mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-04 18:06:22 +03:00
934 lines
29 KiB
C++
934 lines
29 KiB
C++
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <ElCLib.hxx>
|
|
#include <GccAna_Circ2d3Tan.hxx>
|
|
#include <GccEnt_BadQualifier.hxx>
|
|
#include <GccEnt_QualifiedCirc.hxx>
|
|
#include <gp_Circ2d.hxx>
|
|
#include <gp_Dir2d.hxx>
|
|
#include <gp_Lin2d.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <math_DirectPolynomialRoots.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
|
|
//=========================================================================
|
|
// Creation of a circle tangent to three circles. +
|
|
//=========================================================================
|
|
GccAna_Circ2d3Tan::
|
|
GccAna_Circ2d3Tan (const GccEnt_QualifiedCirc& Qualified1,
|
|
const GccEnt_QualifiedCirc& Qualified2,
|
|
const GccEnt_QualifiedCirc& Qualified3,
|
|
const Standard_Real Tolerance ):
|
|
|
|
//=========================================================================
|
|
// Initialization of fields. +
|
|
//=========================================================================
|
|
|
|
cirsol(1,16) ,
|
|
qualifier1(1,16),
|
|
qualifier2(1,16),
|
|
qualifier3(1,16),
|
|
TheSame1(1,16) ,
|
|
TheSame2(1,16) ,
|
|
TheSame3(1,16) ,
|
|
pnttg1sol(1,16),
|
|
pnttg2sol(1,16),
|
|
pnttg3sol(1,16),
|
|
par1sol(1,16) ,
|
|
par2sol(1,16) ,
|
|
par3sol(1,16) ,
|
|
pararg1(1,16) ,
|
|
pararg2(1,16) ,
|
|
pararg3(1,16)
|
|
{
|
|
|
|
gp_Dir2d dirx(1.0,0.0);
|
|
Standard_Real Tol = Abs(Tolerance);
|
|
WellDone = Standard_False;
|
|
NbrSol = 0;
|
|
if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() ||
|
|
Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
|
|
!(Qualified2.IsEnclosed() || Qualified2.IsEnclosing() ||
|
|
Qualified2.IsOutside() || Qualified2.IsUnqualified()) ||
|
|
!(Qualified3.IsEnclosed() || Qualified3.IsEnclosing() ||
|
|
Qualified3.IsOutside() || Qualified3.IsUnqualified())) {
|
|
throw GccEnt_BadQualifier();
|
|
return;
|
|
}
|
|
|
|
//=========================================================================
|
|
// Processing. +
|
|
//=========================================================================
|
|
|
|
gp_Circ2d Cir1 = Qualified1.Qualified();
|
|
gp_Circ2d Cir2 = Qualified2.Qualified();
|
|
gp_Circ2d Cir3 = Qualified3.Qualified();
|
|
Standard_Real R1 = Cir1.Radius();
|
|
Standard_Real R2 = Cir2.Radius();
|
|
Standard_Real R3 = Cir3.Radius();
|
|
gp_Pnt2d center1(Cir1.Location());
|
|
gp_Pnt2d center2(Cir2.Location());
|
|
gp_Pnt2d center3(Cir3.Location());
|
|
|
|
Standard_Real X1 = center1.X();
|
|
Standard_Real X2 = center2.X();
|
|
Standard_Real X3 = center3.X();
|
|
|
|
Standard_Real Y1 = center1.Y();
|
|
Standard_Real Y2 = center2.Y();
|
|
Standard_Real Y3 = center3.Y();
|
|
|
|
gp_XY dir2 = center1.XY() - center2.XY();
|
|
gp_XY dir3 = center1.XY() - center3.XY();
|
|
|
|
//////////
|
|
if ((Abs(R1 - R2) <= Tolerance && center1.IsEqual(center2, Tolerance)) ||
|
|
(Abs(R1 - R3) <= Tolerance && center1.IsEqual(center3, Tolerance)) ||
|
|
(Abs(R2 - R3) <= Tolerance && center2.IsEqual(center3, Tolerance)))
|
|
return;
|
|
else {
|
|
if (Abs(dir2^dir3) <= Tolerance) {
|
|
Standard_Real Dist1 = center1.Distance(center2);
|
|
Standard_Real Dist2 = center1.Distance(center3);
|
|
Standard_Real Dist3 = center2.Distance(center3);
|
|
if (Abs(Abs(R1 - R2) - Dist1) <= Tolerance) {
|
|
if (Abs(Abs(R1 - R3) - Dist2) <= Tolerance) {
|
|
if (Abs(Abs(R2 - R3) - Dist3) <= Tolerance)
|
|
return;
|
|
} else if (Abs(R1 + R3 - Dist2) <= Tolerance) {
|
|
if (Abs(R2 + R3 - Dist3) <= Tolerance)
|
|
return;
|
|
}
|
|
} else if (Abs(R1 + R2 - Dist1) <= Tolerance) {
|
|
if (Abs(Abs(R1 - R3) - Dist2) <= Tolerance &&
|
|
Abs(R2 + R3 - Dist3) <= Tolerance) {
|
|
} else {
|
|
if (Abs(Abs(R2 - R3) - Dist3) <= Tolerance &&
|
|
Abs(R1 + R3 - Dist2) <= Tolerance)
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/////////
|
|
