mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
474 lines
17 KiB
C++
474 lines
17 KiB
C++
// Created on: 1996-02-26
|
|
// Created by: Philippe MANGIN
|
|
// Copyright (c) 1996-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#ifndef OCCT_DEBUG
|
|
#define No_Standard_RangeError
|
|
#define No_Standard_OutOfRange
|
|
#endif
|
|
|
|
|
|
#include <BSplCLib.hxx>
|
|
#include <FairCurve_EnergyOfMVC.hxx>
|
|
#include <FairCurve_MinimalVariation.hxx>
|
|
#include <FairCurve_Newton.hxx>
|
|
#include <Geom2d_BSplineCurve.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <gp_Vec2d.hxx>
|
|
#include <math_Matrix.hxx>
|
|
#include <PLib.hxx>
|
|
#include <Standard_NullValue.hxx>
|
|
#include <TColgp_HArray1OfPnt2d.hxx>
|
|
#include <TColStd_HArray1OfInteger.hxx>
|
|
#include <TColStd_HArray1OfReal.hxx>
|
|
|
|
//======================================================================================
|
|
FairCurve_MinimalVariation::FairCurve_MinimalVariation(const gp_Pnt2d& P1,
|
|
const gp_Pnt2d& P2,
|
|
const Standard_Real Heigth,
|
|
const Standard_Real Slope,
|
|
const Standard_Real PhysicalRatio)
|
|
//======================================================================================
|
|
:FairCurve_Batten(P1, P2, Heigth, Slope),
|
|
OldCurvature1(0), OldCurvature2(0),
|
|
OldPhysicalRatio(PhysicalRatio),
|
|
NewCurvature1(0), NewCurvature2(0),
|
|
NewPhysicalRatio(PhysicalRatio)
|
|
{
|
|
}
|
|
|
|
//======================================================================================
|
|
Standard_Boolean FairCurve_MinimalVariation::Compute(FairCurve_AnalysisCode& ACode,
|
|
const Standard_Integer NbIterations,
|
|
const Standard_Real Tolerance)
|
|
//======================================================================================
|
|
{
|
|
Standard_Boolean Ok=Standard_True, End=Standard_False;
|
|
Standard_Real AngleMax = 0.7; // parameter regulating the function of increment ( 40 degrees )
|
|
Standard_Real AngleMin = 2*M_PI/100; // parameter regulating the function of increment
|
|
// full passage should not contain more than 100 steps.
|
|
Standard_Real DAngle1, DAngle2, DRho1, DRho2, Ratio, Fraction, Toler;
|
|
Standard_Real OldDist, NewDist;
|
|
|
|
// Loop of Homotopy : calculation of the step and optimisation
|
|
|
|
while (Ok && !End) {
|
|
DAngle1 = NewAngle1-OldAngle1;
|
|
DAngle2 = NewAngle2-OldAngle2;
|
|
DRho1 = NewCurvature1 - OldCurvature1;
|
|
DRho2 = NewCurvature2 - OldCurvature2;
|
|
Ratio = 1;
|
|
|
|
if (NewConstraintOrder1>0) {
|
|
Fraction = Abs(DAngle1) / (AngleMax * Exp (-Abs(OldAngle1)/AngleMax) + AngleMin);
|
|
if (Fraction > 1) Ratio = 1 / Fraction;
|
|
}
|
|
if (NewConstraintOrder2>0) {
|
|
Fraction = Abs(DAngle2) / (AngleMax * Exp (-Abs(OldAngle2)/AngleMax) + AngleMin);
|
|
if (Fraction > 1) Ratio = (Ratio < 1 / Fraction ? Ratio : 1 / Fraction);
|
|
}
|
|
|
|
OldDist = OldP1.Distance(OldP2);
|
|
NewDist = NewP1.Distance(NewP2);
|
|
Fraction = Abs(OldDist-NewDist) / (OldDist/3);
|
|
if ( Fraction > 1) Ratio = (Ratio < 1 / Fraction ? Ratio : 1 / Fraction);
|
|
|
|
if (NewConstraintOrder1>1) {
