1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-04 18:06:22 +03:00
occt/src/GccAna/GccAna_Circ2d2TanOn_6.cxx

337 lines
12 KiB
C++

// Created on: 1992-01-02
// Created by: Remi GILET
// Copyright (c) 1992-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <ElCLib.hxx>
#include <GccAna_Circ2d2TanOn.hxx>
#include <GccAna_Circ2dBisec.hxx>
#include <GccEnt_BadQualifier.hxx>
#include <GccEnt_QualifiedCirc.hxx>
#include <GccInt_BLine.hxx>
#include <GccInt_IType.hxx>
#include <gp_Ax2d.hxx>
#include <gp_Circ2d.hxx>
#include <gp_Dir2d.hxx>
#include <gp_Pnt2d.hxx>
#include <IntAna2d_AnaIntersection.hxx>
#include <IntAna2d_Conic.hxx>
#include <IntAna2d_IntPoint.hxx>
#include <TColStd_Array1OfReal.hxx>
//=========================================================================
// Creation of a circle tangent to two circles C1 and C2. +
// centered on a circle. +
// We start with distinguishing various boundary cases that will be +
// processed separately. +
// In the general case: +
// ==================== +
// We calculate bissectrices to C1 and C2 that give us all +
// possible locations of centers of all circles tangent to C1 and C2. +
// We intersect these bissectrices with circle OnCirc which gives us +
// points among which we choose the solutions. +
// The choice is made basing in Qualifiers of C1 and C2. +
//=========================================================================
GccAna_Circ2d2TanOn::
GccAna_Circ2d2TanOn (const GccEnt_QualifiedCirc& Qualified1 ,
const GccEnt_QualifiedCirc& Qualified2 ,
const gp_Circ2d& OnCirc ,
const Standard_Real Tolerance ):
cirsol(1,8) ,
qualifier1(1,8) ,
qualifier2(1,8) ,
TheSame1(1,8) ,
TheSame2(1,8) ,
pnttg1sol(1,8) ,
pnttg2sol(1,8) ,
pntcen(1,8) ,
par1sol(1,8) ,
par2sol(1,8) ,
pararg1(1,8) ,
pararg2(1,8) ,
parcen3(1,8)
{
TheSame1.Init(0);
TheSame2.Init(0);
WellDone = Standard_False;
NbrSol = 0;
if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() ||
Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
!(Qualified2.IsEnclosed() || Qualified2.IsEnclosing() ||
Qualified2.IsOutside() || Qualified2.IsUnqualified())) {
throw GccEnt_BadQualifier();
return;
}
Standard_Real Tol= Abs(Tolerance);
gp_Circ2d C1 = Qualified1.Qualified();
gp_Circ2d C2 = Qualified2.Qualified();
gp_Dir2d dirx(1.,0.);
TColStd_Array1OfReal Radius(1,2);
TColStd_Array1OfReal Rradius(1,2);
gp_Pnt2d center1(C1.Location());
gp_Pnt2d center2(C2.Location());
Standard_Real R1 = C1.Radius();
Standard_Real R2 = C2.Radius();
//=========================================================================
// Processing of boundary cases. +
//=========================================================================
Standard_Integer nbsol1 = 1;
Standard_Integer nbsol2 = 0;
Standard_Real Ron = OnCirc.Radius();
Standard_Real distcco = OnCirc.Location().Distance(center1);
gp_Dir2d dircc(OnCirc.Location().XY()-center1.XY());
gp_Pnt2d pinterm(center1.XY()+(distcco-Ron)*dircc.XY());
Standard_Real distcc2 =pinterm.Distance(center2);
Standard_Real distcc1 =pinterm.Distance(center1);
Standard_Real d1 = Abs(distcc2-R2-Abs(distcc1-R1));
Standard_Real d2 = Abs(distcc2+R2-Abs(distcc1-R1));
Standard_Real d3 = Abs(distcc2-R2-(distcc1+R1));
Standard_Real d4 = Abs(distcc2+R2-(distcc1+R1));
