mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
251 lines
7.7 KiB
C++
Executable File
251 lines
7.7 KiB
C++
Executable File
// Copyright (c) 1997-1999 Matra Datavision
|
|
// Copyright (c) 1999-2012 OPEN CASCADE SAS
|
|
//
|
|
// The content of this file is subject to the Open CASCADE Technology Public
|
|
// License Version 6.5 (the "License"). You may not use the content of this file
|
|
// except in compliance with the License. Please obtain a copy of the License
|
|
// at http://www.opencascade.org and read it completely before using this file.
|
|
//
|
|
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
|
|
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
|
|
//
|
|
// The Original Code and all software distributed under the License is
|
|
// distributed on an "AS IS" basis, without warranty of any kind, and the
|
|
// Initial Developer hereby disclaims all such warranties, including without
|
|
// limitation, any warranties of merchantability, fitness for a particular
|
|
// purpose or non-infringement. Please see the License for the specific terms
|
|
// and conditions governing the rights and limitations under the License.
|
|
|
|
// lpa le 8/08/91
|
|
|
|
// Ce programme utilise l algorithme d Uzawa pour resoudre un systeme
|
|
// dans le cas de contraintes. Si ce sont des contraintes d egalite, la
|
|
// resolution est directe.
|
|
// Le programme ci-dessous utilise la methode de Crout pour trouver
|
|
// l inverse d une matrice symetrique (Le gain est d environ 30% par
|
|
// rapport a Gauss.). Les calculs sur les matrices sont faits avec chaque
|
|
// coordonnee car il est plus long d utiliser les methodes deja ecrites
|
|
// de la classe Matrix avec un passage par valeur.
|
|
|
|
//#ifndef DEB
|
|
#define No_Standard_RangeError
|
|
#define No_Standard_OutOfRange
|
|
#define No_Standard_DimensionError
|
|
//#endif
|
|
|
|
#include <math_Uzawa.ixx>
|
|
#include <math_Crout.hxx>
|
|
#include <Standard_DimensionError.hxx>
|
|
|
|
|
|
math_Uzawa::math_Uzawa(const math_Matrix& Cont, const math_Vector& Secont,
|
|
const math_Vector& StartingPoint,
|
|
const Standard_Real EpsLix, const Standard_Real EpsLic,
|
|
const Standard_Integer NbIterations) :
|
|
Resul(1, Cont.ColNumber()),
|
|
Erruza(1, Cont.ColNumber()),
|
|
Errinit(1, Cont.ColNumber()),
|
|
Vardua(1, Cont.RowNumber()),
|
|
CTCinv(1, Cont.RowNumber(),
|
|
1, Cont.RowNumber()){
|
|
|
|
Perform(Cont, Secont, StartingPoint, Cont.RowNumber(), 0, EpsLix,
|
|
EpsLic, NbIterations);
|
|
}
|
|
|
|
math_Uzawa::math_Uzawa(const math_Matrix& Cont, const math_Vector& Secont,
|
|
const math_Vector& StartingPoint,
|
|
const Standard_Integer Nce, const Standard_Integer Nci,
|
|
const Standard_Real EpsLix, const Standard_Real EpsLic,
|
|
const Standard_Integer NbIterations) :
|
|
Resul(1, Cont.ColNumber()),
|
|
Erruza(1, Cont.ColNumber()),
|
|
Errinit(1, Cont.ColNumber()),
|
|
Vardua(1, Cont.RowNumber()),
|
|
CTCinv(1, Cont.RowNumber(),
|
|
1, Cont.RowNumber()) {
|
|
|
|
Perform(Cont, Secont, StartingPoint, Nce, Nci, EpsLix, EpsLic, NbIterations);
|
|
|
|
}
|
|
|
|
|
|
void math_Uzawa::Perform(const math_Matrix& Cont, const math_Vector& Secont,
|
|
const math_Vector& StartingPoint,
|
|
const Standard_Integer Nce, const Standard_Integer Nci,
|
|
const Standard_Real EpsLix, const Standard_Real EpsLic,
|
|
const Standard_Integer NbIterations) {
|
|
|
|
Standard_Integer i,j, k;
|
|
Standard_Real scale;
|
|
Standard_Real Normat, Normli, Xian, Xmax=0, Xmuian;
|
|
Standard_Real Rho, Err, Err1, ErrMax=0, Coef = 1./Sqrt(2.);
|
|
Standard_Integer Nlig = Cont.RowNumber();
|
|
Standard_Integer Ncol = Cont.ColNumber();
|
|
|
|
Standard_DimensionError_Raise_if((Secont.Length() != Nlig) ||
|
|
((Nce+Nci) != Nlig), " ");
|
|
|
|
// Calcul du vecteur Cont*X0 - D: (erreur initiale)
|
|
//==================================================
|
|
|
|
for (i = 1; i<= Nlig; i++) {
|
|
Errinit(i) = Cont(i,1)*StartingPoint(1)-Secont(i);
|
|
for (j = 2; j <= Ncol; j++) {
|
|
Errinit(i) += Cont(i,j)*StartingPoint(j);
|
|
}
|
|
}
|
|
|
|
if (Nci == 0) { // cas de resolution directe
|
|
NbIter = 1; //==========================
|
|
// Calcul de Cont*T(Cont)
|
|
for (i = 1; i <= Nlig; i++) {
|
|
for (j =1; j <= i; j++) { // a utiliser avec Crout.
|
|
// for (j = 1; j <= Nlig; j++) { // a utiliser pour Gauss.
