mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
541 lines
16 KiB
C++
Executable File
541 lines
16 KiB
C++
Executable File
// Copyright (c) 1997-1999 Matra Datavision
|
|
// Copyright (c) 1999-2012 OPEN CASCADE SAS
|
|
//
|
|
// The content of this file is subject to the Open CASCADE Technology Public
|
|
// License Version 6.5 (the "License"). You may not use the content of this file
|
|
// except in compliance with the License. Please obtain a copy of the License
|
|
// at http://www.opencascade.org and read it completely before using this file.
|
|
//
|
|
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
|
|
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
|
|
//
|
|
// The Original Code and all software distributed under the License is
|
|
// distributed on an "AS IS" basis, without warranty of any kind, and the
|
|
// Initial Developer hereby disclaims all such warranties, including without
|
|
// limitation, any warranties of merchantability, fitness for a particular
|
|
// purpose or non-infringement. Please see the License for the specific terms
|
|
// and conditions governing the rights and limitations under the License.
|
|
|
|
//#ifndef DEB
|
|
#define No_Standard_RangeError
|
|
#define No_Standard_OutOfRange
|
|
#define No_Standard_DimensionError
|
|
//#endif
|
|
|
|
#include <math_DirectPolynomialRoots.ixx>
|
|
|
|
#include <Standard_RangeError.hxx>
|
|
#include <StdFail_InfiniteSolutions.hxx>
|
|
|
|
|
|
|
|
// Reference pour solution equation 3ieme degre et 2ieme degre :
|
|
// ALGORITHMES NUMERIQUES ANALYSE ET MISE EN OEUVRE, tome 2
|
|
// (equations et systemes non lineaires)
|
|
// J. VIGNES editions TECHNIP.
|
|
|
|
const Standard_Real ZERO = 1.0e-30;
|
|
const Standard_Real EPSILON = RealEpsilon();
|
|
const Standard_Real RADIX = 2;
|
|
const Standard_Real Un_Sur_Log_RADIX = 1.0/log(2.0);
|
|
|
|
static Standard_Real Value(const Standard_Integer N, Standard_Real *Poly, const Standard_Real X) {
|
|
|
|
Standard_Real Result = Poly[0];
|
|
for(Standard_Integer Index = 1; Index < N; Index++) {
|
|
Result = Result * X + Poly[Index];
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
|
|
static void Values(const Standard_Integer N, Standard_Real *Poly, const Standard_Real X,
|
|
Standard_Real& Val, Standard_Real& Der) {
|
|
|
|
Val = Poly[0] * X + Poly[1];
|
|
Der = Poly[0];
|
|
for(Standard_Integer Index = 2; Index < N; Index++) {
|
|
Der = Der * X + Val;
|
|
Val = Val * X + Poly[Index];
|
|
}
|
|
}
|
|
|
|
static Standard_Real Improve(const Standard_Integer N, Standard_Real *Poly, const Standard_Real IniSol) {
|
