mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
301 lines
10 KiB
C++
301 lines
10 KiB
C++
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
//================================================================================
|
|
// Creation of a circle tangent to an element and having center in a point +
|
|
//================================================================================
|
|
|
|
#include <ElCLib.hxx>
|
|
#include <GccAna_Circ2dTanCen.hxx>
|
|
#include <GccEnt_BadQualifier.hxx>
|
|
#include <GccEnt_QualifiedCirc.hxx>
|
|
#include <gp.hxx>
|
|
#include <gp_Circ2d.hxx>
|
|
#include <gp_Dir2d.hxx>
|
|
#include <gp_Lin2d.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
|
|
//========================================================================
|
|
// Creation of a circle tangent to a circle with center in a point. +
|
|
// - Calculate the distance between the center of the circle and the point of +
|
|
// center : dist +
|
|
// - Check that this distance is compatible with the qualifier of the circle. +
|
|
// Si yes, the radius of the solution will be : +
|
|
// C1.Radius()-dist if the qualifier is Enclosed. +
|
|
// C1.Radius()+dist if the qualifier is Enclosing. +
|
|
// dist-C1.Radius() if the qualifier is Outside. +
|
|
// a mix of these values if the qualifier is Unqualified. +
|
|
//========================================================================
|
|
GccAna_Circ2dTanCen::
|
|
GccAna_Circ2dTanCen (const GccEnt_QualifiedCirc& Qualified1,
|
|
const gp_Pnt2d& Pcenter ,
|
|
const Standard_Real Tolerance ):
|
|
|
|
//========================================================================
|
|
// Initialization of fields. +
|
|
//========================================================================
|
|
|
|
cirsol(1,2) ,
|
|
qualifier1(1,2) ,
|
|
TheSame1(1,2) ,
|
|
pnttg1sol(1,2),
|
|
par1sol(1,2),
|
|
pararg1(1,2)
|
|
{
|
|
|
|
NbrSol = 0;
|
|
Standard_Real Radius = 0.0;
|
|
WellDone = Standard_False;
|
|
if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() ||
|
|
Qualified1.IsOutside() || Qualified1.IsUnqualified())) {
|
|
throw GccEnt_BadQualifier();
|
|
return;
|
|
}
|
|
gp_Dir2d dirx(1.0,0.0);
|
|
Standard_Real Tol = Abs(Tolerance);
|
|
gp_Circ2d C1 = Qualified1.Qualified();
|
|
Standard_Real R1 = C1.Radius();
|
|
gp_Pnt2d center1(C1.Location());
|
|
Standard_Real dist;
|
|
Standard_Integer signe = 0;
|
|
Standard_Integer signe1 = 0;
|
|
|
|
if (!Qualified1.IsUnqualified()) {
|
|
dist = Pcenter.Distance(center1);
|
|
if (Qualified1.IsEnclosed()) {
|
|
// ============================
|
|
if (dist-R1 <= Tol) {
|
|
Radius = Abs(R1-dist);
|
|
signe = 1;
|
|
}
|
|
else { WellDone = Standard_True; }
|
|
}
|
|
else if (Qualified1.IsEnclosing()) {
|
|
// =================================
|
|
Radius = R1+dist;
|
|
signe = -1;
|
|
}
|
|
else if (Qualified1.IsOutside()) {
|
|
// ===============================
|
|
if (dist < R1-Tol) { WellDone = Standard_True; }
|
|
else {
|
|
Radius = Abs(R1-dist);
|
|
signe = -1;
|
|
}
|
|
}
|
|
if (signe != 0) {
|
|
NbrSol++;
|
|
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Pcenter,dirx),Radius);
|
|
// ========================================================
|
|
