mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
447 lines
12 KiB
C++
Executable File
447 lines
12 KiB
C++
Executable File
// Copyright (c) 1997-1999 Matra Datavision
|
|
// Copyright (c) 1999-2012 OPEN CASCADE SAS
|
|
//
|
|
// The content of this file is subject to the Open CASCADE Technology Public
|
|
// License Version 6.5 (the "License"). You may not use the content of this file
|
|
// except in compliance with the License. Please obtain a copy of the License
|
|
// at http://www.opencascade.org and read it completely before using this file.
|
|
//
|
|
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
|
|
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
|
|
//
|
|
// The Original Code and all software distributed under the License is
|
|
// distributed on an "AS IS" basis, without warranty of any kind, and the
|
|
// Initial Developer hereby disclaims all such warranties, including without
|
|
// limitation, any warranties of merchantability, fitness for a particular
|
|
// purpose or non-infringement. Please see the License for the specific terms
|
|
// and conditions governing the rights and limitations under the License.
|
|
|
|
// lpa, le 03/09/91
|
|
|
|
|
|
// Implementation de la classe resolvant les equations en cosinus-sinus.
|
|
// Equation de la forme a*cos(x)*cos(x)+2*b*cos(x)*sin(x)+c*cos(x)+d*sin(x)+e
|
|
|
|
//#ifndef DEB
|
|
#define No_Standard_RangeError
|
|
#define No_Standard_OutOfRange
|
|
#define No_Standard_DimensionError
|
|
//#endif
|
|
|
|
#include <math_TrigonometricFunctionRoots.hxx>
|
|
#include <math_DirectPolynomialRoots.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <math_FunctionWithDerivative.hxx>
|
|
#include <math_NewtonFunctionRoot.hxx>
|
|
|
|
|
|
class MyTrigoFunction: public math_FunctionWithDerivative {
|
|
Standard_Real AA;
|
|
Standard_Real BB;
|
|
Standard_Real CC;
|
|
Standard_Real DD;
|
|
Standard_Real EE;
|
|
|
|
public:
|
|
MyTrigoFunction(const Standard_Real A, const Standard_Real B, const Standard_Real C, const Standard_Real D,
|
|
const Standard_Real E);
|
|
Standard_Boolean Value(const Standard_Real X, Standard_Real& F);
|
|
Standard_Boolean Derivative(const Standard_Real X, Standard_Real& D);
|
|
Standard_Boolean Values(const Standard_Real X, Standard_Real& F, Standard_Real& D);
|
|
};
|
|
|
|
MyTrigoFunction::MyTrigoFunction(const Standard_Real A, const Standard_Real B, const Standard_Real C,
|
|
const Standard_Real D, const Standard_Real E) {
|
|
AA = A;
|
|
BB = B;
|
|
CC = C;
|
|
DD = D;
|
|
EE = E;
|
|
}
|
|
|
|
Standard_Boolean MyTrigoFunction::Value(const Standard_Real X, Standard_Real& F) {
|
|
Standard_Real CN= cos(X), SN = sin(X);
|
|
//-- F= AA*CN*CN+2*BB*CN*SN+CC*CN+DD*SN+EE;
|
|
F=CN*(AA*CN + (BB+BB)*SN + CC) + DD*SN + EE;
|
|
return Standard_True;
|
|
}
|
|
|
|
Standard_Boolean MyTrigoFunction::Derivative(const Standard_Real X, Standard_Real& D) {
|
|
Standard_Real CN= Cos(X), SN = Sin(X);
|
|