|
|
|
Standard_Real Val, Der, Delta;
|
|
Standard_Real Sol = IniSol;
|
|
Standard_Real IniVal = Value(N, Poly, IniSol);
|
|
Standard_Integer Index;
|
|
|
|
// cout << "Improve\n";
|
|
for(Index = 1; Index < 10; Index++) {
|
|
Values(N, Poly, Sol, Val, Der);
|
|
if(Abs(Der) <= ZERO) break;
|
|
Delta = - Val / Der;
|
|
if(Abs(Delta) <= EPSILON * Abs(Sol)) break;
|
|
Sol = Sol + Delta;
|
|
// cout << " Iter = " << Index << " Delta = " << Delta
|
|
// << " Val = " << Val << " Der = " << Der << "\n";
|
|
}
|
|
if(Abs(Val) <= Abs(IniVal)) {
|
|
return Sol;
|
|
}
|
|
else {
|
|
return IniSol;
|
|
}
|
|
}
|
|
|
|
Standard_Real Improve(const Standard_Real A, const Standard_Real B, const Standard_Real C,
|
|
const Standard_Real D, const Standard_Real E, const Standard_Real IniSol) {
|
|
|
|
Standard_Real Poly[5];
|
|
Poly[0] = A;
|
|
Poly[1] = B;
|
|
Poly[2] = C;
|
|
Poly[3] = D;
|
|
Poly[4] = E;
|
|
return Improve(5, Poly, IniSol);
|
|
}
|
|
|
|
Standard_Real Improve(const Standard_Real A, const Standard_Real B,
|
|
const Standard_Real C, const Standard_Real D, const Standard_Real IniSol) {
|
|
|
|
Standard_Real Poly[4];
|
|
Poly[0] = A;
|
|
Poly[1] = B;
|
|
Poly[2] = C;
|
|
Poly[3] = D;
|
|
return Improve(4, Poly, IniSol);
|
|
}
|
|
|
|
Standard_Real Improve(const Standard_Real A, const Standard_Real B,
|
|
const Standard_Real C, const Standard_Real IniSol) {
|
|
|
|
Standard_Real Poly[3];
|
|
Poly[0] = A;
|
|
Poly[1] = B;
|
|
Poly[2] = C;
|
|
return Improve(3, Poly, IniSol);
|
|
}
|
|
|
|
Standard_Integer BaseExponent(const Standard_Real X) {
|
|
|
|
if(X > 1.0) {
|
|
return (Standard_Integer)(log(X) * Un_Sur_Log_RADIX);
|
|
}
|
|
else if(X < -1.0) {
|
|
return (Standard_Integer)(-log(-X) * Un_Sur_Log_RADIX);
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
math_DirectPolynomialRoots::math_DirectPolynomialRoots(const Standard_Real A,
|
|
const Standard_Real B,
|
|
const Standard_Real C,
|
|
const Standard_Real D,
|
|
const Standard_Real E) {
|
|
InfiniteStatus = Standard_False;
|
|
Done = Standard_True;
|
|
Solve(A, B, C, D, E);
|
|
}
|
|
|
|
math_DirectPolynomialRoots::math_DirectPolynomialRoots(const Standard_Real A,
|
|
const Standard_Real B,
|
|
const Standard_Real C,
|
|
const Standard_Real D) {
|
|
Done = Standard_True;
|
|
InfiniteStatus = Standard_False;
|
|
Solve(A, B, C, D);
|
|
}
|
|
|
|
math_DirectPolynomialRoots::math_DirectPolynomialRoots(const Standard_Real A,
|
|
const Standard_Real B,
|
|
const Standard_Real C) {
|
|
Done = Standard_True;
|
|
InfiniteStatus = Standard_False;
|
|
Solve(A, B, C);
|
|
}
|
|
|
|