|
|
Fraction = Abs(DRho1)*OldDist / (2+Abs(OldAngle1) + Abs(OldAngle2));
|
|
if ( Fraction > 1) Ratio = (Ratio < 1 / Fraction ? Ratio : 1 / Fraction);
|
|
}
|
|
|
|
if (NewConstraintOrder2>1) {
|
|
Fraction = Abs(DRho2)*OldDist/ (2+Abs(OldAngle1) + Abs(OldAngle2));
|
|
if ( Fraction > 1) Ratio = (Ratio < 1 / Fraction ? Ratio : 1 / Fraction);
|
|
}
|
|
|
|
gp_Vec2d DeltaP1(OldP1, NewP1) , DeltaP2(OldP2, NewP2);
|
|
if ( Ratio == 1) {
|
|
End = Standard_True;
|
|
Toler = Tolerance;
|
|
}
|
|
else {
|
|
DeltaP1 *= Ratio;
|
|
DeltaP2 *= Ratio;
|
|
DAngle1 *= Ratio;
|
|
DAngle2 *= Ratio;
|
|
DRho1 *= Ratio;
|
|
DRho2 *= Ratio;
|
|
Toler = 10 * Tolerance;
|
|
}
|
|
|
|
Ok = Compute( DeltaP1, DeltaP2,
|
|
DAngle1, DAngle2,
|
|
DRho1, DRho2,
|
|
ACode,
|
|
NbIterations,
|
|
Toler);
|
|
|
|
if (ACode != FairCurve_OK) End = Standard_True;
|
|
if (NewFreeSliding) NewSlidingFactor = OldSlidingFactor;
|
|
if (NewConstraintOrder1 == 0) NewAngle1 = OldAngle1;
|
|
if (NewConstraintOrder1 < 2) NewCurvature1 = OldCurvature1;
|
|
if (NewConstraintOrder2 == 0) NewAngle2 = OldAngle2;
|
|
if (NewConstraintOrder2 < 2) NewCurvature2 = OldCurvature2;
|
|
}
|
|
myCode = ACode;
|
|
return Ok;
|
|
}
|
|
|
|
//======================================================================================
|
|
Standard_Boolean FairCurve_MinimalVariation::Compute(const gp_Vec2d& DeltaP1,
|
|
const gp_Vec2d& DeltaP2,
|
|
const Standard_Real DeltaAngle1,
|
|
const Standard_Real DeltaAngle2,
|
|
const Standard_Real DeltaCurvature1,
|
|
const Standard_Real DeltaCurvature2,
|
|
FairCurve_AnalysisCode& ACode,
|
|
const Standard_Integer NbIterations,
|
|
const Standard_Real Tolerance)
|
|
//======================================================================================
|
|
{
|
|
Standard_Boolean Ok, OkCompute=Standard_True;
|
|
ACode = FairCurve_OK;
|
|
|
|
// Deformation of the curve by adding a polynom of interpolation
|
|
Standard_Integer L = 2 + NewConstraintOrder1 + NewConstraintOrder2,
|
|
kk, ii;
|
|
// NbP1 = Poles->Length()-1, kk, ii;
|
|
#ifdef OCCT_DEBUG
|
|
Standard_Integer NbP1 =
|
|
#endif
|
|
Poles->Length() ;
|
|
#ifdef OCCT_DEBUG
|
|
NbP1 = NbP1 - 1 ;
|
|
#endif
|
|
TColStd_Array1OfReal knots (1,2);
|
|
knots(1) = 0;
|
|
knots(2) = 1;
|
|
TColStd_Array1OfInteger mults (1,2);
|
|
TColgp_Array1OfPnt2d HermitePoles(1,L);
|
|
TColgp_Array1OfPnt2d Interpolation(1,L);
|
|
Handle(TColgp_HArray1OfPnt2d) NPoles = new TColgp_HArray1OfPnt2d(1, Poles->Length());
|
|
|
|
// Polynomes of Hermite
|
|
math_Matrix HermiteCoef(1, L, 1, L);
|
|
Ok = PLib::HermiteCoefficients(0,1, NewConstraintOrder1, NewConstraintOrder2,
|
|
HermiteCoef);
|
|
if (!Ok) return Standard_False;
|
|
|
|
// Definition of constraints of interpolation
|
|
TColgp_Array1OfXY ADelta(1,L);
|
|
gp_Vec2d VOld(OldP1, OldP2), VNew( -(OldP1.XY()+DeltaP1.XY()) + (OldP2.XY()+DeltaP2.XY()) );
|
|
Standard_Real DAngleRef = VNew.Angle(VOld);
|
|
Standard_Real DAngle1 = DeltaAngle1 - DAngleRef,
|
|
DAngle2 = DAngleRef - DeltaAngle2; // Correction of Delta by the Delta induced by the points.