if ( d1 > Tol || d2 > Tol || d3 > Tol || d4 > Tol) {
pinterm = gp_Pnt2d(center1.XY()+(distcco+Ron)*dircc.XY());
distcc2 =pinterm.Distance(center2);
distcc1 =pinterm.Distance(center1);
d1 = Abs(distcc2-R2-Abs(distcc1-R1));
d2 = Abs(distcc2+R2-Abs(distcc1-R1));
d3 = Abs(distcc2-R2-(distcc1+R1));
d4 = Abs(distcc2+R2-(distcc1+R1));
if ( d1 > Tol || d2 > Tol || d3 > Tol || d4 > Tol) { nbsol1 = 0; }
}
if (nbsol1 > 0) {
if (Qualified1.IsEnclosed() || Qualified1.IsOutside()) {
nbsol1 = 1;
Radius(1) = Abs(distcc1-R1);
}
else if (Qualified1.IsEnclosing()) {
nbsol1 = 1;
Radius(1) = R1+distcc1;
}
else if (Qualified1.IsUnqualified()) {
nbsol1 = 2;
Radius(1) = Abs(distcc1-R1);
Radius(2) = R1+distcc1;
}
if (Qualified2.IsEnclosed() || Qualified2.IsOutside()) {
nbsol2 = 1;
Rradius(1) = Abs(distcc2-R2);
}
else if (Qualified2.IsEnclosing()) {
nbsol2 = 1;
Rradius(1) = R2+distcc2;
}
else if (Qualified2.IsUnqualified()) {
nbsol2 = 2;
Rradius(1) = Abs(distcc2-R2);
Rradius(2) = R2+distcc2;
}
for (Standard_Integer i = 1 ; i <= nbsol1 ; i++) {
for (Standard_Integer j = 1 ; j <= nbsol2 ; j++) {
if (Abs(Radius(i)-Rradius(j)) <= Tol) {
WellDone = Standard_True;
NbrSol++;
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(pinterm,dirx),Radius(i));
// ===========================================================
gp_Dir2d dc1(center1.XY()-pinterm.XY());
gp_Dir2d dc2(center2.XY()-pinterm.XY());
distcc1 = pinterm.Distance(center1);
distcc2 = pinterm.Distance(center2);
if (!Qualified1.IsUnqualified()) {
qualifier1(NbrSol) = Qualified1.Qualifier();
}
else if (Abs(distcc1+Radius(i)-R1) < Tol) {
qualifier1(NbrSol) = GccEnt_enclosed;
}
else if (Abs(distcc1-R1-Radius(i)) < Tol) {
qualifier1(NbrSol) = GccEnt_outside;
}
else { qualifier1(NbrSol) = GccEnt_enclosing; }
if (!Qualified2.IsUnqualified()) {
qualifier2(NbrSol) = Qualified2.Qualifier();
}
else if (Abs(distcc2+Radius(i)-R2) < Tol) {
qualifier2(NbrSol) = GccEnt_enclosed;
}
else if (Abs(distcc2-R2-Radius(i)) < Tol) {
qualifier2(NbrSol) = GccEnt_outside;
}
else { qualifier2(NbrSol) = GccEnt_enclosing; }
pnttg1sol(NbrSol) = gp_Pnt2d(pinterm.XY()+Radius(i)*dc1.XY());
pnttg2sol(NbrSol) = gp_Pnt2d(pinterm.XY()+Radius(i)*dc2.XY());
pntcen(NbrSol) = cirsol(NbrSol).Location();
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),pnttg1sol(NbrSol));
pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),pnttg2sol(NbrSol));
pararg2(NbrSol)=ElCLib::Parameter(C2,pnttg2sol(NbrSol));
parcen3(NbrSol)=ElCLib::Parameter(OnCirc,pntcen(NbrSol));
}
}
}
if (WellDone) { return; }
}
//=========================================================================
// General case. +
//=========================================================================
GccAna_Circ2dBisec Bis(C1,C2);
if (Bis.IsDone()) {
TColStd_Array1OfReal Rbid(1,2);
TColStd_Array1OfReal RBid(1,2);
Standard_Integer nbsolution = Bis.NbSolutions();
for (Standard_Integer i = 1 ; i <= nbsolution ; i++) {
Handle(GccInt_Bisec) Sol = Bis.ThisSolution(i);
GccInt_IType typ = Sol->ArcType();
IntAna2d_AnaIntersection Intp;
if (typ == GccInt_Cir) {
Intp.Perform(OnCirc,Sol->Circle());
}
else if (typ == GccInt_Lin) {
Intp.Perform(Sol->Line(),OnCirc);
}
else if (typ == GccInt_Hpr) {
Intp.Perform(OnCirc,IntAna2d_Conic(Sol->Hyperbola()));
}