//-- D = -2*AA*CN*SN+2*BB*(CN*CN-SN*SN)-CC*SN+DD*CN;
|
|
D = -AA*CN*SN + BB*(CN*CN-SN*SN);
|
|
D+=D;
|
|
D-=CC*SN+DD*CN;
|
|
return Standard_True;
|
|
}
|
|
|
|
Standard_Boolean MyTrigoFunction::Values(const Standard_Real X, Standard_Real& F, Standard_Real& D) {
|
|
Standard_Real CN= Cos(X), SN = Sin(X);
|
|
//-- F= AA*CN*CN+2*BB*CN*SN+CC*CN+DD*SN+EE;
|
|
//-- D = -2*AA*CN*SN+2*BB*(CN*CN-SN*SN)-CC*SN+DD*CN;
|
|
Standard_Real AACN = AA*CN;
|
|
Standard_Real BBSN = BB*SN;
|
|
|
|
F = AACN*CN + BBSN*(CN+CN) + CC*CN + DD*SN + EE;
|
|
D = -AACN*SN + BB*(CN*CN+SN*SN);
|
|
D+=D;
|
|
D+=-CC*SN+DD*CN;
|
|
return Standard_True;
|
|
}
|
|
|
|
|
|
math_TrigonometricFunctionRoots::math_TrigonometricFunctionRoots(const Standard_Real D,
|
|
const Standard_Real E,
|
|
const Standard_Real InfBound,
|
|
const Standard_Real SupBound): Sol(1, 4) {
|
|
|
|
Standard_Real A = 0.0, B = 0.0, C = 0.0;
|
|
Perform(A, B, C, D, E, InfBound, SupBound);
|
|
}
|
|
|
|
|
|
math_TrigonometricFunctionRoots::math_TrigonometricFunctionRoots(const Standard_Real C,
|
|
const Standard_Real D,
|
|
const Standard_Real E,
|
|
const Standard_Real InfBound,
|
|
const Standard_Real SupBound): Sol(1, 4) {
|
|
|
|
Standard_Real A =0.0, B = 0.0;
|
|
Perform(A, B, C, D, E, InfBound, SupBound);
|
|
}
|
|
|
|
|
|
|
|
math_TrigonometricFunctionRoots::math_TrigonometricFunctionRoots(const Standard_Real A,
|
|
const Standard_Real B,
|
|
const Standard_Real C,
|
|
const Standard_Real D,
|
|
const Standard_Real E,
|
|
const Standard_Real InfBound,
|
|
const Standard_Real SupBound): Sol(1, 4) {
|
|
|
|
Perform(A, B, C, D, E, InfBound, SupBound);
|
|
}
|
|
|
|
void math_TrigonometricFunctionRoots::Perform(const Standard_Real A,
|
|
const Standard_Real B,
|
|
const Standard_Real C,
|
|
const Standard_Real D,
|
|
const Standard_Real E,
|
|
const Standard_Real InfBound,
|
|
const Standard_Real SupBound) {
|
|
|
|
Standard_Integer i, j=0, k, l, NZer=0, Nit = 10;
|
|
Standard_Real Depi, Delta, Mod, AA, BB, CC, MyBorneInf;
|
|
Standard_Real Teta, X;
|
|
Standard_Real Eps, Tol1 = 1.e-15;
|
|
TColStd_Array1OfReal ko(1,5), Zer(1,4);
|
|
Standard_Boolean Flag3, Flag4;
|
|
InfiniteStatus = Standard_False;
|
|
Done = Standard_True;
|
|
|
|
Eps = 1.e-12;
|
|
|
|
Depi = M_PI+M_PI;
|
|
if (InfBound <= RealFirst() && SupBound >= RealLast()) {
|
|
MyBorneInf = 0.0;
|
|
Delta = Depi;
|
|
Mod = 0.0;
|
|
}
|
|
else if (SupBound >= RealLast()) {
|
|
MyBorneInf = InfBound;
|
|
Delta = Depi;
|
|
Mod = MyBorneInf/Depi;
|
|
}
|
|
else if (InfBound <= RealFirst()) {
|
|
MyBorneInf = SupBound - Depi;
|
|
Delta = Depi;
|
|
Mod = MyBorneInf/Depi;
|
|
}
|
|
else {
|
|
MyBorneInf = InfBound;
|
|
Delta = SupBound-InfBound;
|
|
Mod = InfBound/Depi;
|
|
if ((SupBound-InfBound) > Depi) { Delta = Depi;}
|
|
}
|
|
|
|
if ((Abs(A) <= Eps) && (Abs(B) <= Eps)) {
|
|
if (Abs(C) <= Eps) {
|
|
if (Abs(D) <= Eps) {
|
|
if (Abs(E) <= Eps) {
|
|
InfiniteStatus = Standard_True; // infinite de solutions.