|
|
|
|
|
|
ADelta(1) = DeltaP1.XY();
|
|
kk = 2;
|
|
if (NewConstraintOrder1>0) {
|
|
// rotation of the derivative premiereDeltaAngle1
|
|
gp_Vec2d OldDerive( Poles->Value(Poles->Lower()),
|
|
Poles->Value(Poles->Lower()+1) );
|
|
OldDerive *= Degree / (Knots->Value(Knots->Lower()+1)-Knots->Value(Knots->Lower()) );
|
|
ADelta(kk) = (OldDerive.Rotated(DAngle1) - OldDerive).XY();
|
|
kk += 1;
|
|
|
|
if (NewConstraintOrder1>1) {
|
|
// rotation of the second derivative + adding
|
|
gp_Vec2d OldSeconde( Poles->Value(Poles->Lower()).XY() + Poles->Value(Poles->Lower()+2).XY()
|
|
- 2*Poles->Value(Poles->Lower()+1).XY() );
|
|
OldSeconde *= Degree*( Degree-1)
|
|
/ pow (Knots->Value(Knots->Lower()+1)-Knots->Value(Knots->Lower()), 2);
|
|
Standard_Real CPrim = OldDerive.Magnitude();
|
|
ADelta(kk) = ( OldSeconde.Rotated(DAngle1) - OldSeconde
|
|
+ DeltaCurvature1*CPrim*OldDerive.Rotated(M_PI/2+DAngle1) ).XY();
|
|
kk += 1;
|
|
}
|
|
}
|
|
ADelta(kk) = DeltaP2.XY();
|
|
kk += 1;
|
|
if (NewConstraintOrder2>0) {
|
|
gp_Vec2d OldDerive( Poles->Value(Poles->Upper()-1),
|
|
Poles->Value(Poles->Upper()) );
|
|
OldDerive *= Degree / (Knots->Value(Knots->Upper()) - Knots->Value(Knots->Upper()-1) );
|
|
ADelta(kk) = (OldDerive.Rotated(DAngle2) - OldDerive).XY();
|
|
kk += 1;
|
|
if (NewConstraintOrder2>1) {
|
|
// rotation of the second derivative + adding
|
|
gp_Vec2d OldSeconde( Poles->Value(Poles->Upper()).XY() + Poles->Value(Poles->Upper()-2).XY()
|
|
- 2*Poles->Value(Poles->Upper()-1).XY() );
|
|
OldSeconde *= Degree*( Degree-1)
|
|
/ pow (Knots->Value(Knots->Upper())-Knots->Value(Knots->Upper()-1), 2);
|
|
Standard_Real CPrim = OldDerive.Magnitude();
|
|
ADelta(kk) = ( OldSeconde.Rotated(DAngle2) - OldSeconde
|
|
+ DeltaCurvature2*CPrim*OldDerive.Rotated(M_PI/2+DAngle2) ).XY();
|
|
kk += 1;
|
|
}
|
|
}
|
|
|
|
// Interpolation
|
|
gp_XY AuxXY (0,0);
|
|
for (ii=1; ii<=L; ii++) {
|
|
AuxXY.SetCoord(0.0, 0);
|
|
for (kk=1; kk<=L; kk++) {
|
|
AuxXY += HermiteCoef(kk, ii) * ADelta(kk);
|
|
}
|
|
Interpolation(ii).SetXY(AuxXY);
|
|
}
|
|
// Conversion into BSpline of the same structure as the current batten.