math_DirectPolynomialRoots::math_DirectPolynomialRoots(const Standard_Real A,
|
|
const Standard_Real B) {
|
|
Done = Standard_True;
|
|
InfiniteStatus = Standard_False;
|
|
Solve(A, B);
|
|
}
|
|
|
|
|
|
void math_DirectPolynomialRoots::Solve(const Standard_Real a,
|
|
const Standard_Real b,
|
|
const Standard_Real c,
|
|
const Standard_Real d,
|
|
const Standard_Real e) {
|
|
if(Abs(a) <= ZERO) {
|
|
Solve(b, c, d, e);
|
|
return;
|
|
}
|
|
|
|
//// modified by jgv, 22.01.09 ////
|
|
Standard_Real aZero = ZERO;
|
|
Standard_Real Abs_b = Abs(b), Abs_c = Abs(c), Abs_d = Abs(d), Abs_e = Abs(e);
|
|
|
|
if (Abs_b > aZero)
|
|
aZero = Abs_b;
|
|
if (Abs_c > aZero)
|
|
aZero = Abs_c;
|
|
if (Abs_d > aZero)
|
|
aZero = Abs_d;
|
|
if (Abs_e > aZero)
|
|
aZero = Abs_e;
|
|
if (aZero > ZERO)
|
|
aZero = Epsilon(100.*aZero);
|
|
|
|
if(Abs(a) <= aZero) {
|
|
Standard_Real aZero1000 = 1000.*aZero;
|
|
Standard_Boolean with_a = Standard_False;
|
|
if (Abs_b > ZERO && Abs_b <= aZero1000)
|
|
with_a = Standard_True;
|
|
if (Abs_c > ZERO && Abs_c <= aZero1000)
|
|
with_a = Standard_True;
|
|
if (Abs_d > ZERO && Abs_d <= aZero1000)
|
|
with_a = Standard_True;
|
|
if (Abs_e > ZERO && Abs_e <= aZero1000)
|
|
with_a = Standard_True;
|
|
|
|
if (!with_a)
|
|
{
|
|
Solve(b, c, d, e);
|
|
return;
|
|
}
|
|
}
|
|
///////////////////////////////////
|
|
|
|
Standard_Real A, B, C, D, R3, S3, T3, Q3, Y0, P0, Q0, P, Q, P1, Q1;
|
|
Standard_Real Discr, Sdiscr;
|
|
Standard_Integer Index;
|
|
Standard_Integer Exp;
|
|
Standard_Real PowRadix1,PowRadix2;
|
|
|
|
A = b / a;
|
|
B = c / a;
|
|
C = d / a;
|
|
D = e / a;
|
|
Exp = BaseExponent(D) / 4;
|
|
//--
|
|
//-- A = A / pow(RADIX, Exp);
|
|
//-- B = B / pow(RADIX, 2 * Exp);
|
|
//-- C = C / pow(RADIX, 3 * Exp);
|
|
//-- D = D / pow(RADIX, 4 * Exp);
|
|
PowRadix1 = pow(RADIX,Exp);
|
|
A/= PowRadix1; PowRadix2 = PowRadix1 * PowRadix1;
|
|
B/= PowRadix2;
|
|
C/= PowRadix2 * PowRadix1;
|
|
D/= PowRadix2 * PowRadix2;
|
|
//--
|
|
R3 = -B;
|
|
S3 = A * C - 4.0 * D;
|
|
T3 = D * (4.0 * B - A * A) - C * C;
|
|
Q3 = 1.0;
|
|
math_DirectPolynomialRoots Sol3(Q3, R3, S3, T3);
|
|
//-- ################################################################################
|
|
if(Sol3.IsDone() == Standard_False) { Done = Standard_False; return; }
|
|
//-- ################################################################################
|
|
|
|
|
|
Y0 = Sol3.Value(1);
|
|
for(Index = 2; Index <= Sol3.NbSolutions(); Index++) {
|
|
if(Sol3.Value(Index) > Y0) Y0 = Sol3.Value(Index);
|
|
}
|
|
Discr = A * Y0 * 0.5 - C;
|
|
if(Discr >= 0.0) {
|
|
Sdiscr = 1.0;
|
|
}
|
|
else {