qualifier1(NbrSol) = Qualified1.Qualifier();
|
|
if (dist <= gp::Resolution()) { TheSame1(NbrSol) = 1; }
|
|
else {
|
|
TheSame1(NbrSol) = 0;
|
|
gp_Dir2d d(Pcenter.X()-center1.X(),Pcenter.Y()-center1.Y());
|
|
pnttg1sol(NbrSol) = gp_Pnt2d(Pcenter.XY()+signe*Radius*d.XY());
|
|
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),pnttg1sol(NbrSol));
|
|
pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
|
|
}
|
|
WellDone = Standard_True;
|
|
}
|
|
}
|
|
else {
|
|
// ====
|
|
dist = Pcenter.Distance(center1);
|
|
if (dist >= gp::Resolution()) {
|
|
signe = 1;
|
|
for (Standard_Integer i = 1; i <= 2 ; i++) {
|
|
signe = -signe;
|
|
if (R1-dist <= 0.) {
|
|
signe1 = -1;
|
|
}
|
|
else {
|
|
signe1 = -signe;
|
|
}
|
|
Radius = Abs(R1+signe*dist);
|
|
NbrSol++;
|
|
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Pcenter,dirx),Radius);
|
|
// ========================================================
|
|
Standard_Real distcc1 = Pcenter.Distance(center1);
|
|
if (!Qualified1.IsUnqualified()) {
|
|
qualifier1(NbrSol) = Qualified1.Qualifier();
|
|
}
|
|
else if (Abs(distcc1+Radius-R1) < Tol) {
|
|
qualifier1(NbrSol) = GccEnt_enclosed;
|
|
}
|
|
else if (Abs(distcc1-R1-Radius) < Tol) {
|
|
qualifier1(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier1(NbrSol) = GccEnt_enclosing; }
|
|
TheSame1(NbrSol) = 0;
|
|
WellDone = Standard_True;
|
|
gp_Dir2d d(Pcenter.X()-center1.X(),Pcenter.Y()-center1.Y());
|
|
pnttg1sol(NbrSol) = gp_Pnt2d(Pcenter.XY()+signe1*Radius*d.XY());
|
|
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),pnttg1sol(NbrSol));
|
|
pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
|
|
}
|
|
}
|
|
else {
|
|
NbrSol++;
|
|
cirsol(NbrSol) = gp_Circ2d(C1);
|
|
// ==============================
|
|
qualifier1(1) = Qualified1.Qualifier();
|
|
TheSame1(NbrSol) = 1;
|
|
WellDone = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
|
|
//=========================================================================
|
|
// Circle tangent to line Linetan and center in a point Pcenter. +
|
|
// Calculate the distance from the point to the line ==> Radius. +
|
|
// Create the circle with center Pcenter of radius Radius. +
|
|
//=========================================================================
|
|
|
|
GccAna_Circ2dTanCen::
|
|
GccAna_Circ2dTanCen (const gp_Lin2d& Linetan ,
|
|
const gp_Pnt2d& Pcenter ):
|
|
|
|
//=========================================================================
|
|
// Initialisation of fields. +
|
|
//=========================================================================
|
|
|
|
cirsol(1,1) ,
|
|
qualifier1(1,1),
|
|
TheSame1(1,1) ,
|
|
pnttg1sol(1,1),
|
|
par1sol(1,1),
|
|
pararg1(1,1)
|
|
{
|
|
|
|
gp_Dir2d dirx(1.0,0.0);
|
|
Standard_Real rayon = Linetan.Distance(Pcenter);
|
|
cirsol(1) = gp_Circ2d(gp_Ax2d(Pcenter,dirx),rayon);
|
|
// ==================================================
|
|
qualifier1(1) = GccEnt_noqualifier;
|
|
TheSame1(1) = 0;
|
|
Standard_Real xloc = Linetan.Location().X();
|
|
Standard_Real yloc = Linetan.Location().Y();
|
|
Standard_Real xdir = Linetan.Direction().X();
|
|
Standard_Real ydir = Linetan.Direction().Y();
|
|
|
|
if (gp_Dir2d(xloc-Pcenter.X(),yloc-Pcenter.Y())
|
|
.Dot(gp_Dir2d(-ydir,xdir)) > 0.0) {
|
|