|
|
PLib::CoefficientsPoles(Interpolation, PLib::NoWeights(),
|
|
HermitePoles, PLib::NoWeights());
|
|
|
|
mults.Init(L);
|
|
|
|
Handle(Geom2d_BSplineCurve) DeltaCurve =
|
|
new Geom2d_BSplineCurve( HermitePoles,
|
|
knots, mults, L-1);
|
|
|
|
DeltaCurve->IncreaseDegree(Degree);
|
|
if (Mults->Length()>2) {
|
|
DeltaCurve->InsertKnots(Knots->Array1(), Mults->Array1(), 1.e-10);
|
|
}
|
|
|
|
// Summing
|
|
DeltaCurve->Poles( NPoles->ChangeArray1() );
|
|
for (kk= NPoles->Lower(); kk<=NPoles->Upper(); kk++) {
|
|
NPoles->ChangeValue(kk).ChangeCoord() += Poles->Value(kk).Coord();
|
|
}
|
|
|
|
// Intermediaires
|
|
|
|
Standard_Real Angle1, Angle2, SlidingLength,
|
|
Alph1 = OldAngle1 + DeltaAngle1,
|
|
Alph2 = OldAngle2 + DeltaAngle2,
|
|
Rho1 = OldCurvature1 + DeltaCurvature1,
|
|
Rho2 = OldCurvature2 + DeltaCurvature2,
|
|
Dist = NPoles->Value(NPoles->Upper())
|
|
. Distance( NPoles->Value( NPoles->Lower() ) ),
|
|
LReference = SlidingOfReference(Dist, Alph1, Alph2);
|
|
gp_Vec2d Ox(1, 0),
|
|
P1P2 ( NPoles->Value(NPoles->Upper()).Coord()
|
|
- NPoles->Value(NPoles->Lower()).Coord() );
|
|
|
|
// Angles corresponding to axis ox
|
|
|
|
Angle1 = Ox.Angle(P1P2) + Alph1;
|
|
Angle2 = -Ox.Angle(P1P2) + Alph2;
|
|
|
|
// Calculation of the length of sliding (imposed or initial);
|
|
|
|
if (!NewFreeSliding) {
|
|
SlidingLength = NewSlidingFactor * LReference;
|
|
}
|
|
else {
|
|
if (OldFreeSliding) {
|
|
SlidingLength = OldSlidingFactor * LReference;
|
|
}
|
|
else {
|
|
SlidingLength = SlidingOfReference(Dist, Alph1, Alph2);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Energy and vectors of initialization
|
|
FairCurve_BattenLaw LBatten (NewHeight, NewSlope, SlidingLength );
|
|
FairCurve_EnergyOfMVC EMVC (Degree+1, Flatknots, NPoles,
|
|
NewConstraintOrder1, NewConstraintOrder2,
|
|
LBatten, NewPhysicalRatio, SlidingLength, NewFreeSliding,
|
|
Angle1, Angle2, Rho1, Rho2);
|
|
math_Vector VInit (1, EMVC.NbVariables());
|
|
|
|
// The value below gives an idea about the smallest value of the criterion of flexion.