TColStd_Array1OfReal A2(1, 8), B2(1, 8), C2(1, 8), D2(1, 8), E2(1, 8), F2(1, 8);
|
|
TColStd_Array1OfReal A3(1, 8), B3(1, 8), C3(1, 8), D3(1, 8), E3(1, 8), F3(1, 8);
|
|
TColStd_Array1OfReal Beta2(1, 8), Gamma2(1, 8), Delta2(1, 8);
|
|
TColStd_Array1OfReal Beta3(1, 8), Gamma3(1, 8), Delta3(1, 8);
|
|
Standard_Real a2, b2, c2, d2, e2, f2;
|
|
Standard_Real a3, b3, c3, d3, e3, f3;
|
|
Standard_Real A, B, C, D, E;
|
|
Standard_Boolean IsSame;
|
|
Standard_Boolean IsTouch;
|
|
Standard_Integer FirstIndex;
|
|
|
|
Standard_Integer i, j, k, l;
|
|
TColStd_Array1OfReal xSol(1, 64);
|
|
TColStd_Array1OfReal ySol(1, 64);
|
|
TColStd_Array1OfReal rSol(1, 16);
|
|
TColStd_Array1OfInteger FirstSol(1, 9);
|
|
TColStd_Array1OfReal xSol1(1, 32);
|
|
TColStd_Array1OfReal ySol1(1, 32);
|
|
TColStd_Array1OfReal rSol1(1, 32);
|
|
TColStd_Array1OfInteger FirstSol1(1, 9);
|
|
Standard_Real x, y, r;
|
|
Standard_Real m, n, t, s, v;
|
|
Standard_Real p, q;
|
|
Standard_Real Epsilon;
|
|
|
|
Standard_Integer CurSol;
|
|
|
|
//*********************************************************************************************
|
|
//*********************************************************************************************
|
|
|
|
// Actually we have to find solutions of eight systems of equations:
|
|
// _ _
|
|
// | (X - X1)2 + (Y - Y1)2 = (R - R1)2 | (X - X1)2 + (Y - Y1)2 = (R + R1)2
|
|
// 1) < (X - X2)2 + (Y - Y2)2 = (R - R2)2 2) < (X - X2)2 + (Y - Y2)2 = (R - R2)2
|
|
// \_(X - X3)2 + (Y - Y3)2 = (R - R3)2 \_(X - X3)2 + (Y - Y3)2 = (R - R3)2
|
|
// _ _
|
|
// | (X - X1)2 + (Y - Y1)2 = (R - R1)2 | (X - X1)2 + (Y - Y1)2 = (R - R1)2
|
|
// 3) < (X - X2)2 + (Y - Y2)2 = (R + R2)2 4) < (X - X2)2 + (Y - Y2)2 = (R - R2)2
|
|
// \_(X - X3)2 + (Y - Y3)2 = (R - R3)2 \_(X - X3)2 + (Y - Y3)2 = (R + R3)2
|
|
// _ _
|
|
// | (X - X1)2 + (Y - Y1)2 = (R + R1)2 | (X - X1)2 + (Y - Y1)2 = (R + R1)2
|
|
// 5) < (X - X2)2 + (Y - Y2)2 = (R + R2)2 6) < (X - X2)2 + (Y - Y2)2 = (R - R2)2
|
|
// \_(X - X3)2 + (Y - Y3)2 = (R - R3)2 \_(X - X3)2 + (Y - Y3)2 = (R + R3)2
|
|
// _ _
|
|
// | (X - X1)2 + (Y - Y1)2 = (R - R1)2 | (X - X1)2 + (Y - Y1)2 = (R + R1)2
|
|
// 7) < (X - X2)2 + (Y - Y2)2 = (R + R2)2 8) < (X - X2)2 + (Y - Y2)2 = (R + R2)2
|
|
// \_(X - X3)2 + (Y - Y3)2 = (R + R3)2 \_(X - X3)2 + (Y - Y3)2 = (R + R3)2
|
|
|
|
// each equation (X - Xi)2 + (Y - Yi)2 = (R +- Ri)2 means that the circle (X,Y,R) is tangent
|
|
// to the circle (Xi,Yi,Ri).
|
|
|
|
// The number of each system is very important.
|
|
// Further index i shows the number of the system.
|
|
|
|
// Further Beta, Gamma and Delta are coefficients of the equation:
|
|
// R +- Ri = Beta*X + Gamma*Y + Delta where i=2 or i=3
|
|
|
|
//*********************************************************************************************
|
|
//*********************************************************************************************
|
|
|
|
// Verification do two circles touch each other or not
|
|
// if at least one circle touches other one IsTouch become Standard_Standard_True
|
|
|
|
if (Abs((X1 - X2)*(X1 - X2) + (Y1 - Y2)*(Y1 - Y2) - (R1 - R2)*(R1 - R2)) <= Tolerance ||
|
|
Abs((X1 - X2)*(X1 - X2) + (Y1 - Y2)*(Y1 - Y2) - (R1 + R2)*(R1 + R2)) <= Tolerance ||
|
|
Abs((X1 - X3)*(X1 - X3) + (Y1 - Y3)*(Y1 - Y3) - (R1 - R3)*(R1 - R3)) <= Tolerance ||
|
|
Abs((X1 - X3)*(X1 - X3) + (Y1 - Y3)*(Y1 - Y3) - (R1 + R3)*(R1 + R3)) <= Tolerance ||
|
|
Abs((X2 - X3)*(X2 - X3) + (Y2 - Y3)*(Y2 - Y3) - (R2 - R3)*(R2 - R3)) <= Tolerance ||
|
|
Abs((X2 - X3)*(X2 - X3) + (Y2 - Y3)*(Y2 - Y3) - (R2 + R3)*(R2 + R3)) <= Tolerance)
|
|
IsTouch = Standard_True;
|
|
else
|
|
IsTouch = Standard_False;
|
|
|
|
// First step:
|
|
// We are searching for Beta, Gamma and Delta coefficients
|
|
// and also coefficients of the system of second order equations:
|
|
// _
|
|
// | a2*x*x +2*b2*x*y + c2*y*y +2*d2*x + 2*e2*y + f2 = 0
|
|
// <
|
|
// \_ a3*x*x +2*b3*x*y + c3*y*y +2*d3*x + 2*e3*y + f3 = 0 ,
|
|
|
|
// obtained by exclusion of R from source systems.