pnttg1sol(1) = gp_Pnt2d(Pcenter.XY()+rayon*gp_XY(-ydir,xdir));
|
|
par1sol(1)=ElCLib::Parameter(cirsol(1),pnttg1sol(1));
|
|
pararg1(1)=ElCLib::Parameter(Linetan,pnttg1sol(1));
|
|
}
|
|
else {
|
|
pnttg1sol(1) = gp_Pnt2d(Pcenter.XY()+rayon*gp_XY(ydir,-xdir));
|
|
par1sol(1)=ElCLib::Parameter(cirsol(1),pnttg1sol(1));
|
|
pararg1(1)=ElCLib::Parameter(Linetan,pnttg1sol(1));
|
|
}
|
|
NbrSol = 1;
|
|
WellDone = Standard_True;
|
|
}
|
|
|
|
//=========================================================================
|
|
// Circle tangent to point Point1 and centered in a point Pcenter. +
|
|
// Calculate the distance from Pcenter to Point1 ==> Radius. +
|
|
// Create the circle with center Pcenter of radius Radius. +
|
|
//=========================================================================
|
|
|
|
GccAna_Circ2dTanCen::
|
|
GccAna_Circ2dTanCen (const gp_Pnt2d& Point1 ,
|
|
const gp_Pnt2d& Pcenter ):
|
|
|
|
//=========================================================================
|
|
// Initialisation of fields. +
|
|
//=========================================================================
|
|
|
|
cirsol(1,1) ,
|
|
qualifier1(1,1),
|
|
TheSame1(1,1) ,
|
|
pnttg1sol(1,1),
|
|
par1sol(1,1) ,
|
|
pararg1(1,1)
|
|
{
|
|
|
|
gp_Dir2d dirx(1.0,0.0);
|
|
Standard_Real rayon = Point1.Distance(Pcenter);
|
|
cirsol(1) = gp_Circ2d(gp_Ax2d(Pcenter,dirx),rayon);
|
|
// =================================================
|
|
qualifier1(1) = GccEnt_noqualifier;
|
|
TheSame1(1) = 0;
|
|
pnttg1sol(1) = Point1;
|
|
par1sol(1)=ElCLib::Parameter(cirsol(1),pnttg1sol(1));
|
|
pararg1(1) = 0.0;
|
|
NbrSol = 1;
|
|
WellDone = Standard_True;
|
|
}
|
|
|
|
//=========================================================================
|
|
|
|
Standard_Boolean GccAna_Circ2dTanCen::
|
|
IsDone () const { return WellDone; }
|
|
|
|
Standard_Integer GccAna_Circ2dTanCen::
|
|
NbSolutions () const { return NbrSol; }
|
|
|
|
gp_Circ2d GccAna_Circ2dTanCen::
|
|
ThisSolution (const Standard_Integer Index) const
|
|
{
|
|
if (Index > NbrSol || Index <= 0) { throw Standard_OutOfRange(); }
|
|
return cirsol(Index);
|
|
}
|
|
|
|
void GccAna_Circ2dTanCen::
|
|
WhichQualifier(const Standard_Integer Index ,
|
|
GccEnt_Position& Qualif1 ) const
|
|
{
|
|
if (!WellDone) { throw StdFail_NotDone(); }
|
|
else if (Index <= 0 ||Index > NbrSol) { throw Standard_OutOfRange(); }
|
|
else {
|
|
Qualif1 = qualifier1(Index);
|
|
}
|
|
}
|
|
|
|
void GccAna_Circ2dTanCen::
|
|
Tangency1 (const Standard_Integer Index,
|
|
Standard_Real& ParSol,
|
|
Standard_Real& ParArg,
|
|
gp_Pnt2d& PntSol) const{
|
|
if (!WellDone) { throw StdFail_NotDone(); }
|
|
else if (Index <= 0 ||Index > NbrSol) { throw Standard_OutOfRange(); }
|
|
else {
|
|
if (TheSame1(Index) == 0) {
|
|
PntSol = gp_Pnt2d(pnttg1sol(Index));
|
|
ParSol = par1sol(Index);
|
|
ParArg = pararg1(Index);
|
|
}
|
|
else { throw StdFail_NotDone(); }
|
|
}
|
|
}
|
|
|
|
Standard_Boolean GccAna_Circ2dTanCen::
|
|
IsTheSame1 (const Standard_Integer Index) const
|
|
{
|
|
if (!WellDone)
|
|
throw StdFail_NotDone();
|
|
if (Index <= 0 ||Index > NbrSol)
|
|
throw Standard_OutOfRange();
|
|
|
|
if (TheSame1(Index) == 0)
|
|
return Standard_False;
|
|
|
|
return Standard_True;
|
|
}
|