1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-26 10:19:45 +03:00
occt/src/Approx/Approx_CurvlinFunc.cxx
abv 0797d9d30a 0025418: Debug output to be limited to OCC development environment
Macros ending on "DEB" are replaced by OCCT_DEBUG across OCCT code; new macros described in documentation.
Macros starting with DEB are changed to start with "OCCT_DEBUG_".
Some code cleaned.
2014-11-05 16:55:24 +03:00

696 lines
19 KiB
C++

// Created on: 1998-05-12
// Created by: Roman BORISOV
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Approx_CurvlinFunc.ixx>
#include <Adaptor3d_CurveOnSurface.hxx>
#include <Adaptor3d_HCurveOnSurface.hxx>
#include <TColStd_SequenceOfReal.hxx>
#include <GeomLib.hxx>
#include <GCPnts_AbscissaPoint.hxx>
#include <Precision.hxx>
#ifdef OCCT_DEBUG_CHRONO
#include <OSD_Timer.hxx>
static OSD_Chronometer chr_uparam;
Standard_EXPORT Standard_Integer uparam_count;
Standard_EXPORT Standard_Real t_uparam;
//Standard_IMPORT extern void InitChron(OSD_Chronometer& ch);
Standard_IMPORT void InitChron(OSD_Chronometer& ch);
//Standard_IMPORT extern void ResultChron( OSD_Chronometer & ch, Standard_Real & time);
Standard_IMPORT void ResultChron( OSD_Chronometer & ch, Standard_Real & time);
#endif
static Standard_Real cubic(const Standard_Real X, const Standard_Real *Xi, const Standard_Real *Yi)
{
Standard_Real I1, I2, I3, I21, I22, I31, Result;
I1 = (Yi[0] - Yi[1])/(Xi[0] - Xi[1]);
I2 = (Yi[1] - Yi[2])/(Xi[1] - Xi[2]);
I3 = (Yi[2] - Yi[3])/(Xi[2] - Xi[3]);
I21 = (I1 - I2)/(Xi[0] - Xi[2]);
I22 = (I2 - I3)/(Xi[1] - Xi[3]);
I31 = (I21 - I22)/(Xi[0] - Xi[3]);
Result = Yi[0] + (X - Xi[0])*(I1 + (X - Xi[1])*(I21 + (X - Xi[2])*I31));
return Result;
}
//static void findfourpoints(const Standard_Real S,
static void findfourpoints(const Standard_Real ,
Standard_Integer NInterval,
const Handle(TColStd_HArray1OfReal)& Si,
Handle(TColStd_HArray1OfReal)& Ui,
const Standard_Real prevS,
const Standard_Real prevU, Standard_Real *Xi,
Standard_Real *Yi)
{
Standard_Integer i, j;
Standard_Integer NbInt = Si->Length() - 1;
if (NbInt < 3) Standard_ConstructionError::Raise("Approx_CurvlinFunc::GetUParameter");
if(NInterval < 1) NInterval = 1;
else if(NInterval > NbInt - 2) NInterval = NbInt - 2;
for(i = 0; i < 4; i++) {
Xi[i] = Si->Value(NInterval - 1 + i);
Yi[i] = Ui->Value(NInterval - 1 + i);
}
// try to insert (S, U)
for(i = 0; i < 3; i++) {
if(Xi[i] < prevS && prevS < Xi[i+1]) {
for(j = 0; j < i; j++) {
Xi[j] = Xi[j+1];
Yi[j] = Yi[j+1];
}
Xi[i] = prevS;
Yi[i] = prevU;
break;
}
}
}
/*static Standard_Real curvature(const Standard_Real U, const Adaptor3d_Curve& C)
{
Standard_Real k, tau, mod1, mod2, OMEGA;
gp_Pnt P;
gp_Vec D1, D2, D3;
C.D3(U, P, D1, D2, D3);
mod1 = D1.Magnitude();
mod2 = D1.Crossed(D2).Magnitude();
k = mod2/(mod1*mod1*mod1);
tau = D1.Dot(D2.Crossed(D3));
tau /= mod2*mod2;
OMEGA = Sqrt(k*k + tau*tau);
return OMEGA;
}
*/