|
|
Sdiscr = -1.0;
|
|
}
|
|
P0 = A * A * 0.25 - B + Y0;
|
|
if(P0 < 0.0) P0 = 0.0;
|
|
P0 = sqrt(P0);
|
|
Q0 = Y0 * Y0 * 0.25 - D;
|
|
if(Q0 < 0.0) Q0 = 0.0;
|
|
Q0 = sqrt(Q0);
|
|
|
|
Standard_Real Ademi = A * 0.5;
|
|
Standard_Real Ydemi = Y0 * 0.5;
|
|
Standard_Real SdiscrQ0 = Sdiscr * Q0;
|
|
|
|
P = Ademi + P0;
|
|
Q = Ydemi + SdiscrQ0;
|
|
P1 = Ademi - P0;
|
|
Q1 = Ydemi - SdiscrQ0;
|
|
// Modified by skv - Wed Apr 14 16:05:24 2004 IDEM(Airbus) Begin
|
|
Standard_Real eps;
|
|
|
|
eps = Epsilon(100.*Max(Ademi, P0));
|
|
if (Abs(P) <= eps)
|
|
P = 0.;
|
|
if (Abs(P1) <= eps)
|
|
P1 = 0.;
|
|
|
|
eps = Epsilon(100.*Max(Ydemi, SdiscrQ0));
|
|
if (Abs(Q) <= eps)
|
|
Q = 0.;
|
|
if (Abs(Q1) <= eps)
|
|
Q1 = 0.;
|
|
// Modified by skv - Wed Apr 14 16:05:24 2004 IDEM(Airbus) End
|
|
Ademi = 1.0;
|
|
|
|
math_DirectPolynomialRoots ASol2(Ademi, P, Q);
|
|
//-- ################################################################################
|
|
if(ASol2.IsDone() == Standard_False) { Done = Standard_False; return; }
|
|
//-- ################################################################################
|
|
math_DirectPolynomialRoots BSol2(Ademi, P1, Q1);
|
|
//-- ################################################################################
|
|
if(BSol2.IsDone() == Standard_False) { Done = Standard_False; return; }
|
|
//-- ################################################################################
|
|
|
|
NbSol = ASol2.NbSolutions() + BSol2.NbSolutions();
|
|
for(Index = 0; Index < ASol2.NbSolutions(); Index++) {
|
|
TheRoots[Index] = ASol2.TheRoots[Index];
|
|
}
|
|
for(Index = 0; Index < BSol2.NbSolutions(); Index++) {
|
|
TheRoots[ASol2.NbSolutions() + Index] = BSol2.TheRoots[Index];
|
|
}
|
|
for(Index = 0; Index < NbSol; Index++) {
|
|
TheRoots[Index] = TheRoots[Index] * PowRadix1;
|
|
TheRoots[Index] = Improve(a, b, c, d, e, TheRoots[Index]);
|
|
}
|
|
}
|
|
|
|
void math_DirectPolynomialRoots::Solve(const Standard_Real A,
|
|
const Standard_Real B,
|
|
const Standard_Real C,
|
|
const Standard_Real D) {
|
|
|
|
if(Abs(A) <= ZERO) {
|
|
Solve(B, C, D);
|
|
return;
|
|
}
|
|
|
|
Standard_Real Beta, Gamma, Del, P1, P2, P, Ep, Q1, Q2, Q3, Q, Eq, A1, A2, Discr;
|
|
Standard_Real Sigma, Psi, D1, D2, Sb, Omega, Sp3, Y1, Dbg, Sdbg, Den1, Den2;
|
|
Standard_Real U, H, Sq;
|
|
Standard_Integer Exp;
|
|
|
|
Beta = B / A;
|
|
Gamma = C / A;
|
|
Del = D / A;
|
|
|
|
Exp = BaseExponent(Del) / 3;
|
|
|
|
Standard_Real PowRadix1 = pow(RADIX,Exp);
|
|
Standard_Real PowRadix2 = PowRadix1*PowRadix1;
|
|
Beta/= PowRadix1;
|
|
Gamma/= PowRadix2;
|
|
