mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
203 lines
6.7 KiB
C++
203 lines
6.7 KiB
C++
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <ElCLib.hxx>
|
|
#include <GccAna_Circ2d3Tan.hxx>
|
|
#include <GccAna_Lin2dBisec.hxx>
|
|
#include <GccAna_LinPnt2dBisec.hxx>
|
|
#include <GccEnt_BadQualifier.hxx>
|
|
#include <GccEnt_QualifiedLin.hxx>
|
|
#include <GccInt_BParab.hxx>
|
|
#include <GccInt_IType.hxx>
|
|
#include <gp_Circ2d.hxx>
|
|
#include <gp_Dir2d.hxx>
|
|
#include <gp_Lin2d.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <IntAna2d_AnaIntersection.hxx>
|
|
#include <IntAna2d_Conic.hxx>
|
|
#include <IntAna2d_IntPoint.hxx>
|
|
|
|
//=========================================================================
|
|
// Creation of a circle tangent to two straight lines and a point. +
|
|
//=========================================================================
|
|
GccAna_Circ2d3Tan::
|
|
GccAna_Circ2d3Tan (const GccEnt_QualifiedLin& Qualified1 ,
|
|
const GccEnt_QualifiedLin& Qualified2 ,
|
|
const gp_Pnt2d& Point3 ,
|
|
const Standard_Real Tolerance ):
|
|
|
|
cirsol(1,2) ,
|
|
qualifier1(1,2) ,
|
|
qualifier2(1,2) ,
|
|
qualifier3(1,2) ,
|
|
TheSame1(1,2) ,
|
|
TheSame2(1,2) ,
|
|
TheSame3(1,2) ,
|
|
pnttg1sol(1,2) ,
|
|
pnttg2sol(1,2) ,
|
|
pnttg3sol(1,2) ,
|
|
par1sol(1,2) ,
|
|
par2sol(1,2) ,
|
|
par3sol(1,2) ,
|
|
pararg1(1,2) ,
|
|
pararg2(1,2) ,
|
|
pararg3(1,2)
|
|
{
|
|
|
|
gp_Dir2d dirx(1.0,0.0);
|
|
WellDone = Standard_False;
|
|
Standard_Real Tol = Abs(Tolerance);
|
|
NbrSol = 0;
|
|
if (!(Qualified1.IsEnclosed() ||
|
|
Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
|
|
!(Qualified2.IsEnclosed() ||
|
|
Qualified2.IsOutside() || Qualified2.IsUnqualified())) {
|
|
throw GccEnt_BadQualifier();
|
|
return;
|
|
}
|
|
|
|
pnttg3sol.Init(Point3);
|
|
|
|
//=========================================================================
|
|
// Processing. +
|
|
//=========================================================================
|
|
|
|
gp_Lin2d L1 = Qualified1.Qualified();
|
|
gp_Lin2d L2 = Qualified2.Qualified();
|
|
gp_Pnt2d origin1(L1.Location());
|
|
gp_Dir2d dir1(L1.Direction());
|
|
gp_Dir2d normL1(-dir1.Y(),dir1.X());
|
|
gp_Pnt2d origin2(L2.Location());
|
|
gp_Dir2d dir2(L2.Direction());
|
|
gp_Dir2d normL2(-dir2.Y(),dir2.X());
|
|
|
|
GccAna_Lin2dBisec Bis1(L1,L2);
|
|
GccAna_LinPnt2dBisec Bis2(L1,Point3);
|
|
if (Bis1.IsDone() && Bis2.IsDone()) {
|
|
Standard_Integer nbsolution1 = Bis1.NbSolutions();
|
|
Handle(GccInt_Bisec) Sol2 = Bis2.ThisSolution();
|
|
for (Standard_Integer i = 1 ; i <= nbsolution1; i++) {
|
|
const gp_Lin2d Sol1(Bis1.ThisSolution(i));
|
|
GccInt_IType typ2 = Sol2->ArcType();
|
|
IntAna2d_AnaIntersection Intp;
|
|
if (typ2 == GccInt_Lin) {
|
|
Intp.Perform(Sol1,Sol2->Line());
|
|
}
|
|
else if (typ2 == GccInt_Par) {
|
|
Intp.Perform(Sol1,IntAna2d_Conic(Sol2->Parabola()));
|
|
}
|
|
if (Intp.IsDone()) {
|
|
if (!Intp.IsEmpty()) {
|
|
for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
|
|
gp_Pnt2d Center(Intp.Point(j).Value());
|
|
Standard_Real dist1 = L1.Distance(Center);
|
|
Standard_Real dist2 = L2.Distance(Center);