Approx_CurvlinFunc::Approx_CurvlinFunc(const Handle(Adaptor3d_HCurve)& C, const Standard_Real Tol) : myC3D(C),
myCase(1),
myFirstS(0),
myLastS(1),
myTolLen(Tol),
myPrevS (0.0),
myPrevU (0.0)
{
Init();
}
Approx_CurvlinFunc::Approx_CurvlinFunc(const Handle(Adaptor2d_HCurve2d)& C2D, const Handle(Adaptor3d_HSurface)& S, const Standard_Real Tol) :
myC2D1(C2D),
mySurf1(S),
myCase(2),
myFirstS(0),
myLastS(1),
myTolLen(Tol),
myPrevS (0.0),
myPrevU (0.0)
{
Init();
}
Approx_CurvlinFunc::Approx_CurvlinFunc(const Handle(Adaptor2d_HCurve2d)& C2D1, const Handle(Adaptor2d_HCurve2d)& C2D2, const Handle(Adaptor3d_HSurface)& S1, const Handle(Adaptor3d_HSurface)& S2, const Standard_Real Tol) :
myC2D1(C2D1),
myC2D2(C2D2),
mySurf1(S1),
mySurf2(S2),
myCase(3),
myFirstS(0),
myLastS(1),
myTolLen(Tol),
myPrevS (0.0),
myPrevU (0.0)
{
Init();
}
void Approx_CurvlinFunc::Init()
{
Adaptor3d_CurveOnSurface CurOnSur;
switch(myCase) {
case 1:
Init(myC3D->GetCurve(), mySi_1, myUi_1);
myFirstU1 = myC3D->FirstParameter();
myLastU1 = myC3D->LastParameter();
myFirstU2 = myLastU2 = 0;
break;
case 2:
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
Init(CurOnSur, mySi_1, myUi_1);
myFirstU1 = CurOnSur.FirstParameter();
myLastU1 = CurOnSur.LastParameter();
myFirstU2 = myLastU2 = 0;
break;
case 3:
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
Init(CurOnSur, mySi_1, myUi_1);
myFirstU1 = CurOnSur.FirstParameter();
myLastU1 = CurOnSur.LastParameter();
CurOnSur.Load(myC2D2);
CurOnSur.Load(mySurf2);
Init(CurOnSur, mySi_2, myUi_2);
myFirstU2 = CurOnSur.FirstParameter();
myLastU2 = CurOnSur.LastParameter();
}
Length();
}
//=======================================================================
//function : Init
//purpose : Init the values
//history : 23/10/1998 PMN : Cut at curve's discontinuities
//=======================================================================
void Approx_CurvlinFunc::Init(Adaptor3d_Curve& C, Handle(TColStd_HArray1OfReal)& Si,
Handle(TColStd_HArray1OfReal)& Ui) const
{
Standard_Real Step, FirstU, LastU;
Standard_Integer i, j, k, NbInt, NbIntC3;
FirstU = C.FirstParameter();
LastU = C.LastParameter();
NbInt = 10;
NbIntC3 = C.NbIntervals(GeomAbs_C3);
TColStd_Array1OfReal Disc(1, NbIntC3+1);
if (NbIntC3 >1) {
C.Intervals(Disc, GeomAbs_C3);
}
else {
Disc(1) = FirstU;
Disc(2) = LastU;
}
Ui = new TColStd_HArray1OfReal (0,NbIntC3*NbInt);
Si = new TColStd_HArray1OfReal (0,NbIntC3*NbInt);
Ui->SetValue(0, FirstU);
Si->SetValue(0, 0);
for(j = 1, i=1; j<=NbIntC3; j++) {
Step = (Disc(j+1) - Disc(j))/NbInt;
for(k = 1; k <= NbInt; k++, i++) {
Ui->ChangeValue(i) = Ui->Value(i-1) + Step;
Si->ChangeValue(i) = Si->Value(i-1) + Length(C, Ui->Value(i-1), Ui->Value(i));
}
}
Standard_Real Len = Si->Value(Si->Upper());
for(i = Si->Lower(); i<= Si->Upper(); i++)
Si->ChangeValue(i) /= Len;
// TODO - fields should be mutable
const_cast<Approx_CurvlinFunc*>(this)->myPrevS = myFirstS;
const_cast<Approx_CurvlinFunc*>(this)->myPrevU = FirstU;