|
|
return;
|
|
}
|
|
else {
|
|
NbSol = 0;
|
|
return;
|
|
}
|
|
}
|
|
else {
|
|
// Equation du type d*sin(x) + e = 0
|
|
// =================================
|
|
NbSol = 0;
|
|
AA = -E/D;
|
|
if (Abs(AA) > 1.) {
|
|
return;
|
|
}
|
|
|
|
Zer(1) = ASin(AA);
|
|
Zer(2) = M_PI - Zer(1);
|
|
NZer = 2;
|
|
for (i = 1; i <= NZer; i++) {
|
|
if (Zer(i) <= -Eps) {
|
|
Zer(i) = Depi - Abs(Zer(i));
|
|
}
|
|
// On rend les solutions entre InfBound et SupBound:
|
|
// =================================================
|
|
Zer(i) += IntegerPart(Mod)*Depi;
|
|
X = Zer(i)-MyBorneInf;
|
|
if ((X > (-Epsilon(Delta))) && (X < Delta+ Epsilon(Delta))) {
|
|
NbSol++;
|
|
Sol(NbSol) = Zer(i);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
else if (Abs(D) <= Eps) {
|
|
|
|
// Equation du premier degre de la forme c*cos(x) + e = 0
|
|
// ======================================================
|
|
NbSol = 0;
|
|
AA = -E/C;
|
|
if (Abs(AA) >1.) {
|
|
return;
|
|
}
|
|
Zer(1) = ACos(AA);
|
|
Zer(2) = -Zer(1);
|
|
NZer = 2;
|
|
|
|
for (i = 1; i <= NZer; i++) {
|
|
if (Zer(i) <= -Eps) {
|
|
Zer(i) = Depi-Abs(Zer(i));
|
|
}
|
|
// On rend les solutions entre InfBound et SupBound:
|
|
// =================================================
|
|
Zer(i) += IntegerPart(Mod)*2.*M_PI;
|
|
X = Zer(i)-MyBorneInf;
|
|
if ((X >= (-Epsilon(Delta))) && (X <= Delta+ Epsilon(Delta))) {
|
|
NbSol++;
|
|
Sol(NbSol) = Zer(i);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
else {
|
|
|
|
// Equation du second degre:
|
|
// =========================
|
|
AA = E - C;
|
|
BB = 2.0*D;
|
|
CC = E + C;
|
|
|
|
math_DirectPolynomialRoots Resol(AA, BB, CC);
|
|
if (!Resol.IsDone()) {
|
|
Done = Standard_False;
|
|
return;
|
|
}
|
|
else if(!Resol.InfiniteRoots()) {
|
|
NZer = Resol.NbSolutions();
|
|
for (i = 1; i <= NZer; i++) {
|
|
Zer(i) = Resol.Value(i);
|
|
}
|
|
}
|
|
else if (Resol.InfiniteRoots()) {
|
|
InfiniteStatus = Standard_True;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
|
|
// Equation du 4 ieme degre
|
|
// ========================
|
|
ko(1) = A-C+E;
|
|
ko(2) = 2.0*D-4.0*B;
|
|
ko(3) = 2.0*E-2.0*A;
|
|
ko(4) = 4.0*B+2.0*D;
|
|
ko(5) = A+C+E;
|
|
Standard_Boolean bko;
|
|
Standard_Integer nbko=0;
|
|
do {
|
|
bko=Standard_False;
|
|
math_DirectPolynomialRoots Resol4(ko(1), ko(2), ko(3), ko(4), ko(5));
|
|
if (!Resol4.IsDone()) {
|
|
Done = Standard_False;
|
|
return;
|
|
}
|
|
else if (!Resol4.InfiniteRoots()) {
|
|
NZer = Resol4.NbSolutions();
|
|
for (i = 1; i <= NZer; i++) {
|
|
Zer(i) = Resol4.Value(i);
|
|
}
|
|
}
|
|
else if (Resol4.InfiniteRoots()) {
|
|
InfiniteStatus = Standard_True;
|
|
return;
|
|
}
|
|
Standard_Boolean triok;
|
|
do {
|
|
triok=Standard_True;
|
|
for(i=1;i<NZer;i++) {
|
|
if(Zer(i)>Zer(i+1)) {
|
|
Standard_Real t=Zer(i);
|
|
Zer(i)=Zer(i+1);
|
|
Zer(i+1)=t;
|
|
triok=Standard_False;
|
|
}
|
|
}
|
|
}
|
|
while(triok==Standard_False);
|
|
|
|
for(i=1;i<NZer;i++) {
|
|
if(Abs(Zer(i+1)-Zer(i))<Eps) {
|
|
//-- est ce une racine double ou une erreur numerique ?