|
|
|
|
for (i = 1; i <= 8; i++) {
|
|
|
|
// _
|
|
// | (X - X1)2 + (Y - Y1)2 = (R +- R1)2
|
|
// <
|
|
// \_(X - X2)2 + (Y - Y2)2 = (R +- R2)2
|
|
|
|
if (i == 1 || i == 4 || i == 5 || i == 8) {
|
|
if (Abs(R1 - R2) > Tolerance) {
|
|
Beta2(i) = (X1 - X2)/(R1 - R2);
|
|
Gamma2(i) = (Y1 - Y2)/(R1 - R2);
|
|
Delta2(i) = (X2*X2 - X1*X1 + Y2*Y2 - Y1*Y1 + (R1 - R2)*(R1 - R2))/(2*(R1 - R2));
|
|
}
|
|
} else {
|
|
Beta2(i) = (X1 - X2)/(R1 + R2);
|
|
Gamma2(i) = (Y1 - Y2)/(R1 + R2);
|
|
Delta2(i) = (X2*X2 - X1*X1 + Y2*Y2 - Y1*Y1 + (R1 + R2)*(R1 + R2))/(2*(R1 + R2));
|
|
}
|
|
if ((i == 1 || i == 4 || i == 5 || i == 8) &&
|
|
(Abs(R1 - R2) <= Tolerance)) {
|
|
// If R1 = R2
|
|
A2(i) = 0.;
|
|
B2(i) = 0.;
|
|
C2(i) = 0.;
|
|
D2(i) = X2 - X1;
|
|
E2(i) = Y2 - Y1;
|
|
F2(i) = X1*X1 - X2*X2 + Y1*Y1 - Y2*Y2;
|
|
} else {
|
|
A2(i) = Beta2(i)*Beta2(i) - 1.;
|
|
B2(i) = Beta2(i)*Gamma2(i);
|
|
C2(i) = Gamma2(i)*Gamma2(i) - 1.;
|
|
D2(i) = Beta2(i)*Delta2(i) + X2;
|
|
E2(i) = Gamma2(i)*Delta2(i) + Y2;
|
|
F2(i) = Delta2(i)*Delta2(i) - X2*X2 - Y2*Y2;
|
|
}
|
|
|
|
// _
|
|
// | (X - X1)2 + (Y - Y1)2 = (R +- R1)2
|
|
// <
|
|
// \_(X - X3)2 + (Y - Y3)2 = (R +- R3)2
|
|
|
|
if (i == 1 || i == 3 || i == 6 || i == 8) {
|
|
if (Abs(R1 - R3) > Tolerance) {
|
|
Beta3(i) = (X1 - X3)/(R1 - R3);
|
|
Gamma3(i) = (Y1 - Y3)/(R1 - R3);
|
|
Delta3(i) = (X3*X3 - X1*X1 + Y3*Y3 - Y1*Y1 + (R1 - R3)*(R1 - R3))/(2*(R1 - R3));
|
|
}
|
|
} else {
|
|
Beta3(i) = (X1 - X3)/(R1 + R3);
|
|
Gamma3(i) = (Y1 - Y3)/(R1 + R3);
|
|
Delta3(i) = (X3*X3 - X1*X1 + Y3*Y3 - Y1*Y1 + (R1 + R3)*(R1 + R3))/(2*(R1 + R3));
|
|
}
|
|
if ((i == 1 || i == 3 || i == 6 || i == 8) &&
|
|
(Abs(R1 - R3) <= Tolerance)) {
|
|
A3(i) = 0.;
|
|
B3(i) = 0.;
|
|
C3(i) = 0.;
|
|
D3(i) = X3 - X1;
|
|
E3(i) = Y3 - Y1;
|
|
F3(i) = X1*X1 - X3*X3 + Y1*Y1 - Y3*Y3;
|
|
} else {
|
|
A3(i) = Beta3(i)*Beta3(i) - 1.;
|
|
B3(i) = Beta3(i)*Gamma3(i);
|
|
C3(i) = Gamma3(i)*Gamma3(i) - 1.;
|
|
D3(i) = Beta3(i)*Delta3(i) + X3;
|
|
E3(i) = Gamma3(i)*Delta3(i) + Y3;
|
|
F3(i) = Delta3(i)*Delta3(i) - X3*X3 - Y3*Y3;
|
|
}
|
|
}
|
|
|
|
// Second step:
|
|
// We are searching for the couple (X,Y) as a solution of the system:
|
|
// _
|
|
// | a2*x*x +2*b2*x*y + c2*y*y +2*d2*x + 2*e2*y + f2 = 0
|
|
// <
|
|
// \_ a3*x*x +2*b3*x*y + c3*y*y +2*d3*x + 2*e3*y + f3 = 0
|
|
|
|
CurSol = 1;
|
|
for (i = 1; i <= 8; i++) {
|
|
a2 = A2(i); a3 = A3(i);
|
|
b2 = B2(i); b3 = B3(i);
|
|
c2 = C2(i); c3 = C3(i);
|
|
d2 = D2(i); d3 = D3(i);
|
|
e2 = E2(i); e3 = E3(i);
|
|
f2 = F2(i); f3 = F3(i);
|
|
|
|
FirstSol(i) = CurSol;
|
|
|
|
// In some cases we know that some systems have no solution in any case due to qualifiers
|
|
if (((i == 2 || i == 5 || i == 6 || i == 8) &&
|
|
(Qualified1.IsEnclosed() || Qualified1.IsEnclosing())) ||
|
|
((i == 1 || i == 3 || i == 4 || i == 7) && Qualified1.IsOutside()))
|
|
continue;
|
|
|
|
if (((i == 3 || i == 5 || i == 7 || i == 8) &&
|
|
(Qualified2.IsEnclosed() || Qualified2.IsEnclosing())) ||
|
|
((i == 1 || i == 2 || i == 4 || i == 6) && Qualified2.IsOutside()))
|
|
continue;
|
|
|
|
if (((i == 4 || i == 6 || i == 7 || i == 8) &&
|
|
(Qualified3.IsEnclosed() || Qualified3.IsEnclosing())) ||
|
|
((i == 1 || i == 2 || i == 3 || i == 5) && Qualified3.IsOutside()))
|
|
continue;
|
|
|
|
// Check is Cir1 a solution of this system or not
|
|
// In that case equations are equal to each other
|
|
if (Abs(a2 - a3) <= Tolerance && Abs(b2 - b3) <= Tolerance && Abs(c2 - c3) <= Tolerance &&
|
|
Abs(d2 - d3) <= Tolerance && Abs(e2 - e3) <= Tolerance && Abs(f2 - f3) <= Tolerance) {
|
|
xSol(CurSol) = X1;
|
|
ySol(CurSol) = Y1;
|
|
CurSol++;
|
|
continue;
|
|
}
|
|
// 1) a2 = 0
|
|
if (Abs(a2) <= Tolerance) {
|
|
|
|
// 1.1) b2y + d2 = 0
