1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-05 18:16:23 +03:00
occt/src/math/math_GaussSingleIntegration.cxx
bugmaster b311480ed5 0023024: Update headers of OCCT files
Added appropriate copyright and license information in source files
2012-03-21 19:43:04 +04:00

161 lines
4.8 KiB
C++
Executable File

// Copyright (c) 1997-1999 Matra Datavision
// Copyright (c) 1999-2012 OPEN CASCADE SAS
//
// The content of this file is subject to the Open CASCADE Technology Public
// License Version 6.5 (the "License"). You may not use the content of this file
// except in compliance with the License. Please obtain a copy of the License
// at http://www.opencascade.org and read it completely before using this file.
//
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
//
// The Original Code and all software distributed under the License is
// distributed on an "AS IS" basis, without warranty of any kind, and the
// Initial Developer hereby disclaims all such warranties, including without
// limitation, any warranties of merchantability, fitness for a particular
// purpose or non-infringement. Please see the License for the specific terms
// and conditions governing the rights and limitations under the License.
/*
Par Gauss le calcul d'une integrale simple se transforme en sommation des
valeurs de la fonction donnee aux <Order> points de Gauss affectee des poids
de Gauss.
Les points et poids de Gauss sont stockes dans GaussPoints.cxx.
Les points sont compris entre les valeurs -1 et +1, ce qui necessite un
changement de variable pour les faire varier dans l'intervalle [Lower, Upper].
On veut calculer Integrale( f(u)* du) entre a et b.
Etapes du calcul:
1- calcul de la fonction au ieme point de Gauss (apres changement de variable).
2- multiplication de cette valeur par le ieme poids de Gauss.
3- sommation de toutes ces valeurs.
4- retour a l'intervalle [Lower, Upper] de notre integrale.
*/
//#ifndef DEB
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#define No_Standard_DimensionError
//#endif
#include <math_GaussSingleIntegration.ixx>
#include <math.hxx>
#include <math_Vector.hxx>
#include <math_Function.hxx>
math_GaussSingleIntegration::math_GaussSingleIntegration() : Done(Standard_False)
{
}
math_GaussSingleIntegration::
math_GaussSingleIntegration(math_Function& F,
const Standard_Real Lower,
const Standard_Real Upper,
const Standard_Integer Order)
{
Standard_Integer theOrder = Min(math::GaussPointsMax(), Order);
Perform(F, Lower, Upper, theOrder);
}
math_GaussSingleIntegration::
math_GaussSingleIntegration(math_Function& F,
const Standard_Real Lower,
const Standard_Real Upper,
const Standard_Integer Order,
const Standard_Real Tol)
{
Standard_Integer theOrder = Min(math::GaussPointsMax(), Order);
const Standard_Integer IterMax = 13; // Max number of iteration
Standard_Integer NIter = 1; // current number of iteration
Standard_Integer NbInterval = 1; // current number of subintervals
Standard_Real dU,OldLen,Len;
Perform(F, Lower, Upper, theOrder);
Len = Val;
do {
OldLen = Len;
Len = 0.;
NbInterval *= 2;
dU = (Upper-Lower)/NbInterval;
for (Standard_Integer i=1; i<=NbInterval; i++) {
Perform(F, Lower+(i-1)*dU, Lower+i*dU, theOrder);
if (!Done) return;
Len += Val;
}
NIter++;
}
while (fabs(OldLen-Len) > Tol && NIter <= IterMax);
Val = Len;
}
void math_GaussSingleIntegration::Perform(math_Function& F,
const Standard_Real Lower,
const Standard_Real Upper,
const Standard_Integer Order)
{
Standard_Real xr, xm, dx;
Standard_Integer j;
Standard_Real F1, F2;
Standard_Boolean Ok1;
math_Vector GaussP(1, Order);
math_Vector GaussW(1, Order);
Done = Standard_False;
//Recuperation des points de Gauss dans le fichier GaussPoints.
math::GaussPoints(Order,GaussP);
math::GaussWeights(Order,GaussW);
// Calcul de l'integrale aux points de Gauss :
// Changement de variable pour la mise a l'echelle [Lower, Upper] :
xm = 0.5*(Upper + Lower);
xr = 0.5*(Upper - Lower);
Val = 0.;
Standard_Integer ind = Order/2, ind1 = (Order+1)/2;
if(ind1 > ind) { // odder case
Ok1 = F.Value(xm, Val);
if (!Ok1) return;
Val *= GaussW(ind1);
}
// Sommation sur tous les points de Gauss: avec utilisation de la symetrie.
for (j = 1; j <= ind; j++) {
dx = xr*GaussP(j);
Ok1 = F.Value(xm-dx, F1);
if(!Ok1) return;
Ok1 = F.Value(xm+dx, F2);
if(!Ok1) return;
// Multiplication par les poids de Gauss.
Standard_Real FT = F1+F2;
Val += GaussW(j)*FT;
}
// Mise a l'echelle de l'intervalle [Lower, Upper]
Val *= xr;
Done = Standard_True;
}
void math_GaussSingleIntegration::Dump(Standard_OStream& o) const {
o <<"math_GaussSingleIntegration ";
if (Done) {
o << " Status = Done \n";
o << "Integration Value = " << Val<<"\n";
}
else {
o << "Status = not Done \n";
}
}