|
|
CTCinv(i,j)= Cont(i,1)*Cont(j,1);
|
|
for (k = 2; k <= Ncol; k++) {
|
|
CTCinv(i,j) += Cont(i,k)*Cont(j,k);
|
|
}
|
|
}
|
|
}
|
|
// Calcul de l inverse de CTCinv :
|
|
//================================
|
|
// CTCinv = CTCinv.Inverse(); // utilisation de Gauss.
|
|
math_Crout inv(CTCinv); // utilisation de Crout.
|
|
CTCinv = inv.Inverse();
|
|
for (i =1; i <= Nlig; i++) {
|
|
scale = CTCinv(i,1)*Errinit(1);
|
|
for (j = 2; j <= i; j++) {
|
|
scale += CTCinv(i,j)*Errinit(j);
|
|
}
|
|
for (j =i+1; j <= Nlig; j++) {
|
|
scale += CTCinv(j,i)*Errinit(j);
|
|
}
|
|
Vardua(i) = scale;
|
|
}
|
|
for (i = 1; i <= Ncol; i++) {
|
|
Erruza(i) = -Cont(1,i)*Vardua(1);
|
|
for (j = 2; j <= Nlig; j++) {
|
|
Erruza(i) -= Cont(j,i)*Vardua(j);
|
|
}
|
|
}
|
|
// restitution des valeurs calculees:
|
|
//===================================
|
|
Resul = StartingPoint + Erruza;
|
|
Done = Standard_True;
|
|
return;
|
|
} // Fin de la resolution directe.
|
|
//==============================
|
|
|
|
else {
|
|
// Initialisation des variables duales.
|
|
//=====================================
|
|
for (i = 1; i <= Nlig; i++) {
|
|
if (i <= Nce) {
|
|
Vardua(i) = 0.0;
|
|
}
|
|
else {
|
|
Vardua(i) = 1.;
|
|
}
|
|
}
|
|
|
|
// Calcul du coefficient Rho:
|
|
//===========================
|
|
Normat = 0.0;
|
|
for (i = 1; i <= Nlig; i++) {
|
|
Normli = Cont(i,1)*Cont(i,1);
|
|
for (j = 2; j <= Ncol; j++) {
|
|
Normli += Cont(i,j)*Cont(i,j);
|
|
}
|
|
Normat += Normli;
|
|
}
|
|
Rho = Coef/Normat;
|
|
|
|
// Boucle des iterations de la methode d Uzawa.
|
|
//=============================================
|
|
for (NbIter = 1; NbIter <= NbIterations; NbIter++) {
|
|
for (i = 1; i <= Ncol; i++) {
|
|
Xian = Erruza(i);
|
|
Erruza(i) = -Cont(1,i)*Vardua(1);
|
|
for(j =2; j <= Nlig; j++) {
|
|
Erruza(i) -= Cont(j,i)*Vardua(j);
|
|
}
|
|
if (NbIter > 1) {
|
|
if (i == 1) {
|
|
Xmax = Abs(Erruza(i) - Xian);
|
|
}
|
|
Xmax = Max(Xmax, Abs(Erruza(i)-Xian));
|
|
}
|
|
}
|
|
|
|
// Calcul de Xmu a l iteration NbIter et evaluation de l erreur sur
|
|
// la verification des contraintes.
|
|
//=================================================================
|
|
for (i = 1; i <= Nlig; i++) {
|
|
Err = Cont(i,1)*Erruza(1) + Errinit(i);
|
|
for (j = 2; j <= Ncol; j++) {
|
|
Err += Cont(i,j)*Erruza(j);
|
|
}
|
|
if (i <= Nce) {
|
|
Vardua(i) += Rho * Err;
|
|
Err1 = Abs(Rho*Err);
|
|
}
|
|
else {
|
|
Xmuian = Vardua(i);
|
|
Vardua(i) = Max(0.0, Vardua(i)+ Rho*Err);
|
|
Err1 = Abs(Vardua(i) - Xmuian);
|
|
}
|
|
if (i == 1) {
|
|
ErrMax = Err1;
|
|
}
|
|
ErrMax = Max(ErrMax, Err1);
|
|
}
|
|
|
|
if (NbIter > 1) {
|
|
if (Xmax <= EpsLix) {
|
|
if (ErrMax <= EpsLic) {
|
|
// cout <<"Convergence atteinte dans Uzawa"<<endl;
|
|
Done = Standard_True;
|
|
}
|
|
else {
|
|
// cout <<"convergence non atteinte pour le probleme dual"<<endl;
|
|
Done = Standard_False;
|
|
return;
|
|
}
|
|
// Restitution des valeurs calculees
|
|
//==================================
|
|
Resul = StartingPoint + Erruza;
|
|
Done = Standard_True;
|
|
return;
|
|
}
|
|
}
|
|
|
|
} // fin de la boucle d iterations.
|
|
Done = Standard_False;
|
|
}
|
|
}
|
|
|
|
|
|
void math_Uzawa::Duale(math_Vector& V) const
|
|
{
|
|
V = Vardua;
|
|
}
|
|
|
|
void math_Uzawa::Dump(Standard_OStream& o) const {
|
|
|
|
o << "math_Uzawa";
|
|
if(Done) {
|
|
o << " Status = Done \n";
|
|
o << " Number of iterations = " << NbIter << endl;
|
|
o << " The solution vector is: " << Resul << endl;
|
|
}
|
|
else {
|
|
o << " Status = not Done \n";
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|