mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-04 18:06:22 +03:00
337 lines
12 KiB
C++
337 lines
12 KiB
C++
// Created on: 1992-01-02
|
|
// Created by: Remi GILET
|
|
// Copyright (c) 1992-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <ElCLib.hxx>
|
|
#include <GccAna_Circ2d2TanOn.hxx>
|
|
#include <GccAna_Circ2dBisec.hxx>
|
|
#include <GccEnt_BadQualifier.hxx>
|
|
#include <GccEnt_QualifiedCirc.hxx>
|
|
#include <GccInt_BLine.hxx>
|
|
#include <GccInt_IType.hxx>
|
|
#include <gp_Ax2d.hxx>
|
|
#include <gp_Circ2d.hxx>
|
|
#include <gp_Dir2d.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <IntAna2d_AnaIntersection.hxx>
|
|
#include <IntAna2d_Conic.hxx>
|
|
#include <IntAna2d_IntPoint.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
|
|
//=========================================================================
|
|
// Creation of a circle tangent to two circles C1 and C2. +
|
|
// centered on a circle. +
|
|
// We start with distinguishing various boundary cases that will be +
|
|
// processed separately. +
|
|
// In the general case: +
|
|
// ==================== +
|
|
// We calculate bissectrices to C1 and C2 that give us all +
|
|
// possible locations of centers of all circles tangent to C1 and C2. +
|
|
// We intersect these bissectrices with circle OnCirc which gives us +
|
|
// points among which we choose the solutions. +
|
|
// The choice is made basing in Qualifiers of C1 and C2. +
|
|
//=========================================================================
|
|
GccAna_Circ2d2TanOn::
|
|
GccAna_Circ2d2TanOn (const GccEnt_QualifiedCirc& Qualified1 ,
|
|
const GccEnt_QualifiedCirc& Qualified2 ,
|
|
const gp_Circ2d& OnCirc ,
|
|
const Standard_Real Tolerance ):
|
|
cirsol(1,8) ,
|
|
qualifier1(1,8) ,
|
|
qualifier2(1,8) ,
|
|
TheSame1(1,8) ,
|
|
TheSame2(1,8) ,
|
|
pnttg1sol(1,8) ,
|
|
pnttg2sol(1,8) ,
|
|
pntcen(1,8) ,
|
|
par1sol(1,8) ,
|
|
par2sol(1,8) ,
|
|
pararg1(1,8) ,
|
|
pararg2(1,8) ,
|
|
parcen3(1,8)
|
|
{
|
|
TheSame1.Init(0);
|
|
TheSame2.Init(0);
|
|
WellDone = Standard_False;
|
|
NbrSol = 0;
|
|
if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() ||
|
|
Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
|
|
!(Qualified2.IsEnclosed() || Qualified2.IsEnclosing() ||
|
|
Qualified2.IsOutside() || Qualified2.IsUnqualified())) {
|
|
throw GccEnt_BadQualifier();
|
|
return;
|
|
}
|
|
Standard_Real Tol= Abs(Tolerance);
|
|
gp_Circ2d C1 = Qualified1.Qualified();
|
|
gp_Circ2d C2 = Qualified2.Qualified();
|
|
gp_Dir2d dirx(1.,0.);
|
|
TColStd_Array1OfReal Radius(1,2);
|
|
TColStd_Array1OfReal Rradius(1,2);
|
|
gp_Pnt2d center1(C1.Location());
|
|
gp_Pnt2d center2(C2.Location());
|
|
|
|
Standard_Real R1 = C1.Radius();
|
|
Standard_Real R2 = C2.Radius();
|
|
|
|