}
void Approx_CurvlinFunc::SetTol(const Standard_Real Tol)
{
myTolLen = Tol;
}
Standard_Real Approx_CurvlinFunc::FirstParameter() const
{
return myFirstS;
}
Standard_Real Approx_CurvlinFunc::LastParameter() const
{
return myLastS;
}
Standard_Integer Approx_CurvlinFunc::NbIntervals(const GeomAbs_Shape S) const
{
Adaptor3d_CurveOnSurface CurOnSur;
switch(myCase) {
case 1:
return myC3D->NbIntervals(S);
case 2:
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
return CurOnSur.NbIntervals(S);
case 3:
Standard_Integer NbInt;
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
NbInt = CurOnSur.NbIntervals(S);
TColStd_Array1OfReal T1(1, NbInt+1);
CurOnSur.Intervals(T1, S);
CurOnSur.Load(myC2D2);
CurOnSur.Load(mySurf2);
NbInt = CurOnSur.NbIntervals(S);
TColStd_Array1OfReal T2(1, NbInt+1);
CurOnSur.Intervals(T2, S);
TColStd_SequenceOfReal Fusion;
GeomLib::FuseIntervals(T1, T2, Fusion);
return Fusion.Length() - 1;
}
//POP pour WNT
return 1;
}
void Approx_CurvlinFunc::Intervals(TColStd_Array1OfReal& T, const GeomAbs_Shape S) const
{
Adaptor3d_CurveOnSurface CurOnSur;
Standard_Integer i;
switch(myCase) {
case 1:
myC3D->Intervals(T, S);
break;
case 2:
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
CurOnSur.Intervals(T, S);
break;
case 3:
Standard_Integer NbInt;
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
NbInt = CurOnSur.NbIntervals(S);
TColStd_Array1OfReal T1(1, NbInt+1);
CurOnSur.Intervals(T1, S);
CurOnSur.Load(myC2D2);
CurOnSur.Load(mySurf2);
NbInt = CurOnSur.NbIntervals(S);
TColStd_Array1OfReal T2(1, NbInt+1);
CurOnSur.Intervals(T2, S);
TColStd_SequenceOfReal Fusion;
GeomLib::FuseIntervals(T1, T2, Fusion);
for (i = 1; i <= Fusion.Length(); i++)
T.ChangeValue(i) = Fusion.Value(i);
}
for(i = 1; i <= T.Length(); i++)
T.ChangeValue(i) = GetSParameter(T.Value(i));
}
void Approx_CurvlinFunc::Trim(const Standard_Real First, const Standard_Real Last, const Standard_Real Tol)
{
if (First < 0 || Last >1) Standard_OutOfRange::Raise("Approx_CurvlinFunc::Trim");
if ((Last - First) < Tol) return;
Standard_Real FirstU, LastU;
Adaptor3d_CurveOnSurface CurOnSur;
Handle(Adaptor3d_HCurve) HCurOnSur;
switch(myCase) {
case 1:
myC3D = myC3D->Trim(myFirstU1, myLastU1, Tol);
FirstU = GetUParameter(myC3D->GetCurve(), First, 1);
LastU = GetUParameter(myC3D->GetCurve(), Last, 1);
myC3D = myC3D->Trim(FirstU, LastU, Tol);
break;
case 3:
CurOnSur.Load(myC2D2);
CurOnSur.Load(mySurf2);
HCurOnSur = CurOnSur.Trim(myFirstU2, myLastU2, Tol);
myC2D2 = ((Adaptor3d_CurveOnSurface *)(&(HCurOnSur->Curve())))->GetCurve();
mySurf2 = ((Adaptor3d_CurveOnSurface *)(&(HCurOnSur->Curve())))->GetSurface();
CurOnSur.Load(myC2D2);
CurOnSur.Load(mySurf2);
FirstU = GetUParameter(CurOnSur, First, 1);
LastU = GetUParameter(CurOnSur, Last, 1);
HCurOnSur = CurOnSur.Trim(FirstU, LastU, Tol);
myC2D2 = ((Adaptor3d_CurveOnSurface *)(&(HCurOnSur->Curve())))->GetCurve();