Del/= PowRadix2 * PowRadix1;
|
|
//-- Beta = Beta / pow(RADIX, Exp);
|
|
//-- Gamma = Gamma / pow(RADIX, 2 * Exp);
|
|
//-- Del = Del / pow(RADIX, 3 * Exp);
|
|
|
|
P1 = Gamma;
|
|
P2 = - (Beta * Beta) / 3.0;
|
|
P = P1 + P2;
|
|
Ep = 5.0 * EPSILON * (Abs(P1) + Abs(P2));
|
|
if(Abs(P) <= Ep) P = 0.0;
|
|
Q1 = Del;
|
|
Q2 = - Beta * Gamma / 3.0;
|
|
Q3 = 2.0 * (Beta * Beta * Beta) / 27.0;
|
|
Q = Q1 + Q2 + Q3;
|
|
Eq = 10.0 * EPSILON * (Abs(Q1) + Abs(Q2) + Abs(Q3));
|
|
if(Abs(Q) <= Eq) Q = 0.0;
|
|
//-- ############################################################
|
|
Standard_Real AbsP = P; if(P<0.0) AbsP = -P;
|
|
if(AbsP>1e+80) { Done = Standard_False; return; }
|
|
//-- ############################################################
|
|
A1 = (P * P * P) / 27.0;
|
|
A2 = (Q * Q) / 4.0;
|
|
Discr = A1 + A2;
|
|
if(P < 0.0) {
|
|
Sigma = - Q2 - Q3;
|
|
Psi = Gamma * Gamma * (4.0 * Gamma - Beta * Beta) / 27.0;
|
|
if(Sigma >= 0.0) {
|
|
D1 = Sigma + 2.0 * sqrt(-A1);
|
|
}
|
|
else {
|
|
D1 = Sigma - 2.0 * sqrt(-A1);
|
|
}
|
|
D2 = Psi / D1;
|
|
Discr = 0.0;
|
|
if(Abs(Del - D1) >= 18.0 * EPSILON * (Abs(Del) + Abs(D1)) &&
|
|
Abs(Del - D2) >= 24.0 * EPSILON * (Abs(Del) + Abs(D2))) {
|
|
Discr = (Del - D1) * (Del - D2) / 4.0;
|
|
}
|
|
}
|
|
if(Beta >= 0.0) {
|
|
Sb = 1.0;
|
|
}
|
|
else {
|
|
Sb = -1.0;
|
|
}
|
|
if(Discr < 0.0) {
|
|
NbSol = 3;
|
|
if(Beta == 0.0 && Q == 0.0) {
|
|
TheRoots[0] = sqrt(-P);
|
|
TheRoots[1] = -TheRoots[0];
|
|
TheRoots[2] = 0.0;
|
|
}
|
|
else {
|
|
Omega = atan(0.5 * Q / sqrt(- Discr));
|
|
Sp3 = sqrt(-P / 3.0);
|
|
Y1 = -2.0 * Sb * Sp3 * cos(M_PI / 6.0 - Sb * Omega / 3.0);
|
|
TheRoots[0] = - Beta / 3.0 + Y1;
|
|
if(Beta * Q <= 0.0) {
|
|
TheRoots[1] = - Beta / 3.0 + 2.0 * Sp3 * sin(Omega / 3.0);
|
|
}
|
|
else {
|
|
Dbg = Del - Beta * Gamma;
|
|
if(Dbg >= 0.0) {
|
|
Sdbg = 1.0;
|
|
}
|
|
else {
|
|
Sdbg = -1.0;
|
|
}
|
|
Den1 = 8.0 * Beta * Beta / 9.0 - 4.0 * Beta * Y1 / 3.0
|
|
- 2.0 * Q / Y1;
|
|
Den2 = 2.0 * Y1 * Y1 - Q / Y1;
|
|
TheRoots[1] = Dbg / Den1 + Sdbg * sqrt(-27.0 * Discr) / Den2;
|
|
}
|
|
TheRoots[2] = - Del / (TheRoots[0] * TheRoots[1]);
|
|
}
|
|
}
|
|
else if(Discr > 0.0) {
|
|
NbSol = 1;
|
|
U = sqrt(Discr) + Abs(Q / 2.0);
|
|
if(U >= 0.0) {
|
|
U = pow(U, 1.0 / 3.0);
|
|
}
|
|
else {
|
|
U = - pow(Abs(U), 1.0 / 3.0);
|
|
}
|
|
if(P >= 0.0) {
|
|
H = U * U + P / 3.0 + (P / U) * (P / U) / 9.0;
|
|
}
|
|
else {
|
|
H = U * Abs(Q) / (U * U - P / 3.0);
|
|
}
|
|
if(Beta * Q >= 0.0) {
|
|
if(Abs(H) <= RealSmall() && Abs(Q) <= RealSmall()) {
|
|
TheRoots[0] = - Beta / 3.0 - U + P / (3.0 * U);
|
|
}
|
|
else {