else if (typ == GccInt_Ell) {
Intp.Perform(OnCirc,IntAna2d_Conic(Sol->Ellipse()));
}
if (Intp.IsDone()) {
if ((!Intp.IsEmpty())&&(!Intp.ParallelElements())&&
(!Intp.IdenticalElements())) {
for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
gp_Pnt2d Center(Intp.Point(j).Value());
Standard_Real dist1 = Center.Distance(center1);
Standard_Real dist2 = Center.Distance(center2);
Standard_Integer nbsol = 0;
Standard_Integer nsol = 0;
Standard_Integer nnsol = 0;
R1 = C1.Radius();
R2 = C2.Radius();
if (Qualified1.IsEnclosed()) {
if (dist1-R1 < Tol) {
nbsol = 1;
Rbid(1) = Abs(R1-dist1);
}
}
else if (Qualified1.IsOutside()) {
if (R1-dist1 < Tol) {
nbsol = 1;
Rbid(1) = Abs(dist1-R1);
}
}
else if (Qualified1.IsEnclosing()) {
nbsol = 1;
Rbid(1) = dist1+R1;
}
else if (Qualified1.IsUnqualified()) {
nbsol = 2;
Rbid(1) = dist1+R1;
Rbid(1) = Abs(dist1-R1);
}
if (Qualified2.IsEnclosed() && nbsol != 0) {
if (dist2-R2 < Tol) {
nsol = 1;
RBid(1) = Abs(R2-dist2);
}
}
else if (Qualified2.IsOutside() && nbsol != 0) {
if (R2-dist2 < Tol) {
nsol = 1;
RBid(1) = Abs(R2-dist2);
}
}
else if (Qualified2.IsEnclosing() && nbsol != 0) {
nsol = 1;
RBid(1) = dist2+R2;
}
else if (Qualified2.IsUnqualified() && nbsol != 0) {
nsol = 2;
RBid(1) = dist2+R2;
RBid(2) = Abs(R2-dist2);
}
for (Standard_Integer isol = 1; isol <= nbsol ; isol++) {
for (Standard_Integer jsol = 1; jsol <= nsol ; jsol++) {
if (Abs(Rbid(isol)-RBid(jsol)) <= Tol) {
nnsol++;
Radius(nnsol) = (RBid(jsol)+Rbid(isol))/2.;
}
}
}
if (nnsol > 0) {
for (Standard_Integer k = 1 ; k <= nnsol ; k++) {
NbrSol++;
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius(k));
// ==========================================================
distcc1 = Center.Distance(center1);
distcc2 = Center.Distance(center2);
if (!Qualified1.IsUnqualified()) {
qualifier1(NbrSol) = Qualified1.Qualifier();
}
else if (Abs(distcc1+Radius(k)-R1) < Tol) {
qualifier1(NbrSol) = GccEnt_enclosed;
}
else if (Abs(distcc1-R1-Radius(k)) < Tol) {
qualifier1(NbrSol) = GccEnt_outside;
}
else { qualifier1(NbrSol) = GccEnt_enclosing; }
if (!Qualified2.IsUnqualified()) {
qualifier2(NbrSol) = Qualified2.Qualifier();
}
else if (Abs(distcc2+Radius(k)-R2) < Tol) {
qualifier2(NbrSol) = GccEnt_enclosed;
}
else if (Abs(distcc2-R2-Radius(k)) < Tol) {
qualifier2(NbrSol) = GccEnt_outside;
}
else { qualifier2(NbrSol) = GccEnt_enclosing; }
if (Center.Distance(center1) <= Tolerance &&
Abs(Radius(k)-C1.Radius()) <= Tolerance) {
TheSame1(NbrSol) = 1;
}
else {
TheSame1(NbrSol) = 0;
gp_Dir2d dc1(center1.XY()-Center.XY());
pnttg1sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius(k)*dc1.XY());
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
pnttg1sol(NbrSol));
pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
}
if (Center.Distance(center2) <= Tolerance &&
Abs(Radius(k)-C2.Radius()) <= Tolerance) {
TheSame2(NbrSol) = 1;
}
else {
TheSame2(NbrSol) = 0;
gp_Dir2d dc2(center2.XY()-Center.XY());
pnttg2sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius(k)*dc2.XY());
par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
pnttg2sol(NbrSol));
pararg2(NbrSol)=ElCLib::Parameter(C2,pnttg2sol(NbrSol));
}
pntcen(NbrSol) = Center;
parcen3(NbrSol)=ElCLib::Parameter(OnCirc,pntcen(NbrSol));
}
}
}
}
WellDone = Standard_True;
}
}
}
}