|
|
// Searching for solution of the equation Ay2 + By + C = 0
|
|
A = c2; B = 2.*e2; C = f2;
|
|
math_DirectPolynomialRoots yRoots(A, B, C);
|
|
if (yRoots.IsDone() && !yRoots.InfiniteRoots())
|
|
for (k = 1; k <= yRoots.NbSolutions(); k++) {
|
|
// for each y solution:
|
|
y = yRoots.Value(k);
|
|
// Searching for solution of the equation Ax2 + Bx + C = 0
|
|
if (!(k == 2 && Abs(y - yRoots.Value(1)) <= 10*Tolerance) &&
|
|
Abs(b2*y + d2) <= b2*Tolerance) {
|
|
A = a3; B = 2*(b3*y + d3); C = c3*(y*y) + 2*e3*y + f3;
|
|
math_DirectPolynomialRoots xRoots(A, B, C);
|
|
if (xRoots.IsDone() && !xRoots.InfiniteRoots())
|
|
for (j = 1; j <= xRoots.NbSolutions(); j++) {
|
|
x = xRoots.Value(j);
|
|
if (!(j == 2 && Abs(x - xRoots.Value(1)) <= 10*Tolerance)) {
|
|
xSol(CurSol) = x;
|
|
ySol(CurSol) = y;
|
|
CurSol++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// 1.2) b2y + d2 != 0
|
|
A = a3*c2*c2 - 4*b2*(b3*c2 - b2*c3);
|
|
B = 4*a3*c2*e2 - 4*b3*(c2*d2 + 2*b2*e2) + 4*b2*(2*c3*d2 - c2*d3 + 2*b2*e3);
|
|
C = 2*a3*(c2*f2 + 2*e2*e2) - 4*b3*(b2*f2 + 2*e2*d2) + 4*c3*d2*d2 - 4*d3*(c2*d2 + 2*b2*e2)
|
|
+ 16*b2*e3*d2 + 4*b2*b2*f3;
|
|
D = 4*a3*e2*f2 - 4*b3*d2*f2 - 4*d3*(b2*f2 + 2*d2*e2) + 8*d2*d2*e3 + 8*b2*d2*f3;
|
|
E = a3*f2*f2 - 4*d2*d3*f2 + 4*d2*d2*f3;
|
|
|
|
// Searching for solution of the equation Ay4 + By3 + Cy2 + Dy + E = 0
|
|
// Special case: one circle touches other
|
|
if (IsTouch) {
|
|
// Derivation of the equation Ay4 + By3 + Cy2 + Dy + E
|
|
math_DirectPolynomialRoots yRoots1(4*A, 3*B, 2*C, D);
|
|
if (yRoots1.IsDone() && !yRoots1.InfiniteRoots())
|
|
for (k = 1; k <= yRoots1.NbSolutions(); k++) {
|
|
y = yRoots1.Value(k);
|
|
// Check if this value is already catched
|
|
IsSame = Standard_False;
|
|
for (l = 1; l < k; l++)
|
|
if (Abs(y - yRoots1.Value(l)) <= 10*Tolerance) IsSame = Standard_True;
|
|
|
|
Epsilon = (Abs((Abs((Abs(4*A*y) + Abs(3*B))*y) + Abs(2*C))*y) + Abs(D));
|
|
if (Abs((((A*y + B)*y + C)*y + D)*y + E) <= Epsilon*Tolerance) {
|
|
if (!IsSame && Abs(b2*y + d2) > b2*Tolerance) {
|
|
x = -(c2*(y*y) + 2*e2*y + f2)/(2*(b2*y + d2));
|
|
xSol(CurSol) = x;
|
|
ySol(CurSol) = y;
|
|
CurSol++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
math_DirectPolynomialRoots yRoots1(A, B, C, D, E);
|
|
if (yRoots1.IsDone() && !yRoots1.InfiniteRoots())
|
|
for (k = 1; k <= yRoots1.NbSolutions(); k++) {
|
|
y = yRoots1.Value(k);
|
|
// Check if this value is already catched
|
|
IsSame = Standard_False;
|
|
FirstIndex = (i == 1) ? 1 : FirstSol(i);
|
|
for (l = FirstIndex; l < CurSol; l++)
|
|
if (Abs(y - ySol(l)) <= 10*Tolerance) IsSame = Standard_True;
|
|
|
|
if (!IsSame && Abs(b2*y + d2) > b2*Tolerance) {
|
|
x = -(c2*(y*y) + 2*e2*y + f2)/(2*(b2*y + d2));
|
|
xSol(CurSol) = x;
|
|
ySol(CurSol) = y;
|
|
CurSol++;
|
|
}
|
|
}
|
|
} else {
|
|
// 2) a2 != 0
|
|
// Coefficients of the equation (sy + v)Sqrt(p2 - q) = (my2 + ny + t)
|
|
m = 2*a3*b2*b2/(a2*a2) - 2*b2*b3/a2 - a3*c2/a2 + c3;
|
|
n = 4*a3*b2*d2/(a2*a2) - 2*b3*d2/a2 - 2*b2*d3/a2 - 2*a3*e2/a2 + 2*e3;
|
|
t = 2*a3*d2*d2/(a2*a2) - 2*d2*d3/a2 - a3*f2/a2 + f3;
|
|
s = 2*b3 - 2*a3*b2/a2;
|
|
v = 2*d3 - 2*d2*a3/a2;
|
|
|
|
//------------------------------------------
|
|
// If s = v = 0
|
|
if (Abs(s) <= Tolerance && Abs(v) <= Tolerance) {
|
|
math_DirectPolynomialRoots yRoots(m, n, t);
|
|
if (yRoots.IsDone() && !yRoots.InfiniteRoots())
|
|
for (k = 1; k <= yRoots.NbSolutions(); k++) {
|
|
// for each y solution:
|
|
y = yRoots.Value(k);
|
|
|
|
p = -(b2*y + d2)/a2;
|
|
q = (c2*(y*y) + 2*e2*y + f2)/a2;
|
|
Epsilon = 2.*(Abs((b2*b2 + Abs(a2*c2))*y) + Abs(b2*d2) + Abs(a2*e2))/(a2*a2);
|
|
if (!(k == 2 && Abs(y - yRoots.Value(1)) <= 10*Tolerance) &&
|
|
p*p - q >= -Epsilon*Tolerance) {
|