|
|
Standard_Real VConvex = 0.01 * pow(NewHeight / SlidingLength, 3);
|
|
if (VConvex < 1.e-12) {VConvex = 1.e-12;}
|
|
|
|
Ok = EMVC.Variable(VInit);
|
|
|
|
// Minimisation
|
|
FairCurve_Newton Newton(EMVC,
|
|
Tolerance*(P1P2.Magnitude()/10),
|
|
Tolerance,
|
|
NbIterations,
|
|
VConvex);
|
|
Newton.Perform(EMVC, VInit);
|
|
Ok = Newton.IsDone();
|
|
|
|
if (Ok) {
|
|
gp_Vec2d Tangente, PseudoNormale;
|
|
Poles = NPoles;
|
|
Newton.Location(VInit);
|
|
|
|
if (NewFreeSliding) { OldSlidingFactor = VInit(VInit.Upper()) / LReference;}
|
|
else { OldSlidingFactor = NewSlidingFactor; }
|
|
|
|
if (NewConstraintOrder1 < 2) {
|
|
Tangente.SetXY( Poles->Value(Poles->Lower()+1).XY()
|
|
- Poles->Value(Poles->Lower()).XY() );
|
|
|
|
if (NewConstraintOrder1 == 0) {OldAngle1 = P1P2.Angle(Tangente);}
|
|
else {OldAngle1 = Alph1;}
|
|
|
|
PseudoNormale.SetXY ( Poles->Value(Poles->Lower()).XY()
|
|
- 2 * Poles->Value(Poles->Lower()+1).XY()
|
|
+ Poles->Value(Poles->Lower()+2).XY());
|
|
OldCurvature1 = (((double)Degree-1) /Degree) * (Tangente.Normalized()^PseudoNormale)
|
|
/ Tangente.SquareMagnitude();
|
|
}
|
|
else {OldCurvature1 = Rho1;
|
|
OldAngle1 = Alph1; }
|
|
|
|
if (NewConstraintOrder2 < 2) {
|
|
Tangente.SetXY ( Poles->Value(Poles->Upper()).XY()
|
|
- Poles->Value(Poles->Upper()-1).XY() );
|
|
if (NewConstraintOrder2 == 0) OldAngle2 = (-Tangente).Angle(-P1P2);
|
|
else { OldAngle2 = Alph2;}
|
|
PseudoNormale.SetXY ( Poles->Value(Poles->Upper()).XY()
|
|
- 2 * Poles->Value(Poles->Upper()-1).XY()
|
|
+ Poles->Value(Poles->Upper()-2).XY());
|
|
OldCurvature2 = (((double)Degree-1) /Degree) * (Tangente.Normalized()^PseudoNormale)
|
|
/ Tangente.SquareMagnitude();
|
|
}
|
|
else { OldAngle2 = Alph2;
|
|
OldCurvature2 = Rho2;
|
|
}
|
|
|
|
OldP1 = Poles->Value(Poles->Lower());
|
|
OldP2 = Poles->Value(Poles->Upper());
|
|
OldConstraintOrder1 = NewConstraintOrder1;
|
|
OldConstraintOrder2 = NewConstraintOrder2;
|
|
OldFreeSliding = NewFreeSliding;
|
|
OldSlope = NewSlope;
|
|
OldHeight = NewHeight;
|
|
OldPhysicalRatio = NewPhysicalRatio;
|
|
}
|
|
else {
|
|
Standard_Real V;
|
|
ACode = EMVC.Status();
|
|
if (!LBatten.Value(0, V) || !LBatten.Value(1, V)) {
|
|
ACode = FairCurve_NullHeight;
|
|
}
|
|
else { OkCompute = Standard_False;}
|
|
return OkCompute;
|
|
}
|
|
|
|
Ok = EMVC.Variable(VInit);
|
|
|
|
// Processing of non convergence
|
|
if (!Newton.IsConverged()) {
|
|
ACode = FairCurve_NotConverged;
|
|
}
|
|
|
|
|
|
// Prevention of infinite sliding
|
|
if (NewFreeSliding && VInit(VInit.Upper()) > 2*LReference) ACode = FairCurve_InfiniteSliding;
|
|
|
|
|
|
// Eventual insertion of Nodes
|
|
Standard_Boolean NewKnots = Standard_False;
|
|
Standard_Integer NbKnots = Knots->Length();
|
|
Standard_Real ValAngles = (Abs(OldAngle1) + Abs(OldAngle2)
|
|
+ 2 * Abs(OldAngle2 - OldAngle1) ) ;
|
|
while ( ValAngles > (2*(NbKnots-2) + 1)*(1+2*NbKnots) ) {
|
|
NewKnots = Standard_True;
|
|
NbKnots += NbKnots-1;
|
|
}
|
|
|
|
if (NewKnots) {
|
|
Handle(Geom2d_BSplineCurve) NewBS =
|
|
new Geom2d_BSplineCurve( NPoles->Array1(), Knots->Array1(),
|
|
Mults->Array1(), Degree);
|
|
|
|