mySurf2 = ((Adaptor3d_CurveOnSurface *)(&(HCurOnSur->Curve())))->GetSurface();
case 2:
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
HCurOnSur = CurOnSur.Trim(myFirstU1, myLastU1, Tol);
myC2D1 = ((Adaptor3d_CurveOnSurface *)(&(HCurOnSur->Curve())))->GetCurve();
mySurf1 = ((Adaptor3d_CurveOnSurface *)(&(HCurOnSur->Curve())))->GetSurface();
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
FirstU = GetUParameter(CurOnSur, First, 1);
LastU = GetUParameter(CurOnSur, Last, 1);
HCurOnSur = CurOnSur.Trim(FirstU, LastU, Tol);
myC2D1 = ((Adaptor3d_CurveOnSurface *)(&(HCurOnSur->Curve())))->GetCurve();
mySurf1 = ((Adaptor3d_CurveOnSurface *)(&(HCurOnSur->Curve())))->GetSurface();
}
myFirstS = First;
myLastS = Last;
}
void Approx_CurvlinFunc::Length()
{
Adaptor3d_CurveOnSurface CurOnSur;
Standard_Real FirstU, LastU;
switch(myCase){
case 1:
FirstU = myC3D->FirstParameter();
LastU = myC3D->LastParameter();
myLength = Length(myC3D->GetCurve(), FirstU, LastU);
myLength1 = myLength2 = 0;
break;
case 2:
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
FirstU = CurOnSur.FirstParameter();
LastU = CurOnSur.LastParameter();
myLength = Length(CurOnSur, FirstU, LastU);
myLength1 = myLength2 = 0;
break;
case 3:
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
FirstU = CurOnSur.FirstParameter();
LastU = CurOnSur.LastParameter();
myLength1 = Length(CurOnSur, FirstU, LastU);
CurOnSur.Load(myC2D2);
CurOnSur.Load(mySurf2);
FirstU = CurOnSur.FirstParameter();
LastU = CurOnSur.LastParameter();
myLength2 = Length(CurOnSur, FirstU, LastU);
myLength = (myLength1 + myLength2)/2;
}
}
Standard_Real Approx_CurvlinFunc::Length(Adaptor3d_Curve& C, const Standard_Real FirstU, const Standard_Real LastU) const
{
Standard_Real Length;
Length = GCPnts_AbscissaPoint::Length(C, FirstU, LastU, myTolLen);
return Length;
}
Standard_Real Approx_CurvlinFunc::GetLength() const
{
return myLength;
}
Standard_Real Approx_CurvlinFunc::GetSParameter(const Standard_Real U) const
{
Standard_Real S=0, S1, S2;
Adaptor3d_CurveOnSurface CurOnSur;
switch (myCase) {
case 1:
S = GetSParameter(myC3D->GetCurve(), U, myLength);
break;
case 2:
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
S = GetSParameter(CurOnSur, U, myLength);
break;
case 3:
CurOnSur.Load(myC2D1);
CurOnSur.Load(mySurf1);
S1 = GetSParameter(CurOnSur, U, myLength1);
CurOnSur.Load(myC2D2);
CurOnSur.Load(mySurf2);
S2 = GetSParameter(CurOnSur, U, myLength2);
S = (S1 + S2)/2;
}
return S;
}
Standard_Real Approx_CurvlinFunc::GetUParameter(Adaptor3d_Curve& C,
const Standard_Real S,
const Standard_Integer NumberOfCurve) const
{
Standard_Real deltaS, base, U, Length;
Standard_Integer NbInt, NInterval, i;
Handle(TColStd_HArray1OfReal) InitUArray, InitSArray;
#ifdef OCCT_DEBUG_CHRONO
InitChron(chr_uparam);
#endif
if(S < 0 || S > 1) Standard_ConstructionError::Raise("Approx_CurvlinFunc::GetUParameter");
if(NumberOfCurve == 1) {
InitUArray = myUi_1;