|
|
TheRoots[0] = - Beta / 3.0 - Q / H;
|
|
}
|
|
}
|
|
else {
|
|
TheRoots[0] = - Del / (Beta * Beta / 9.0 + H - Beta * Q / (3.0 * H));
|
|
}
|
|
}
|
|
else {
|
|
NbSol = 3;
|
|
if(Q >= 0.0) {
|
|
Sq = 1.0;
|
|
}
|
|
else {
|
|
Sq = -1.0;
|
|
}
|
|
Sp3 = sqrt(-P / 3.0);
|
|
if(Beta * Q <= 0.0) {
|
|
TheRoots[0] = -Beta / 3.0 + Sq * Sp3;
|
|
TheRoots[1] = TheRoots[0];
|
|
if(Beta * Q == 0.0) {
|
|
TheRoots[2] = -Beta / 3.0 - 2.0 * Sq * Sp3;
|
|
}
|
|
else {
|
|
TheRoots[2] = - Del / (TheRoots[0] * TheRoots[1]);
|
|
}
|
|
}
|
|
else {
|
|
TheRoots[0] = -Gamma / (Beta + 3.0 * Sq * Sp3);
|
|
TheRoots[1] = TheRoots[0];
|
|
TheRoots[2] = -Beta / 3.0 - 2.0 * Sq * Sp3;
|
|
}
|
|
}
|
|
for(Standard_Integer Index = 0; Index < NbSol; Index++) {
|
|
TheRoots[Index] = TheRoots[Index] * pow(RADIX, Exp);
|
|
TheRoots[Index] = Improve(A, B, C, D, TheRoots[Index]);
|
|
}
|
|
}
|
|
|
|
void math_DirectPolynomialRoots::Solve(const Standard_Real A,
|
|
const Standard_Real B,
|
|
const Standard_Real C) {
|
|
|
|
if(Abs(A) <= ZERO) {
|
|
Solve(B, C);
|
|
return;
|
|
}
|
|
|
|
Standard_Real EpsD = 3.0 * EPSILON * (B * B + Abs(4.0 * A * C));
|
|
Standard_Real Discrim = B * B - 4.0 * A * C;
|
|
|
|
if(Abs(Discrim) <= EpsD) Discrim = 0.0;
|
|
if(Discrim < 0.0) {
|
|
NbSol = 0;
|
|
}
|
|
else if(Discrim == 0.0) {
|
|
NbSol = 2;
|
|
TheRoots[0] = -0.5 * B / A;
|
|
TheRoots[0] = Improve(A, B, C, TheRoots[0]);
|
|
TheRoots[1] = TheRoots[0];
|
|
}
|
|
else {
|
|
NbSol = 2;
|
|
if(B > 0.0) {
|
|
TheRoots[0] = - (B + sqrt(Discrim)) / (2.0 * A);
|
|
}
|
|
else {
|
|
TheRoots[0] = - (B - sqrt(Discrim)) / (2.0 * A);
|
|
}
|
|
TheRoots[0] = Improve(A, B, C, TheRoots[0]);
|
|
TheRoots[1] = C / (A * TheRoots[0]);
|
|
TheRoots[1] = Improve(A, B, C, TheRoots[1]);
|
|
}
|
|
}
|
|
|
|
void math_DirectPolynomialRoots::Solve(const Standard_Real A,
|
|
const Standard_Real B) {
|
|
|
|
if(Abs(A) <= ZERO) {
|
|
if (Abs(B) <= ZERO) {
|
|
InfiniteStatus = Standard_True;
|
|
return;
|
|
}
|
|
NbSol = 0;
|
|
return;
|
|
}
|
|
NbSol = 1;
|
|
TheRoots[0] = -B / A;
|
|
}
|
|
|
|
void math_DirectPolynomialRoots::Dump(Standard_OStream& o) const {
|
|
o << "math_DirectPolynomialRoots ";
|
|
if (!Done) {
|
|
o <<" Not Done \n";
|
|
}
|
|
else if(InfiniteStatus) {
|
|
o << " Status = Infinity Roots \n";
|
|
}
|
|
else if (!InfiniteStatus) {
|
|
o << " Status = Not Infinity Roots \n";
|
|
o << " Number of solutions = " << NbSol <<"\n";
|
|
for (Standard_Integer i = 1; i <= NbSol; i++) {
|
|
o << " Solution number " << i << " = " << TheRoots[i-1] <<"\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|