Handle(TColStd_HArray1OfInteger) NMults =
|
|
new TColStd_HArray1OfInteger (1,NbKnots);
|
|
NMults->Init(Degree-3);
|
|
|
|
Handle(TColStd_HArray1OfReal) NKnots =
|
|
new TColStd_HArray1OfReal (1,NbKnots);
|
|
for (ii=1; ii<=NbKnots; ii++) {
|
|
NKnots->ChangeValue(ii) = (double) (ii-1) / (NbKnots-1);
|
|
}
|
|
|
|
NewBS -> InsertKnots(NKnots->Array1(), NMults->Array1(), 1.e-10);
|
|
Handle(TColgp_HArray1OfPnt2d) NewNPoles =
|
|
new TColgp_HArray1OfPnt2d(1, NewBS->NbPoles());
|
|
NewBS -> Poles(NewNPoles->ChangeArray1() );
|
|
NewBS -> Multiplicities( NMults->ChangeArray1() );
|
|
NewBS -> Knots( NKnots->ChangeArray1() );
|
|
Handle(TColStd_HArray1OfReal) FKnots =
|
|
new TColStd_HArray1OfReal (1, NewBS->NbPoles() + Degree+1);
|
|
NewBS -> KnotSequence( FKnots->ChangeArray1());
|
|
|
|
Poles = NewNPoles;
|
|
Mults = NMults;
|
|
Knots = NKnots;
|
|
Flatknots = FKnots;
|
|
}
|
|
|
|
|
|
// For eventual debug Newton.Dump(std::cout);
|
|
|
|
return OkCompute;
|
|
}
|
|
|
|
|
|
//======================================================================================
|
|
void FairCurve_MinimalVariation::Dump(Standard_OStream& o) const
|
|
//======================================================================================
|
|
{
|
|
|
|
o << " MVCurve |"; o.width(7); o<< "Old | New" << std::endl;
|
|
o << " P1 X |"; o.width(7); o<< OldP1.X() << " | " << NewP1.X() << std::endl;
|
|
o << " Y |"; o.width(7); o<< OldP1.Y() << " | " << NewP1.Y() << std::endl;
|
|
o << " P2 X |"; o.width(7); o<< OldP2.X() << " | " << NewP2.X() << std::endl;
|
|
o << " Y |"; o.width(7); o<< OldP2.Y() << " | " << NewP2.Y() << std::endl;
|
|
o << " Angle1 |"; o.width(7); o<< OldAngle1 << " | " << NewAngle1 << std::endl;
|
|
o << " Angle2 |"; o.width(7); o<< OldAngle2 << " | " << NewAngle2 << std::endl;
|
|
o << " Curvature1 |"; o.width(7); o<< OldCurvature1 << " | " << NewCurvature1 << std::endl;
|
|
o << " Curvature2 |"; o.width(7); o<< OldCurvature2 << " | " << NewCurvature2 << std::endl;
|
|
o << " Height |"; o.width(7); o<< OldHeight << " | " << NewHeight << std::endl;
|
|
o << " Slope |"; o.width(7); o<< OldSlope << " | " << NewSlope << std::endl;
|
|
o << " PhysicalRatio |"; o.width(7); o<< OldPhysicalRatio << " | " << NewPhysicalRatio << std::endl;
|
|
o << " SlidingFactor |"; o.width(7); o<< OldSlidingFactor << " | " << NewSlidingFactor << std::endl;
|
|
o << " FreeSliding |"; o.width(7); o<< OldFreeSliding << " | " << NewFreeSliding << std::endl;
|
|
o << " ConstrOrder1 |"; o.width(7); o<< OldConstraintOrder1 << " | " << NewConstraintOrder1 << std::endl;
|
|
o << " ConstrOrder2 |"; o.width(7); o<< OldConstraintOrder2 << " | " << NewConstraintOrder2 << std::endl;
|
|
switch (myCode) {
|
|
case FairCurve_OK :
|
|
o << "AnalysisCode : Ok" << std::endl;
|
|
break;
|
|
case FairCurve_NotConverged :
|
|
o << "AnalysisCode : NotConverged" << std::endl;
|
|
break;
|
|
case FairCurve_InfiniteSliding :
|
|
o << "AnalysisCode : InfiniteSliding" << std::endl;
|
|
break;
|
|
case FairCurve_NullHeight :
|
|
o << "AnalysisCode : NullHeight" << std::endl;
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|