|
A = a2;
|
|
B = 2*(b2*y + d2);
|
|
C = c2*y*y + 2*e2*y + f2;
|
|
math_DirectPolynomialRoots xRoots(A, B, C);
|
|
if (xRoots.IsDone() && !xRoots.InfiniteRoots())
|
|
for (l = 1; l <= xRoots.NbSolutions(); l++) {
|
|
// for each x solution:
|
|
x = xRoots.Value(l);
|
|
|
|
if (!(l == 2 && Abs(x - xRoots.Value(1)) <= 10*Tolerance)) {
|
|
xSol(CurSol) = x;
|
|
ySol(CurSol) = y;
|
|
CurSol++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
//------------------------------------------
|
|
// If (s*y + v) != 0
|
|
|
|
A = s*s*(b2*b2 - a2*c2) - m*m*a2*a2;
|
|
B = 2*s*v*(b2*b2 - a2*c2) + 2*s*s*(b2*d2 - a2*e2) - 2*m*n*a2*a2;
|
|
C = v*v*(b2*b2 - a2*c2) + 4*s*v*(b2*d2 - a2*e2) + s*s*(d2*d2 - a2*f2) - a2*a2*(2*m*t + n*n);
|
|
D = 2*v*v*(b2*d2 - a2*e2) + 2*s*v*(d2*d2 - a2*f2) - 2*n*t*a2*a2;
|
|
E = v*v*(d2*d2 - a2*f2) - t*t*a2*a2;
|
|
|
|
// Searching for solution of the equation Ay4 + By3 + Cy2 + Dy + E = 0
|
|
// Special case: one circle touches other
|
|
if (IsTouch) {
|
|
// Derivation of the equation Ay4 + By3 + Cy2 + Dy + E
|
|
math_DirectPolynomialRoots yRoots1(4*A, 3*B, 2*C, D);
|
|
if (yRoots1.IsDone() && !yRoots1.InfiniteRoots())
|
|
for (k = 1; k <= yRoots1.NbSolutions(); k++) {
|
|
y = yRoots1.Value(k);
|
|
|
|
p = -(b2*y + d2)/a2;
|
|
q = (c2*(y*y) + 2*e2*y + f2)/a2;
|
|
|
|
// Check if this value is already catched
|
|
IsSame = Standard_False;
|
|
FirstIndex = (i == 1) ? 1 : FirstSol(i);
|
|
for (l = FirstIndex; l < CurSol; l++)
|
|
if (Abs(y - ySol(l)) <= 10*Tolerance) IsSame = Standard_True;
|
|
|
|
Epsilon = (Abs((Abs((Abs(4*A*y) + Abs(3*B))*y) + Abs(2*C))*y) + Abs(D));
|
|
if (Abs((((A*y + B)*y + C)*y + D)*y + E) <= Epsilon*Tolerance) {
|
|
|
|
Epsilon = 2.*(Abs((b2*b2 + Abs(a2*c2))*y) + Abs(b2*d2) + Abs(a2*e2))/(a2*a2);
|
|
if (!IsSame && p*p - q >= -Epsilon*Tolerance) {
|
|
A = a2;
|
|
B = 2*(b2*y + d2);
|
|
C = c2*y*y + 2*e2*y + f2;
|
|
math_DirectPolynomialRoots xRoots(A, B, C);
|
|
if (xRoots.IsDone() && !xRoots.InfiniteRoots())
|
|
for (l = 1; l <= xRoots.NbSolutions(); l++) {
|
|
// for each x solution:
|
|
x = xRoots.Value(l);
|
|
|
|
if (!(l == 2 && Abs(x - xRoots.Value(1)) <= 10*Tolerance)) {
|
|
xSol(CurSol) = x;
|
|
ySol(CurSol) = y;
|
|
CurSol++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
math_DirectPolynomialRoots yRoots(A, B, C, D, E);
|
|
if (yRoots.IsDone() && !yRoots.InfiniteRoots())
|
|
for (k = 1; k <= yRoots.NbSolutions(); k++) {
|
|
// for each y solution:
|
|
y = yRoots.Value(k);
|
|
|
|
p = -(b2*y + d2)/a2;
|
|
q = (c2*(y*y) + 2*e2*y + f2)/a2;
|
|
|
|
// Check if this value is already catched
|
|
IsSame = Standard_False;
|
|
for (l = 1; l < k; l++)
|
|
if (Abs(y - yRoots.Value(l)) <= 10*Tolerance) IsSame = Standard_True;
|
|
|
|
Epsilon = 2.*(Abs((b2*b2 + Abs(a2*c2))*y) + Abs(b2*d2) + Abs(a2*e2))/(a2*a2);
|
|
if (!IsSame && p*p - q >= -Epsilon*Tolerance) {
|
|
A = a2;
|
|
B = 2*(b2*y + d2);
|
|
C = c2*y*y + 2*e2*y + f2;
|
|
math_DirectPolynomialRoots xRoots(A, B, C);
|
|
if (xRoots.IsDone() && !xRoots.InfiniteRoots())
|
|
for (l = 1; l <= xRoots.NbSolutions(); l++) {
|
|
// for each x solution:
|
|
x = xRoots.Value(l);
|
|
|
|
if (!(l == 2 && Abs(x - xRoots.Value(1)) <= 10*Tolerance)) {
|
|
xSol(CurSol) = x;
|
|
ySol(CurSol) = y;
|
|
CurSol++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
FirstSol(9) = CurSol;
|
|
|
|
// Third step:
|
|
// Check of couples (X,Y) and searching for R. R must be great than 0
|
|
CurSol = 1;
|
|
for (i = 1; i <= 8; i++) {
|
|
FirstSol1(i) = CurSol;
|
|
for (j = FirstSol(i); j < FirstSol(i + 1); j++) {
|
|
x = xSol(j);
|
|
y = ySol(j);
|
|
// in some cases when R1 = R2 :
|
|
if ((i == 1 || i == 4 || i == 5 || i == 8) && (Abs(R1 - R2) <= Tolerance)) {
|
|
if (i == 1 || i == 4) {
