1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00
occt/src/GccAna/GccAna_Circ2d3Tan_6.cxx

203 lines
6.7 KiB
C++

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <ElCLib.hxx>
#include <GccAna_Circ2d3Tan.hxx>
#include <GccAna_Lin2dBisec.hxx>
#include <GccAna_LinPnt2dBisec.hxx>
#include <GccEnt_BadQualifier.hxx>
#include <GccEnt_QualifiedLin.hxx>
#include <GccInt_BParab.hxx>
#include <GccInt_IType.hxx>
#include <gp_Circ2d.hxx>
#include <gp_Dir2d.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Pnt2d.hxx>
#include <IntAna2d_AnaIntersection.hxx>
#include <IntAna2d_Conic.hxx>
#include <IntAna2d_IntPoint.hxx>
//=========================================================================
// Creation of a circle tangent to two straight lines and a point. +
//=========================================================================
GccAna_Circ2d3Tan::
GccAna_Circ2d3Tan (const GccEnt_QualifiedLin& Qualified1 ,
const GccEnt_QualifiedLin& Qualified2 ,
const gp_Pnt2d& Point3 ,
const Standard_Real Tolerance ):
cirsol(1,2) ,
qualifier1(1,2) ,
qualifier2(1,2) ,
qualifier3(1,2) ,
TheSame1(1,2) ,
TheSame2(1,2) ,
TheSame3(1,2) ,
pnttg1sol(1,2) ,
pnttg2sol(1,2) ,
pnttg3sol(1,2) ,
par1sol(1,2) ,
par2sol(1,2) ,
par3sol(1,2) ,
pararg1(1,2) ,
pararg2(1,2) ,
pararg3(1,2)
{
gp_Dir2d dirx(1.0,0.0);
WellDone = Standard_False;
Standard_Real Tol = Abs(Tolerance);
NbrSol = 0;
if (!(Qualified1.IsEnclosed() ||
Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
!(Qualified2.IsEnclosed() ||
Qualified2.IsOutside() || Qualified2.IsUnqualified())) {
throw GccEnt_BadQualifier();
return;
}
pnttg3sol.Init(Point3);
//=========================================================================
// Processing. +
//=========================================================================
gp_Lin2d L1 = Qualified1.Qualified();
gp_Lin2d L2 = Qualified2.Qualified();
gp_Pnt2d origin1(L1.Location());
gp_Dir2d dir1(L1.Direction());
gp_Dir2d normL1(-dir1.Y(),dir1.X());
gp_Pnt2d origin2(L2.Location());
gp_Dir2d dir2(L2.Direction());
gp_Dir2d normL2(-dir2.Y(),dir2.X());
GccAna_Lin2dBisec Bis1(L1,L2);
GccAna_LinPnt2dBisec Bis2(L1,Point3);
if (Bis1.IsDone() && Bis2.IsDone()) {
Standard_Integer nbsolution1 = Bis1.NbSolutions();
Handle(GccInt_Bisec) Sol2 = Bis2.ThisSolution();
for (Standard_Integer i = 1 ; i <= nbsolution1; i++) {
const gp_Lin2d Sol1(Bis1.ThisSolution(i));
GccInt_IType typ2 = Sol2->ArcType();
IntAna2d_AnaIntersection Intp;
if (typ2 == GccInt_Lin) {
Intp.Perform(Sol1,Sol2->Line());
}
else if (typ2 == GccInt_Par) {
Intp.Perform(Sol1,IntAna2d_Conic(Sol2->Parabola()));
}
if (Intp.IsDone()) {
if (!Intp.IsEmpty()) {
for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
gp_Pnt2d Center(Intp.Point(j).Value());
Standard_Real dist1 = L1.Distance(Center);
Standard_Real dist2 = L2.Distance(Center);
Standard_Real dist3 = Center.Distance(Point3);
Standard_Real Radius=0;
Standard_Integer nbsol3 = 0;
Standard_Boolean ok = Standard_False;
if (Qualified1.IsEnclosed()) {
if ((((origin1.X()-Center.X())*(-dir1.Y()))+
((origin1.Y()-Center.Y())*(dir1.X())))<=0){
ok = Standard_True;
Radius = dist1;
}
}
else if (Qualified1.IsOutside()) {
if ((((origin1.X()-Center.X())*(-dir1.Y()))+
((origin1.Y()-Center.Y())*(dir1.X())))>=0){
ok = Standard_True;
Radius = dist1;
}
}
else if (Qualified1.IsUnqualified()) {
ok = Standard_True;
Radius = dist1;
}
if (Qualified2.IsEnclosed()) {
if ((((origin2.X()-Center.X())*(-dir2.Y()))+
((origin2.Y()-Center.Y())*(dir2.X())))<=0){
if (Abs(dist2-Radius) < Tol) { }
else { ok = Standard_False; }
}
}
else if (Qualified2.IsOutside() && ok) {
if ((((origin2.X()-Center.X())*(-dir2.Y()))+
((origin2.Y()-Center.Y())*(dir2.X())))>=0){
if (Abs(dist2-Radius) < Tol) { }
else { ok = Standard_False; }
}
}
else if (Qualified2.IsUnqualified() && ok) {
if (Abs(dist2-Radius) < Tol) { }
else { ok = Standard_False; }
}
if (ok) {
if (Abs(dist3-Radius) < Tol) { nbsol3 = 1; }
else { ok = Standard_False; }
}
if (ok) {
for (Standard_Integer k = 1 ; k <= nbsol3 ; k++) {
NbrSol++;
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
// =======================================================
gp_Dir2d dc1(origin1.XY()-Center.XY());
if (!Qualified1.IsUnqualified()) {
qualifier1(NbrSol) = Qualified1.Qualifier();
}
else if (dc1.Dot(normL1) > 0.0) {
qualifier1(NbrSol) = GccEnt_outside;
}
else { qualifier1(NbrSol) = GccEnt_enclosed; }
gp_Dir2d dc2(origin2.XY()-Center.XY());
if (!Qualified2.IsUnqualified()) {
qualifier2(NbrSol) = Qualified2.Qualifier();
}
else if (dc2.Dot(normL2) > 0.0) {
qualifier2(NbrSol) = GccEnt_outside;
}
else { qualifier2(NbrSol) = GccEnt_enclosed; }
qualifier3(NbrSol) = GccEnt_noqualifier;
TheSame1(NbrSol) = 0;
gp_Dir2d dc(origin1.XY()-Center.XY());
Standard_Real sign = dc.Dot(gp_Dir2d(-dir1.Y(),dir1.X()));
dc = gp_Dir2d(sign*gp_XY(-dir1.Y(),dir1.X()));
pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc.XY());
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
pnttg1sol(NbrSol));
pararg1(NbrSol)=ElCLib::Parameter(L1,pnttg1sol(NbrSol));
TheSame2(NbrSol) = 0;
dc = gp_Dir2d(origin2.XY()-Center.XY());
sign = dc.Dot(gp_Dir2d(-dir2.Y(),dir2.X()));
dc = gp_Dir2d(sign*gp_XY(-dir2.Y(),dir2.X()));
pnttg2sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc.XY());
par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
pnttg2sol(NbrSol));
pararg2(NbrSol)=ElCLib::Parameter(L2,pnttg2sol(NbrSol));
TheSame3(NbrSol) = 0;
par3sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
pnttg3sol(NbrSol));
pararg3(NbrSol) = 0.;
}
}
}
}
WellDone = Standard_True;
}
}
}
}