mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
253 lines
6.3 KiB
C++
Executable File
253 lines
6.3 KiB
C++
Executable File
// Copyright (c) 1997-1999 Matra Datavision
|
|
// Copyright (c) 1999-2012 OPEN CASCADE SAS
|
|
//
|
|
// The content of this file is subject to the Open CASCADE Technology Public
|
|
// License Version 6.5 (the "License"). You may not use the content of this file
|
|
// except in compliance with the License. Please obtain a copy of the License
|
|
// at http://www.opencascade.org and read it completely before using this file.
|
|
//
|
|
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
|
|
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
|
|
//
|
|
// The Original Code and all software distributed under the License is
|
|
// distributed on an "AS IS" basis, without warranty of any kind, and the
|
|
// Initial Developer hereby disclaims all such warranties, including without
|
|
// limitation, any warranties of merchantability, fitness for a particular
|
|
// purpose or non-infringement. Please see the License for the specific terms
|
|
// and conditions governing the rights and limitations under the License.
|
|
|
|
//#ifndef DEB
|
|
#define No_Standard_RangeError
|
|
#define No_Standard_OutOfRange
|
|
#define No_Standard_DimensionError
|
|
//#endif
|
|
|
|
#include <math_Powell.ixx>
|
|
#include <math_BracketMinimum.hxx>
|
|
#include <math_BrentMinimum.hxx>
|
|
#include <math_Function.hxx>
|
|
#include <math_MultipleVarFunction.hxx>
|
|
|
|
|
|
static Standard_Real sqrarg;
|
|
#define SQR(a) (sqrarg=(a), sqrarg*sqrarg)
|
|
|
|
class DirFunctionBis : public math_Function {
|
|
|
|
math_Vector *P0;
|
|
math_Vector *Dir;
|
|
math_Vector *P;
|
|
math_MultipleVarFunction *F;
|
|
|
|
public :
|
|
DirFunctionBis(math_Vector& V1,
|
|
math_Vector& V2,
|
|
math_Vector& V3,
|
|
math_MultipleVarFunction& f);
|
|
|
|
void Initialize(const math_Vector& p0, const math_Vector& dir);
|
|
|
|
virtual Standard_Boolean Value(const Standard_Real x, Standard_Real& fval);
|
|
};
|
|
|
|
DirFunctionBis::DirFunctionBis(math_Vector& V1,
|
|
math_Vector& V2,
|
|
math_Vector& V3,
|
|
math_MultipleVarFunction& f) {
|
|
P0 = &V1;
|
|
Dir = &V2;
|
|
P = &V3;
|
|
F = &f;
|
|
}
|
|
|
|
|
|
void DirFunctionBis::Initialize(const math_Vector& p0,
|
|
const math_Vector& dir) {
|
|
|
|
*P0 = p0;
|
|
*Dir = dir;
|
|
}
|
|
|
|
Standard_Boolean DirFunctionBis::Value(const Standard_Real x, Standard_Real& fval) {
|
|
*P = *Dir;
|
|
P->Multiply(x);
|
|
P->Add(*P0);
|
|
F->Value(*P, fval);
|
|
return Standard_True;
|
|
}
|
|
|
|
|
|
static Standard_Boolean MinimizeDirection(math_Vector& P,
|
|
math_Vector& Dir,
|
|
Standard_Real& Result,
|
|
DirFunctionBis& F) {
|
|
|
|
Standard_Real ax;
|
|
Standard_Real xx;
|
|
Standard_Real bx;
|
|
|
|
|
|
F.Initialize(P, Dir);
|
|
|
|
math_BracketMinimum Bracket(F, 0.0, 1.0);
|
|
if (Bracket.IsDone()) {
|
|
Bracket.Values(ax, xx, bx);
|
|
math_BrentMinimum Sol(F, ax, xx, bx, 1.0e-10, 100);
|
|
if (Sol.IsDone()) {
|
|
Standard_Real Scale = Sol.Location();
|
|
Result = Sol.Minimum();
|
|
Dir.Multiply(Scale);
|
|
P.Add(Dir);
|
|
return Standard_True;
|
|
}
|
|
}
|
|
return Standard_False;
|
|
}
|
|
|
|
|
|
|
|
void math_Powell::Perform(math_MultipleVarFunction& F,
|
|
const math_Vector& StartingPoint,
|
|
const math_Matrix& StartingDirections) {
|
|
|
|
|
|
Done = Standard_False;
|
|
Standard_Boolean Ok;
|
|
Standard_Integer i, ibig, j;
|
|
Standard_Real t, fptt, del;
|