//=========================================================================
|
|
// Processing of boundary cases. +
|
|
//=========================================================================
|
|
|
|
Standard_Integer nbsol1 = 1;
|
|
Standard_Integer nbsol2 = 0;
|
|
Standard_Real Ron = OnCirc.Radius();
|
|
Standard_Real distcco = OnCirc.Location().Distance(center1);
|
|
gp_Dir2d dircc(OnCirc.Location().XY()-center1.XY());
|
|
gp_Pnt2d pinterm(center1.XY()+(distcco-Ron)*dircc.XY());
|
|
Standard_Real distcc2 =pinterm.Distance(center2);
|
|
Standard_Real distcc1 =pinterm.Distance(center1);
|
|
Standard_Real d1 = Abs(distcc2-R2-Abs(distcc1-R1));
|
|
Standard_Real d2 = Abs(distcc2+R2-Abs(distcc1-R1));
|
|
Standard_Real d3 = Abs(distcc2-R2-(distcc1+R1));
|
|
Standard_Real d4 = Abs(distcc2+R2-(distcc1+R1));
|
|
if ( d1 > Tol || d2 > Tol || d3 > Tol || d4 > Tol) {
|
|
pinterm = gp_Pnt2d(center1.XY()+(distcco+Ron)*dircc.XY());
|
|
distcc2 =pinterm.Distance(center2);
|
|
distcc1 =pinterm.Distance(center1);
|
|
d1 = Abs(distcc2-R2-Abs(distcc1-R1));
|
|
d2 = Abs(distcc2+R2-Abs(distcc1-R1));
|
|
d3 = Abs(distcc2-R2-(distcc1+R1));
|
|
d4 = Abs(distcc2+R2-(distcc1+R1));
|
|
if ( d1 > Tol || d2 > Tol || d3 > Tol || d4 > Tol) { nbsol1 = 0; }
|
|
}
|
|
if (nbsol1 > 0) {
|
|
if (Qualified1.IsEnclosed() || Qualified1.IsOutside()) {
|
|
nbsol1 = 1;
|
|
Radius(1) = Abs(distcc1-R1);
|
|
}
|
|
else if (Qualified1.IsEnclosing()) {
|
|
nbsol1 = 1;
|
|
Radius(1) = R1+distcc1;
|
|
}
|
|
else if (Qualified1.IsUnqualified()) {
|
|
nbsol1 = 2;
|
|
Radius(1) = Abs(distcc1-R1);
|
|
Radius(2) = R1+distcc1;
|
|
}
|
|
if (Qualified2.IsEnclosed() || Qualified2.IsOutside()) {
|
|
nbsol2 = 1;
|
|
Rradius(1) = Abs(distcc2-R2);
|
|
}
|
|
else if (Qualified2.IsEnclosing()) {
|
|
nbsol2 = 1;
|
|
Rradius(1) = R2+distcc2;
|
|
}
|
|
else if (Qualified2.IsUnqualified()) {
|
|
nbsol2 = 2;
|
|
Rradius(1) = Abs(distcc2-R2);
|
|
Rradius(2) = R2+distcc2;
|
|
}
|
|
for (Standard_Integer i = 1 ; i <= nbsol1 ; i++) {
|
|
for (Standard_Integer j = 1 ; j <= nbsol2 ; j++) {
|
|
if (Abs(Radius(i)-Rradius(j)) <= Tol) {
|
|
WellDone = Standard_True;
|
|
NbrSol++;
|
|
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(pinterm,dirx),Radius(i));
|
|
// ===========================================================
|
|
gp_Dir2d dc1(center1.XY()-pinterm.XY());
|
|
gp_Dir2d dc2(center2.XY()-pinterm.XY());
|
|
distcc1 = pinterm.Distance(center1);
|
|
distcc2 = pinterm.Distance(center2);
|
|
if (!Qualified1.IsUnqualified()) {
|
|
qualifier1(NbrSol) = Qualified1.Qualifier();
|
|
}
|
|
else if (Abs(distcc1+Radius(i)-R1) < Tol) {
|
|
qualifier1(NbrSol) = GccEnt_enclosed;
|
|
}
|
|
else if (Abs(distcc1-R1-Radius(i)) < Tol) {
|
|
qualifier1(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier1(NbrSol) = GccEnt_enclosing; }