|
|
Standard_Real dist3 = Center.Distance(Point3);
|
|
Standard_Real Radius=0;
|
|
Standard_Integer nbsol3 = 0;
|
|
Standard_Boolean ok = Standard_False;
|
|
if (Qualified1.IsEnclosed()) {
|
|
if ((((origin1.X()-Center.X())*(-dir1.Y()))+
|
|
((origin1.Y()-Center.Y())*(dir1.X())))<=0){
|
|
ok = Standard_True;
|
|
Radius = dist1;
|
|
}
|
|
}
|
|
else if (Qualified1.IsOutside()) {
|
|
if ((((origin1.X()-Center.X())*(-dir1.Y()))+
|
|
((origin1.Y()-Center.Y())*(dir1.X())))>=0){
|
|
ok = Standard_True;
|
|
Radius = dist1;
|
|
}
|
|
}
|
|
else if (Qualified1.IsUnqualified()) {
|
|
ok = Standard_True;
|
|
Radius = dist1;
|
|
}
|
|
if (Qualified2.IsEnclosed()) {
|
|
if ((((origin2.X()-Center.X())*(-dir2.Y()))+
|
|
((origin2.Y()-Center.Y())*(dir2.X())))<=0){
|
|
if (Abs(dist2-Radius) < Tol) { }
|
|
else { ok = Standard_False; }
|
|
}
|
|
}
|
|
else if (Qualified2.IsOutside() && ok) {
|
|
if ((((origin2.X()-Center.X())*(-dir2.Y()))+
|
|
((origin2.Y()-Center.Y())*(dir2.X())))>=0){
|
|
if (Abs(dist2-Radius) < Tol) { }
|
|
else { ok = Standard_False; }
|
|
}
|
|
}
|
|
else if (Qualified2.IsUnqualified() && ok) {
|
|
if (Abs(dist2-Radius) < Tol) { }
|
|
else { ok = Standard_False; }
|
|
}
|
|
if (ok) {
|
|
if (Abs(dist3-Radius) < Tol) { nbsol3 = 1; }
|
|
else { ok = Standard_False; }
|
|
}
|
|
if (ok) {
|
|
for (Standard_Integer k = 1 ; k <= nbsol3 ; k++) {
|
|
NbrSol++;
|
|
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
|
|
// =======================================================
|
|
gp_Dir2d dc1(origin1.XY()-Center.XY());
|
|
if (!Qualified1.IsUnqualified()) {
|
|
qualifier1(NbrSol) = Qualified1.Qualifier();
|
|
}
|
|
else if (dc1.Dot(normL1) > 0.0) {
|
|
qualifier1(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier1(NbrSol) = GccEnt_enclosed; }
|
|
gp_Dir2d dc2(origin2.XY()-Center.XY());
|
|
if (!Qualified2.IsUnqualified()) {
|
|
qualifier2(NbrSol) = Qualified2.Qualifier();
|
|
}
|
|
else if (dc2.Dot(normL2) > 0.0) {
|
|
qualifier2(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier2(NbrSol) = GccEnt_enclosed; }
|
|
qualifier3(NbrSol) = GccEnt_noqualifier;
|
|
TheSame1(NbrSol) = 0;
|
|
gp_Dir2d dc(origin1.XY()-Center.XY());
|
|
Standard_Real sign = dc.Dot(gp_Dir2d(-dir1.Y(),dir1.X()));
|
|
dc = gp_Dir2d(sign*gp_XY(-dir1.Y(),dir1.X()));
|
|
pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc.XY());
|
|
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg1sol(NbrSol));
|
|
pararg1(NbrSol)=ElCLib::Parameter(L1,pnttg1sol(NbrSol));
|
|
TheSame2(NbrSol) = 0;
|
|
dc = gp_Dir2d(origin2.XY()-Center.XY());
|
|
sign = dc.Dot(gp_Dir2d(-dir2.Y(),dir2.X()));
|
|
dc = gp_Dir2d(sign*gp_XY(-dir2.Y(),dir2.X()));
|
|
pnttg2sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc.XY());
|
|
par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg2sol(NbrSol));
|
|
pararg2(NbrSol)=ElCLib::Parameter(L2,pnttg2sol(NbrSol));
|
|
TheSame3(NbrSol) = 0;
|
|
par3sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg3sol(NbrSol));
|
|
pararg3(NbrSol) = 0.;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
WellDone = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|