|
|
r = R1 + Sqrt((x - X1)*(x - X1) + (y - Y1)*(y - Y1));
|
|
Epsilon = 10*(2*Abs(r - R2) + Abs(x - X2) + Abs(y - Y2));
|
|
if (Abs((r - R2)*(r - R2) - (x - X2)*(x - X2) - (y - Y2)*(y - Y2)) <=
|
|
Epsilon*Tolerance) {
|
|
xSol1(CurSol) = x;
|
|
ySol1(CurSol) = y;
|
|
rSol1(CurSol) = r;
|
|
CurSol++;
|
|
}
|
|
r = R1 - Sqrt((x - X1)*(x - X1) + (y - Y1)*(y - Y1));
|
|
Epsilon = 10*(2*Abs(r - R2) + Abs(x - X2) + Abs(y - Y2));
|
|
if ((r > Tolerance) &&
|
|
(Abs((r - R2)*(r - R2) - (x - X2)*(x - X2) - (y - Y2)*(y - Y2)) <=
|
|
Epsilon*Tolerance)) {
|
|
xSol1(CurSol) = x;
|
|
ySol1(CurSol) = y;
|
|
rSol1(CurSol) = r;
|
|
CurSol++;
|
|
}
|
|
} else {
|
|
// i == 5 || i == 8
|
|
r = - R1 + Sqrt((x - X1)*(x - X1) + (y - Y1)*(y - Y1));
|
|
if (r > Tolerance) {
|
|
xSol1(CurSol) = x;
|
|
ySol1(CurSol) = y;
|
|
rSol1(CurSol) = r;
|
|
CurSol++;
|
|
}
|
|
}
|
|
} else {
|
|
// Other cases
|
|
if (i == 1 || i == 4) {
|
|
r = R2 + Beta2(i)*x + Gamma2(i)*y + Delta2(i);
|
|
if (r > Tolerance) {
|
|
xSol1(CurSol) = x;
|
|
ySol1(CurSol) = y;
|
|
rSol1(CurSol) = r;
|
|
CurSol++;
|
|
}
|
|
}
|
|
if (i == 5 || i == 8) {
|
|
r = -R2 - Beta2(i)*x - Gamma2(i)*y - Delta2(i);
|
|
if (r > Tolerance) {
|
|
xSol1(CurSol) = x;
|
|
ySol1(CurSol) = y;
|
|
rSol1(CurSol) = r;
|
|
CurSol++;
|
|
}
|
|
}
|
|
if (i == 3 || i == 7) {
|
|
r = - R2 + Beta2(i)*x + Gamma2(i)*y + Delta2(i);
|
|
if (r > Tolerance) {
|
|
xSol1(CurSol) = x;
|
|
ySol1(CurSol) = y;
|
|
rSol1(CurSol) = r;
|
|
CurSol++;
|
|
}
|
|
}
|
|
if (i == 2 || i == 6) {
|
|
r = R2 - Beta2(i)*x - Gamma2(i)*y - Delta2(i);
|
|
if (r > Tolerance) {
|
|
xSol1(CurSol) = x;
|
|
ySol1(CurSol) = y;
|
|
rSol1(CurSol) = r;
|
|
CurSol++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
FirstSol1(9) = CurSol;
|
|
// Fourth step
|
|
// Check of triplets (X,Y,R).
|
|
CurSol = 1;
|
|
for (i = 1; i <= 8; i++) {
|
|
FirstSol(i) = CurSol;
|
|
for (j = FirstSol1(i); j < FirstSol1(i + 1); j++) {
|
|
x = xSol1(j);
|
|
y = ySol1(j);
|
|
r = rSol1(j);
|
|
// in some cases when R1 = R3 :
|
|
if ((i == 1 || i == 3 || i == 6 || i == 8) && Abs(R1 - R3) <= Tolerance) {
|
|
if (i == 1 || i == 3) {
|
|
Epsilon = 10*(2*Abs(r - R3) + Abs(x - X3) + Abs(y - Y3));
|
|
if (Abs((r - R3)*(r - R3) - (x - X3)*(x - X3) - (y - Y3)*(y - Y3)) <=
|
|
Epsilon*Tolerance) {
|
|
xSol(CurSol) = x;
|
|
ySol(CurSol) = y;
|
|
rSol(CurSol) = r;
|
|
CurSol++;
|
|
}
|
|
} else {
|
|
// i == 6 || i == 8
|
|
Epsilon = 10*(2*(r + R3) + Abs(x - X3) + Abs(y - Y3));
|
|
if (Abs((r + R3)*(r + R3) - (x - X3)*(x - X3) - (y - Y3)*(y - Y3)) <=
|
|
Epsilon*Tolerance) {
|
|
xSol(CurSol) = x;
|
|
ySol(CurSol) = y;
|
|
rSol(CurSol) = r;
|
|
CurSol++;
|
|
}
|
|
}
|
|
} else {
|
|
// Other cases
|
|
Epsilon = 10*(Abs(Beta3(i)) + Abs(Gamma3(i)) + 1.);
|
|
if (i == 1 || i == 3)
|
|
if (Abs(R3 + Beta3(i)*x + Gamma3(i)*y + Delta3(i) - r) <= Epsilon*Tolerance) {
|
|
xSol(CurSol) = x;
|
|
ySol(CurSol) = y;
|
|
rSol(CurSol) = r;
|
|
CurSol++;
|
|
}
|
|
if (i == 6 || i == 8)
|
|
if (Abs(R3 + Beta3(i)*x + Gamma3(i)*y + Delta3(i) + r) <= Epsilon*Tolerance) {
|
|
xSol(CurSol) = x;
|
|
ySol(CurSol) = y;
|
|
rSol(CurSol) = r;
|
|
CurSol++;
|
|
}
|
|
if (i == 4 || i == 7)
|
|
if (Abs(Beta3(i)*x + Gamma3(i)*y + Delta3(i) - r - R3) <= Epsilon*Tolerance) {
|
|
xSol(CurSol) = x;
|
|
ySol(CurSol) = y;
|
|
rSol(CurSol) = r;
|
|
CurSol++;
|
|
}
|
|
if (i == 2 || i == 5)
|
|
if (Abs(r - R3 + Beta3(i)*x + Gamma3(i)*y + Delta3(i)) <= Epsilon*Tolerance) {
|
|
xSol(CurSol) = x;
|
|
ySol(CurSol) = y;
|
|
rSol(CurSol) = r;
|
|
CurSol++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
FirstSol(9) = CurSol;
|
|
|
|
// Fifth step:
|
|
// We have found all solutions. We have to calculate some parameters for each one.