|
|
if (!Qualified2.IsUnqualified()) {
|
|
qualifier2(NbrSol) = Qualified2.Qualifier();
|
|
}
|
|
else if (Abs(distcc2+Radius(i)-R2) < Tol) {
|
|
qualifier2(NbrSol) = GccEnt_enclosed;
|
|
}
|
|
else if (Abs(distcc2-R2-Radius(i)) < Tol) {
|
|
qualifier2(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier2(NbrSol) = GccEnt_enclosing; }
|
|
pnttg1sol(NbrSol) = gp_Pnt2d(pinterm.XY()+Radius(i)*dc1.XY());
|
|
pnttg2sol(NbrSol) = gp_Pnt2d(pinterm.XY()+Radius(i)*dc2.XY());
|
|
pntcen(NbrSol) = cirsol(NbrSol).Location();
|
|
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),pnttg1sol(NbrSol));
|
|
pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
|
|
par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),pnttg2sol(NbrSol));
|
|
pararg2(NbrSol)=ElCLib::Parameter(C2,pnttg2sol(NbrSol));
|
|
parcen3(NbrSol)=ElCLib::Parameter(OnCirc,pntcen(NbrSol));
|
|
}
|
|
}
|
|
}
|
|
if (WellDone) { return; }
|
|
}
|
|
|
|
//=========================================================================
|
|
// General case. +
|
|
//=========================================================================
|
|
|
|
GccAna_Circ2dBisec Bis(C1,C2);
|
|
if (Bis.IsDone()) {
|
|
TColStd_Array1OfReal Rbid(1,2);
|
|
TColStd_Array1OfReal RBid(1,2);
|
|
Standard_Integer nbsolution = Bis.NbSolutions();
|
|
for (Standard_Integer i = 1 ; i <= nbsolution ; i++) {
|
|
Handle(GccInt_Bisec) Sol = Bis.ThisSolution(i);
|
|
GccInt_IType typ = Sol->ArcType();
|
|
IntAna2d_AnaIntersection Intp;
|
|
if (typ == GccInt_Cir) {
|
|
Intp.Perform(OnCirc,Sol->Circle());
|
|
}
|
|
else if (typ == GccInt_Lin) {
|
|
Intp.Perform(Sol->Line(),OnCirc);
|
|
}
|
|
else if (typ == GccInt_Hpr) {
|
|
Intp.Perform(OnCirc,IntAna2d_Conic(Sol->Hyperbola()));
|
|
}
|
|
else if (typ == GccInt_Ell) {
|
|
Intp.Perform(OnCirc,IntAna2d_Conic(Sol->Ellipse()));
|
|
}
|
|
if (Intp.IsDone()) {
|
|
if ((!Intp.IsEmpty())&&(!Intp.ParallelElements())&&
|
|
(!Intp.IdenticalElements())) {
|
|
for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
|
|
gp_Pnt2d Center(Intp.Point(j).Value());
|
|
Standard_Real dist1 = Center.Distance(center1);
|
|
Standard_Real dist2 = Center.Distance(center2);
|
|
Standard_Integer nbsol = 0;
|
|
Standard_Integer nsol = 0;
|
|
Standard_Integer nnsol = 0;
|
|
R1 = C1.Radius();
|
|
R2 = C2.Radius();
|
|
if (Qualified1.IsEnclosed()) {
|
|
if (dist1-R1 < Tol) {
|
|
nbsol = 1;
|
|
Rbid(1) = Abs(R1-dist1);
|
|
}
|
|
}
|
|
else if (Qualified1.IsOutside()) {
|
|
if (R1-dist1 < Tol) {
|
|
nbsol = 1;
|
|
Rbid(1) = Abs(dist1-R1);
|
|
}
|
|
}
|
|
else if (Qualified1.IsEnclosing()) {
|
|
nbsol = 1;
|
|
Rbid(1) = dist1+R1;
|
|
}
|
|
else if (Qualified1.IsUnqualified()) {
|
|
nbsol = 2;
|
|
Rbid(1) = dist1+R1;
|
|
Rbid(1) = Abs(dist1-R1);
|
|
}
|
|