InitSArray = mySi_1;
if(myCase == 3)
Length = myLength1;
else
Length = myLength;
}
else {
InitUArray = myUi_2;
InitSArray = mySi_2;
Length = myLength2;
}
NbInt = InitUArray->Length() - 1;
if(S == 1) NInterval = NbInt - 1;
else {
for(i = 0; i < NbInt; i++) {
if((InitSArray->Value(i) <= S && S < InitSArray->Value(i+1)))
break;
}
NInterval = i;
}
if(S==InitSArray->Value(NInterval)) {
return InitUArray->Value(NInterval);
}
if(S==InitSArray->Value(NInterval+1)) {
return InitUArray->Value(NInterval+1);
}
base = InitUArray->Value(NInterval);
deltaS = (S - InitSArray->Value(NInterval))*Length;
// to find an initial point
Standard_Real Xi[4], Yi[4], UGuess;
findfourpoints(S, NInterval, InitSArray, InitUArray, myPrevS, myPrevU, Xi, Yi);
UGuess = cubic(S , Xi, Yi);
U = GCPnts_AbscissaPoint(C, deltaS, base, UGuess, myTolLen).Parameter();
// TODO - fields should be mutable
const_cast<Approx_CurvlinFunc*>(this)->myPrevS = S;
const_cast<Approx_CurvlinFunc*>(this)->myPrevU = U;
#ifdef OCCT_DEBUG_CHRONO
ResultChron(chr_uparam, t_uparam);
uparam_count++;
#endif
return U;
}
Standard_Real Approx_CurvlinFunc::GetSParameter(Adaptor3d_Curve& C, const Standard_Real U, const Standard_Real Len) const
{
Standard_Real S, Origin;
Origin = C.FirstParameter();
S = myFirstS + Length(C, Origin, U)/Len;
return S;
}
Standard_Boolean Approx_CurvlinFunc::EvalCase1(const Standard_Real S, const Standard_Integer Order, TColStd_Array1OfReal& Result) const
{
if(myCase != 1) Standard_ConstructionError::Raise("Approx_CurvlinFunc::EvalCase1");
gp_Pnt C;
gp_Vec dC_dU, dC_dS, d2C_dU2, d2C_dS2;
Standard_Real U, Mag, dU_dS, d2U_dS2;
U = GetUParameter(myC3D->GetCurve(), S, 1);
switch(Order) {
case 0:
myC3D->D0(U, C);
Result(0) = C.X();
Result(1) = C.Y();
Result(2) = C.Z();
break;
case 1:
myC3D->D1(U, C, dC_dU);
Mag = dC_dU.Magnitude();
dU_dS = myLength/Mag;
dC_dS = dC_dU*dU_dS;
Result(0) = dC_dS.X();
Result(1) = dC_dS.Y();
Result(2) = dC_dS.Z();
break;
case 2:
myC3D->D2(U, C, dC_dU, d2C_dU2);
Mag = dC_dU.Magnitude();
dU_dS = myLength/Mag;
d2U_dS2 = -myLength*dC_dU.Dot(d2C_dU2)*dU_dS/(Mag*Mag*Mag);
d2C_dS2 = d2C_dU2*dU_dS*dU_dS + dC_dU*d2U_dS2;
Result(0) = d2C_dS2.X();
Result(1) = d2C_dS2.Y();
Result(2) = d2C_dS2.Z();
break;
default: Result(0) = Result(1) = Result(2) = 0;
return Standard_False;
}
return Standard_True;
}
Standard_Boolean Approx_CurvlinFunc::EvalCase2(const Standard_Real S, const Standard_Integer Order, TColStd_Array1OfReal& Result) const
{
if(myCase != 2) Standard_ConstructionError::Raise("Approx_CurvlinFunc::EvalCase2");
Standard_Boolean Done;
Done = EvalCurOnSur(S, Order, Result, 1);
return Done;
}
Standard_Boolean Approx_CurvlinFunc::EvalCase3(const Standard_Real S, const Standard_Integer Order, TColStd_Array1OfReal& Result)
{
if(myCase != 3) Standard_ConstructionError::Raise("Approx_CurvlinFunc::EvalCase3");
TColStd_Array1OfReal tmpRes1(0, 4), tmpRes2(0, 4);
Standard_Boolean Done;