|
|
for (i = 1 ; i <= 8; i++) {
|
|
for (j = FirstSol(i); j < FirstSol(i + 1); j++) {
|
|
|
|
if ((Qualified1.IsEnclosed() && rSol(j) > R1) ||
|
|
(Qualified1.IsEnclosing() && rSol(j) < R1))
|
|
continue;
|
|
if ((Qualified2.IsEnclosed() && rSol(j) > R2) ||
|
|
(Qualified2.IsEnclosing() && rSol(j) < R2))
|
|
continue;
|
|
if ((Qualified3.IsEnclosed() && rSol(j) > R3) ||
|
|
(Qualified3.IsEnclosing() && rSol(j) < R3))
|
|
continue;
|
|
|
|
NbrSol++;
|
|
|
|
// RLE, avoid out of range
|
|
if (NbrSol > cirsol.Upper()) NbrSol = cirsol.Upper();
|
|
|
|
gp_Pnt2d Center = gp_Pnt2d(xSol(j), ySol(j));
|
|
|
|
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),rSol(j));
|
|
|
|
// ==========================================================
|
|
Standard_Real distcc1 = Center.Distance(center1);
|
|
if (!Qualified1.IsUnqualified())
|
|
qualifier1(NbrSol) = Qualified1.Qualifier();
|
|
else if (Abs(distcc1 + rSol(j) - R1) <= Tol)
|
|
qualifier1(NbrSol) = GccEnt_enclosed;
|
|
else if (Abs(distcc1 - R1 - rSol(j)) <= Tol)
|
|
qualifier1(NbrSol) = GccEnt_outside;
|
|
else qualifier1(NbrSol) = GccEnt_enclosing;
|
|
|
|
Standard_Real distcc2 = Center.Distance(center1);
|
|
if (!Qualified2.IsUnqualified())
|
|
qualifier2(NbrSol) = Qualified2.Qualifier();
|
|
else if (Abs(distcc2 + rSol(j) - R2) <= Tol)
|
|
qualifier2(NbrSol) = GccEnt_enclosed;
|
|
else if (Abs(distcc2 - R2 - rSol(j)) <= Tol)
|
|
qualifier2(NbrSol) = GccEnt_outside;
|
|
else qualifier2(NbrSol) = GccEnt_enclosing;
|
|
|
|
Standard_Real distcc3 = Center.Distance(center1);
|
|
if (!Qualified3.IsUnqualified())
|
|
qualifier3(NbrSol) = Qualified3.Qualifier();
|
|
else if (Abs(distcc3 + rSol(j) - R3) <= Tol)
|
|
qualifier3(NbrSol) = GccEnt_enclosed;
|
|
else if (Abs(distcc3 - R3 - rSol(j)) <= Tol)
|
|
qualifier3(NbrSol) = GccEnt_outside;
|
|
else qualifier3(NbrSol) = GccEnt_enclosing;
|
|
|
|
// ==========================================================
|
|
|
|
if (Center.Distance(Cir1.Location()) <= Tolerance)
|
|
TheSame1(NbrSol) = 1;
|
|
else {
|
|
TheSame1(NbrSol) = 0;
|
|
gp_Dir2d dc;
|
|
if ((i == 2 || i == 5 || i == 6 || i == 8) || rSol(j) > R1)
|
|
dc.SetXY(Cir1.Location().XY() - Center.XY());
|
|
else
|
|
dc.SetXY(Center.XY() - Cir1.Location().XY());
|
|
pnttg1sol(NbrSol)=gp_Pnt2d(Center.XY() + rSol(j)*dc.XY());
|
|
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg1sol(NbrSol));
|
|
pararg1(NbrSol)=ElCLib::Parameter(Cir1,pnttg1sol(NbrSol));
|
|
}
|
|
|
|
if (Center.Distance(Cir2.Location()) <= Tolerance)
|
|
TheSame2(NbrSol) = 1;
|
|
else {
|
|
TheSame2(NbrSol) = 0;
|
|
gp_Dir2d dc;
|
|
if ((i == 3 || i == 5 || i == 7 || i == 8) || rSol(j) > R2)
|
|
dc.SetXY(Cir2.Location().XY() - Center.XY());
|
|
else
|
|
dc.SetXY(Center.XY() - Cir2.Location().XY());
|
|
pnttg2sol(NbrSol)=gp_Pnt2d(Center.XY() + rSol(j)*dc.XY());
|
|
par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg2sol(NbrSol));
|
|
pararg2(NbrSol)=ElCLib::Parameter(Cir2,pnttg2sol(NbrSol));
|
|
}
|
|
|
|
if (Center.Distance(Cir3.Location()) <= Tolerance)
|
|
TheSame3(NbrSol) = 1;
|
|
else {
|
|
TheSame3(NbrSol) = 0;
|
|
gp_Dir2d dc;
|
|
if ((i == 4 || i == 6 || i == 7 || i == 8) || rSol(j) > R3)
|
|
dc.SetXY(Cir3.Location().XY() - Center.XY());
|
|
else
|
|
dc.SetXY(Center.XY() - Cir3.Location().XY());
|
|
pnttg3sol(NbrSol)=gp_Pnt2d(Center.XY() + rSol(j)*dc.XY());
|
|
par3sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg3sol(NbrSol));
|
|
pararg3(NbrSol)=ElCLib::Parameter(Cir3,pnttg3sol(NbrSol));
|
|
}
|
|
}
|
|
}