if (Qualified2.IsEnclosed() && nbsol != 0) {
|
|
if (dist2-R2 < Tol) {
|
|
nsol = 1;
|
|
RBid(1) = Abs(R2-dist2);
|
|
}
|
|
}
|
|
else if (Qualified2.IsOutside() && nbsol != 0) {
|
|
if (R2-dist2 < Tol) {
|
|
nsol = 1;
|
|
RBid(1) = Abs(R2-dist2);
|
|
}
|
|
}
|
|
else if (Qualified2.IsEnclosing() && nbsol != 0) {
|
|
nsol = 1;
|
|
RBid(1) = dist2+R2;
|
|
}
|
|
else if (Qualified2.IsUnqualified() && nbsol != 0) {
|
|
nsol = 2;
|
|
RBid(1) = dist2+R2;
|
|
RBid(2) = Abs(R2-dist2);
|
|
}
|
|
for (Standard_Integer isol = 1; isol <= nbsol ; isol++) {
|
|
for (Standard_Integer jsol = 1; jsol <= nsol ; jsol++) {
|
|
if (Abs(Rbid(isol)-RBid(jsol)) <= Tol) {
|
|
nnsol++;
|
|
Radius(nnsol) = (RBid(jsol)+Rbid(isol))/2.;
|
|
}
|
|
}
|
|
}
|
|
if (nnsol > 0) {
|
|
for (Standard_Integer k = 1 ; k <= nnsol ; k++) {
|
|
NbrSol++;
|
|
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius(k));
|
|
// ==========================================================
|
|
distcc1 = Center.Distance(center1);
|
|
distcc2 = Center.Distance(center2);
|
|
if (!Qualified1.IsUnqualified()) {
|
|
qualifier1(NbrSol) = Qualified1.Qualifier();
|
|
}
|
|
else if (Abs(distcc1+Radius(k)-R1) < Tol) {
|
|
qualifier1(NbrSol) = GccEnt_enclosed;
|
|
}
|
|
else if (Abs(distcc1-R1-Radius(k)) < Tol) {
|
|
qualifier1(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier1(NbrSol) = GccEnt_enclosing; }
|
|
if (!Qualified2.IsUnqualified()) {
|
|
qualifier2(NbrSol) = Qualified2.Qualifier();
|
|
}
|
|
else if (Abs(distcc2+Radius(k)-R2) < Tol) {
|
|
qualifier2(NbrSol) = GccEnt_enclosed;
|
|
}
|
|
else if (Abs(distcc2-R2-Radius(k)) < Tol) {
|
|
qualifier2(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier2(NbrSol) = GccEnt_enclosing; }
|
|
if (Center.Distance(center1) <= Tolerance &&
|
|
Abs(Radius(k)-C1.Radius()) <= Tolerance) {
|
|
TheSame1(NbrSol) = 1;
|
|
}
|
|
else {
|
|
TheSame1(NbrSol) = 0;
|
|
gp_Dir2d dc1(center1.XY()-Center.XY());
|
|
pnttg1sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius(k)*dc1.XY());
|
|
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg1sol(NbrSol));
|
|
pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
|
|
}
|
|
if (Center.Distance(center2) <= Tolerance &&
|
|
Abs(Radius(k)-C2.Radius()) <= Tolerance) {
|
|
TheSame2(NbrSol) = 1;
|
|
}
|
|
else {
|
|
TheSame2(NbrSol) = 0;
|
|
gp_Dir2d dc2(center2.XY()-Center.XY());
|
|
pnttg2sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius(k)*dc2.XY());
|
|
par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg2sol(NbrSol));
|
|
pararg2(NbrSol)=ElCLib::Parameter(C2,pnttg2sol(NbrSol));
|
|
}
|
|
pntcen(NbrSol) = Center;
|
|
parcen3(NbrSol)=ElCLib::Parameter(OnCirc,pntcen(NbrSol));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
WellDone = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|