Done = EvalCurOnSur(S, Order, tmpRes1, 1);
Done = EvalCurOnSur(S, Order, tmpRes2, 2) && Done;
Result(0) = tmpRes1(0);
Result(1) = tmpRes1(1);
Result(2) = tmpRes2(0);
Result(3) = tmpRes2(1);
Result(4) = 0.5*(tmpRes1(2) + tmpRes2(2));
Result(5) = 0.5*(tmpRes1(3) + tmpRes2(3));
Result(6) = 0.5*(tmpRes1(4) + tmpRes2(4));
return Done;
}
Standard_Boolean Approx_CurvlinFunc::EvalCurOnSur(const Standard_Real S, const Standard_Integer Order, TColStd_Array1OfReal& Result, const Standard_Integer NumberOfCurve) const
{
Handle(Adaptor2d_HCurve2d) Cur2D;
Handle(Adaptor3d_HSurface) Surf;
Standard_Real U=0, Length=0;
if (NumberOfCurve == 1) {
Cur2D = myC2D1;
Surf = mySurf1;
Adaptor3d_CurveOnSurface CurOnSur(myC2D1, mySurf1);
U = GetUParameter(CurOnSur, S, 1);
if(myCase == 3) Length = myLength1;
else Length = myLength;
}
else if (NumberOfCurve == 2) {
Cur2D = myC2D2;
Surf = mySurf2;
Adaptor3d_CurveOnSurface CurOnSur(myC2D2, mySurf2);
U = GetUParameter(CurOnSur, S, 2);
Length = myLength2;
}
else
Standard_ConstructionError::Raise("Approx_CurvlinFunc::EvalCurOnSur");
Standard_Real Mag, dU_dS, d2U_dS2, dV_dU, dW_dU, dV_dS, dW_dS, d2V_dS2, d2W_dS2, d2V_dU2, d2W_dU2;
gp_Pnt2d C2D;
gp_Pnt C;
gp_Vec2d dC2D_dU, d2C2D_dU2;
gp_Vec dC_dU, d2C_dU2, dC_dS, d2C_dS2, dS_dV, dS_dW, d2S_dV2, d2S_dW2, d2S_dVdW;
switch(Order) {
case 0:
Cur2D->D0(U, C2D);
Surf->D0(C2D.X(), C2D.Y(), C);
Result(0) = C2D.X();
Result(1) = C2D.Y();
Result(2) = C.X();
Result(3) = C.Y();
Result(4) = C.Z();
break;
case 1:
Cur2D->D1(U, C2D, dC2D_dU);
dV_dU = dC2D_dU.X();
dW_dU = dC2D_dU.Y();
Surf->D1(C2D.X(), C2D.Y(), C, dS_dV, dS_dW);
dC_dU = dS_dV*dV_dU + dS_dW*dW_dU;
Mag = dC_dU.Magnitude();
dU_dS = Length/Mag;
dV_dS = dV_dU*dU_dS;
dW_dS = dW_dU*dU_dS;
dC_dS = dC_dU*dU_dS;
Result(0) = dV_dS;
Result(1) = dW_dS;
Result(2) = dC_dS.X();
Result(3) = dC_dS.Y();
Result(4) = dC_dS.Z();
break;
case 2:
Cur2D->D2(U, C2D, dC2D_dU, d2C2D_dU2);
dV_dU = dC2D_dU.X();
dW_dU = dC2D_dU.Y();
d2V_dU2 = d2C2D_dU2.X();
d2W_dU2 = d2C2D_dU2.Y();
Surf->D2(C2D.X(), C2D.Y(), C, dS_dV, dS_dW, d2S_dV2, d2S_dW2, d2S_dVdW);
dC_dU = dS_dV*dV_dU + dS_dW*dW_dU;
d2C_dU2 = (d2S_dV2*dV_dU + d2S_dVdW*dW_dU)*dV_dU + dS_dV*d2V_dU2 +
(d2S_dVdW*dV_dU + d2S_dW2*dW_dU)*dW_dU + dS_dW*d2W_dU2;
Mag = dC_dU.Magnitude();
dU_dS = Length/Mag;
d2U_dS2 = -Length*dC_dU.Dot(d2C_dU2)*dU_dS/(Mag*Mag*Mag);
dV_dS = dV_dU * dU_dS;
dW_dS = dW_dU * dU_dS;
d2V_dS2 = d2V_dU2*dU_dS*dU_dS + dV_dU*d2U_dS2;
d2W_dS2 = d2W_dU2*dU_dS*dU_dS + dW_dU*d2U_dS2;
d2U_dS2 = -dC_dU.Dot(d2C_dU2)*dU_dS/(Mag*Mag);
d2C_dS2 = (d2S_dV2 * dV_dS + d2S_dVdW * dW_dS) * dV_dS + dS_dV * d2V_dS2 +
(d2S_dW2 * dW_dS + d2S_dVdW * dV_dS) * dW_dS + dS_dW * d2W_dS2;
Result(0) = d2V_dS2;
Result(1) = d2W_dS2;
Result(2) = d2C_dS2.X();
Result(3) = d2C_dS2.Y();
Result(4) = d2C_dS2.Z();
break;
default: Result(0) = Result(1) = Result(2) = Result(3) = Result(4) = 0;
return Standard_False;
}
return Standard_True;
}