|
Standard_Integer n = TheLocation.Length();
|
|
math_Vector pt(1,n);
|
|
math_Vector ptt(1,n);
|
|
math_Vector xit(1,n);
|
|
math_Vector Temp1(1, n);
|
|
math_Vector Temp2(1, n);
|
|
math_Vector Temp3(1, n);
|
|
DirFunctionBis F_Dir(Temp1, Temp2, Temp3, F);
|
|
|
|
TheLocation = StartingPoint;
|
|
TheDirections = StartingDirections;
|
|
pt = TheLocation; //sauvegarde du point initial
|
|
|
|
|
|
for(Iter = 1; Iter<= Itermax; Iter++) {
|
|
Ok = F.Value(TheLocation, PreviousMinimum);
|
|
ibig = 0;
|
|
del = 0.0;
|
|
for (i = 1; i <= n; i++){
|
|
for(j =1; j<= n; j++) xit(j) = TheDirections(j,i);
|
|
Ok = F.Value(TheLocation, fptt);
|
|
Standard_Boolean IsGood = MinimizeDirection(TheLocation, xit,
|
|
TheMinimum, F_Dir);
|
|
|
|
if (!IsGood) {
|
|
Done = Standard_False;
|
|
TheStatus = math_DirectionSearchError;
|
|
return;
|
|
}
|
|
|
|
if (fabs(fptt - TheMinimum)> del) {
|
|
del = fabs(fptt- TheMinimum);
|
|
ibig = i;
|
|
}
|
|
}
|
|
|
|
if (IsSolutionReached(F)) {
|
|
//Termination criterion
|
|
State = F.GetStateNumber();
|
|
Done = Standard_True;
|
|
TheStatus = math_OK;
|
|
return;
|
|
}
|
|
|
|
if (Iter == Itermax) {
|
|
Done = Standard_False;
|
|
TheStatus = math_TooManyIterations;
|
|
return;
|
|
}
|
|
|
|
ptt = 2.0 * TheLocation - pt;
|
|
xit = TheLocation - pt;
|
|
pt = TheLocation;
|
|
|
|
// Valeur de la fonction au point extrapole:
|
|
|
|
Ok = F.Value(ptt, fptt);
|
|
|
|
if (fptt < PreviousMinimum) {
|
|
t = 2.0 *(PreviousMinimum -2.0*TheMinimum +fptt)*
|
|
SQR(PreviousMinimum-TheMinimum -del)-del*
|
|
SQR(PreviousMinimum-fptt);
|
|
if (t <0.0) {
|
|
//Minimisation along the direction
|
|
Standard_Boolean IsGood = MinimizeDirection(TheLocation, xit,
|
|
TheMinimum, F_Dir);
|
|
if(!IsGood) {
|
|
Done = Standard_False;
|
|
TheStatus = math_FunctionError;
|
|
return;
|
|
}
|
|
|
|
for(j =1; j <= n; j++) {
|
|
TheDirections(j, ibig)=xit(j);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Standard_Boolean math_Powell::IsSolutionReached(
|
|
// math_MultipleVarFunction& F) {
|
|
math_MultipleVarFunction& ) {
|
|
|
|
return 2.0*fabs(PreviousMinimum - TheMinimum) <=
|
|
XTol*(fabs(PreviousMinimum)+fabs(TheMinimum) + EPSZ);
|
|
}
|
|
|
|
|
|
|
|
math_Powell::math_Powell(math_MultipleVarFunction& F,
|
|
const math_Vector& StartingPoint,
|
|
const math_Matrix& StartingDirections,
|
|
const Standard_Real Tolerance,
|
|
const Standard_Integer NbIterations,
|
|
const Standard_Real ZEPS) :
|
|
TheLocation(1, F.NbVariables()),
|
|
TheDirections(1, F.NbVariables(),
|
|
1, F.NbVariables()) {
|
|
|
|
XTol = Tolerance;
|
|
EPSZ = ZEPS;
|
|
Itermax = NbIterations;
|
|
Perform(F, StartingPoint, StartingDirections);
|
|
}
|
|
|
|
math_Powell::math_Powell(math_MultipleVarFunction& F,
|
|
const Standard_Real Tolerance,
|
|
const Standard_Integer NbIterations,
|
|
const Standard_Real ZEPS) :
|
|
TheLocation(1, F.NbVariables()),
|
|
TheDirections(1, F.NbVariables(),
|
|
1, F.NbVariables()) {
|
|
|
|
XTol = Tolerance;
|
|
EPSZ = ZEPS;
|
|
Itermax = NbIterations;
|
|
}
|
|
|
|
void math_Powell::Delete()
|
|
{}
|
|
|
|
void math_Powell::Dump(Standard_OStream& o) const {
|
|
|
|
o << "math_Powell resolution:";
|
|
if(Done) {
|
|
o << " Status = Done \n";
|
|
o << " Location Vector = "<< TheLocation << "\n";
|
|
o << " Minimum value = " << TheMinimum <<"\n";
|
|
o << " Number of iterations = " << Iter <<"\n";
|
|
}
|
|
else {
|
|
o << " Status = not Done because " << (Standard_Integer)TheStatus << "\n";
|
|
}
|
|
}
|