
|
//! Clear geometry of sensitives for the specified compute mode.
|
|
//! @param theMode [in] the compute mode to clear.
|
|
void Clear (const Standard_Integer theMode)
|
|
{
|
|
if (theMode == ComputeMode_All || theMode == ComputeMode_Line)
|
|
{
|
|
DimensionLine.Clear();
|
|
Arrows.Clear();
|
|
}
|
|
|
|
if (theMode == ComputeMode_All || theMode == ComputeMode_Text)
|
|
{
|
|
TextPos = gp::Origin();
|
|
TextDir = gp::DX();
|
|
TextWidth = 0.0;
|
|
TextHeight = 0.0;
|
|
}
|
|
|
|
IsComputed = Standard_False;
|
|
}
|
|
|
|
//! Add new curve entry and return the reference to populate it.
|
|
Curve& NewCurve()
|
|
{
|
|
DimensionLine.Append( new Curve );
|
|
HCurve& aLastCurve = DimensionLine.ChangeLast();
|
|
return *aLastCurve;
|
|
}
|
|
|
|
//! Add new arrow entry and return the reference to populate it.
|
|
Arrow& NewArrow()
|
|
{
|
|
Arrows.Append( new Arrow );
|
|
HArrow& aLastArrow = Arrows.ChangeLast();
|
|
return *aLastArrow;
|
|
}
|
|
} mySelectionGeom;
|
|
|
|
Standard_Real mySelToleranceForText2d; //!< Sensitive point tolerance for 2d text selection.
|
|
|
|
protected: //! @name Value properties
|
|
|
|
ValueType myValueType; //! type of value (computed or user-defined)
|
|
Standard_Real myCustomValue; //!< Value of the dimension (computed or user-defined).
|
|
|
|
TCollection_ExtendedString myCustomStringValue; //!< Value of the dimension (computed or user-defined).
|
|
|
|
protected: //! @name Fixed text position properties
|
|
|
|
gp_Pnt myFixedTextPosition; //!< Stores text position fixed by user.
|
|
Standard_Boolean myIsTextPositionFixed; //!< Is the text label position fixed by user.
|
|
|
|
protected: //! @name Units properties
|
|
|
|
Standard_ExtCharacter mySpecialSymbol; //!< Special symbol.
|
|
AIS_DisplaySpecialSymbol myDisplaySpecialSymbol; //!< Special symbol display options.
|
|
|
|
protected: //! @name Geometrical properties
|
|
|
|
GeometryType myGeometryType; //!< defines type of shapes on which the dimension is to be built.
|
|
|
|
gp_Pln myPlane; //!< Plane where dimension will be built (computed or user defined).
|
|
Standard_Boolean myIsPlaneCustom; //!< Is plane defined by user (otherwise it will be computed automatically).
|
|
Standard_Real myFlyout; //!< Flyout distance.
|
|
Standard_Boolean myIsGeometryValid; //!< Is dimension geometry properly defined.
|
|
|
|
private:
|
|
|
|
AIS_KindOfDimension myKindOfDimension;
|
|
};
|
|
|
|
#endif // _AIS_Dimension_HeaderFile
|