|
|
WellDone = Standard_True;
|
|
}
|
|
|
|
//=========================================================================
|
|
|
|
Standard_Boolean GccAna_Circ2d3Tan::
|
|
IsDone () const {
|
|
return WellDone;
|
|
}
|
|
|
|
Standard_Integer GccAna_Circ2d3Tan::
|
|
NbSolutions () const {
|
|
return NbrSol;
|
|
}
|
|
|
|
gp_Circ2d GccAna_Circ2d3Tan::
|
|
ThisSolution (const Standard_Integer Index) const
|
|
{
|
|
if (!WellDone)
|
|
throw StdFail_NotDone();
|
|
|
|
if (Index <= 0 ||Index > NbrSol)
|
|
throw Standard_OutOfRange();
|
|
|
|
return cirsol(Index);
|
|
}
|
|
|
|
void GccAna_Circ2d3Tan::
|
|
WhichQualifier(const Standard_Integer Index ,
|
|
GccEnt_Position& Qualif1 ,
|
|
GccEnt_Position& Qualif2 ,
|
|
GccEnt_Position& Qualif3 ) const
|
|
{
|
|
if (!WellDone) { throw StdFail_NotDone(); }
|
|
else if (Index <= 0 ||Index > NbrSol) { throw Standard_OutOfRange(); }
|
|
else {
|
|
Qualif1 = qualifier1(Index);
|
|
Qualif2 = qualifier2(Index);
|
|
Qualif3 = qualifier3(Index);
|
|
}
|
|
}
|
|
|
|
void GccAna_Circ2d3Tan::
|
|
Tangency1 (const Standard_Integer Index,
|
|
Standard_Real& ParSol,
|
|
Standard_Real& ParArg,
|
|
gp_Pnt2d& PntSol) const {
|
|
if (!WellDone) {
|
|
throw StdFail_NotDone();
|
|
}
|
|
else if (Index <= 0 ||Index > NbrSol) {
|
|
throw Standard_OutOfRange();
|
|
}
|
|
else {
|
|
if (TheSame1(Index) == 0) {
|
|
ParSol = par1sol(Index);
|
|
ParArg = pararg1(Index);
|
|
PntSol = gp_Pnt2d(pnttg1sol(Index));
|
|
}
|
|
else { throw StdFail_NotDone(); }
|
|
}
|
|
}
|
|
|
|
void GccAna_Circ2d3Tan::
|
|
Tangency2 (const Standard_Integer Index,
|
|
Standard_Real& ParSol,
|
|
Standard_Real& ParArg,
|
|
gp_Pnt2d& PntSol) const{
|
|
if (!WellDone) {
|
|
throw StdFail_NotDone();
|
|
}
|
|
else if (Index <= 0 ||Index > NbrSol) {
|
|
throw Standard_OutOfRange();
|
|
}
|
|
else {
|
|
if (TheSame2(Index) == 0) {
|
|
ParSol = par2sol(Index);
|
|
ParArg = pararg2(Index);
|
|
PntSol = gp_Pnt2d(pnttg2sol(Index));
|
|
}
|
|
else { throw StdFail_NotDone(); }
|
|
}
|
|
}
|
|
|
|
void GccAna_Circ2d3Tan::
|
|
Tangency3 (const Standard_Integer Index,
|
|
Standard_Real& ParSol,
|
|
Standard_Real& ParArg,
|
|
gp_Pnt2d& PntSol) const{
|
|
if (!WellDone) {
|
|
throw StdFail_NotDone();
|
|
}
|
|
else if (Index <= 0 ||Index > NbrSol) {
|
|
throw Standard_OutOfRange();
|
|
}
|
|
else {
|
|
if (TheSame3(Index) == 0) {
|
|
ParSol = par3sol(Index);
|
|
ParArg = pararg3(Index);
|
|
PntSol = gp_Pnt2d(pnttg3sol(Index));
|
|
}
|
|
else { throw StdFail_NotDone(); }
|
|
}
|
|
}
|
|
|
|
Standard_Boolean GccAna_Circ2d3Tan::
|
|
IsTheSame1 (const Standard_Integer Index) const
|
|
{
|
|
if (!WellDone)
|
|
throw StdFail_NotDone();
|
|
|
|
if (Index <= 0 ||Index > NbrSol)
|
|
throw Standard_OutOfRange();
|
|
|
|
if (TheSame1(Index) == 0)
|
|
return Standard_False;
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
Standard_Boolean GccAna_Circ2d3Tan::
|
|
IsTheSame2 (const Standard_Integer Index) const
|
|
{
|
|
if (!WellDone)
|
|
throw StdFail_NotDone();
|
|
|
|
if (Index <= 0 ||Index > NbrSol)
|
|
throw Standard_OutOfRange();
|
|
|
|
if (TheSame2(Index) == 0)
|
|
return Standard_False;
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
Standard_Boolean GccAna_Circ2d3Tan::
|
|
IsTheSame3 (const Standard_Integer Index) const
|
|
{
|
|
if (!WellDone)
|
|
throw StdFail_NotDone();
|
|
|
|
if (Index <= 0 ||Index > NbrSol)
|
|
throw Standard_OutOfRange();
|
|
|
|
if (TheSame3(Index) == 0)
|
|
return Standard_False;
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
|