|
|
Standard_Real qw=Zer(i+1);
|
|
Standard_Real va=ko(4)+qw*(2.0*ko(3)+qw*(3.0*ko(2)+qw*(4.0*ko(1))));
|
|
//-- cout<<" Val Double ("<<qw<<")=("<<va<<")"<<endl;
|
|
if(Abs(va)>Eps) {
|
|
bko=Standard_True;
|
|
nbko++;
|
|
#ifdef DEB
|
|
//if(nbko==1) {
|
|
// cout<<"Pb ds math_TrigonometricFunctionRoots CC="
|
|
// <<A<<" CS="<<B<<" C="<<C<<" S="<<D<<" Cte="<<E<<endl;
|
|
//}
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if(bko) {
|
|
//-- Si il y a un coeff petit, on divise
|
|
//--
|
|
|
|
ko(1)*=0.0001;
|
|
ko(2)*=0.0001;
|
|
ko(3)*=0.0001;
|
|
ko(4)*=0.0001;
|
|
ko(5)*=0.0001;
|
|
|
|
}
|
|
}
|
|
while(bko);
|
|
}
|
|
|
|
// Verification des solutions par rapport aux bornes:
|
|
// ==================================================
|
|
Standard_Real SupmInfs100 = (SupBound-InfBound)*0.01;
|
|
NbSol = 0;
|
|
for (i = 1; i <= NZer; i++) {
|
|
Teta = atan(Zer(i)); Teta+=Teta;
|
|
if (Zer(i) <= (-Eps)) {
|
|
Teta = Depi-Abs(Teta);
|
|
}
|
|
Teta += IntegerPart(Mod)*Depi;
|
|
if (Teta-MyBorneInf < 0) Teta += Depi;
|
|
|
|
X = Teta -MyBorneInf;
|
|
if ((X >= (-Epsilon(Delta))) && (X <= Delta+ Epsilon(Delta))) {
|
|
X = Teta;
|
|
Flag3 = Standard_False;
|
|
|
|
// Appel de Newton:
|
|
//OCC541(apo): Standard_Real TetaNewton=0;
|
|
Standard_Real TetaNewton = Teta;
|
|
MyTrigoFunction MyF(A, B, C, D, E);
|
|
math_NewtonFunctionRoot Resol(MyF, X, Tol1, Eps, Nit);
|
|
if (Resol.IsDone()) {
|
|
TetaNewton = Resol.Root();
|
|
}
|
|
//-- lbr le 7 mars 97 (newton converge tres tres loin de la solution initilale)
|
|
Standard_Real DeltaNewton = TetaNewton-Teta;
|
|
if((DeltaNewton > SupmInfs100) || (DeltaNewton < -SupmInfs100)) {
|
|
//-- cout<<"\n Newton X0="<<Teta<<" -> "<<TetaNewton<<endl;
|
|
}
|
|
else {
|
|
Teta=TetaNewton;
|
|
}
|
|
|
|
Flag4 = Standard_False;
|
|
|
|
for(k = 1; k <= NbSol; k++) {
|
|
//On met les valeurs par ordre croissant:
|
|
if (Teta < Sol(k)) {
|
|
for (l = k; l <= NbSol; l++) {
|
|
j = NbSol-l+k;
|
|
Sol(j+1) = Sol(j);
|
|
}
|
|
Sol(k) = Teta;
|
|
NbSol++;
|
|
Flag4 = Standard_True;
|
|
break;
|
|
}
|
|
}
|
|
if (!Flag4) {
|
|
NbSol++;
|
|
Sol(NbSol) = Teta;
|
|
}
|
|
}
|
|
}
|
|
// Cas particulier de PI:
|
|
if(NbSol<4) {
|
|
Standard_Integer startIndex = NbSol + 1;
|
|
for( Standard_Integer solIt = startIndex; solIt <= 4; solIt++) {
|
|
Teta = M_PI + IntegerPart(Mod)*2.0*M_PI;;
|
|
X = Teta - MyBorneInf;
|
|
if ((X >= (-Epsilon(Delta))) && (X <= Delta + Epsilon(Delta))) {
|
|
if (Abs(A-C+E) <= Eps) {
|
|
Flag4 = Standard_False;
|
|
for (k = 1; k <= NbSol; k++) {
|
|
j = k;
|
|
if (Teta < Sol(k)) {
|
|
Flag4 = Standard_True;
|
|
break;
|
|
}
|
|
if ((solIt == startIndex) && (Abs(Teta-Sol(k)) <= Eps)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!Flag4) {
|
|
NbSol++;
|
|
Sol(NbSol) = Teta;
|
|
}
|
|
else {
|
|
for (k = j; k <= NbSol; k++) {
|
|
i = NbSol-k+j;
|
|
Sol(i+1) = Sol(i);
|
|
}
|
|
Sol(j) = Teta;
|
|
NbSol++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void math_TrigonometricFunctionRoots::Dump(Standard_OStream& o) const
|
|
{
|
|
o << " math_TrigonometricFunctionRoots: \n";
|
|
if (!Done) {
|
|
o << "Not Done \n";
|
|
}
|
|
else if (InfiniteStatus) {
|
|
o << " There is an infinity of roots\n";
|
|
}
|
|
else if (!InfiniteStatus) {
|
|
o << " Number of solutions = " << NbSol <<"\n";
|
|
for (Standard_Integer i = 1; i <= NbSol; i++) {
|
|
o << " Value number " << i << "= " << Sol(i) << "\n";
|
|
}
|
|
}
|
|
}
|