mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
252 lines
7.2 KiB
C++
252 lines
7.2 KiB
C++
// Created on: 1995-07-18
|
|
// Created by: Modelistation
|
|
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <Extrema_GenLocateExtPS.hxx>
|
|
|
|
#include <Extrema_FuncPSNorm.hxx>
|
|
#include <Extrema_FuncPSDist.hxx>
|
|
#include <Extrema_POnSurf.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <math_FunctionSetRoot.hxx>
|
|
#include <math_NewtonFunctionSetRoot.hxx>
|
|
#include <math_BFGS.hxx>
|
|
#include <math_FRPR.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
|
|
static void CorrectTol(const Standard_Real theU0, const Standard_Real theV0,
|
|
math_Vector& theTol)
|
|
{
|
|
//Correct tolerance for large values of UV parameters
|
|
Standard_Real aTolRef = Precision::PConfusion();
|
|
Standard_Real anEpsRef = Epsilon(1.);
|
|
Standard_Real epsu = Epsilon(theU0);
|
|
const Standard_Real tolog10 = 0.43429;
|
|
if (epsu > anEpsRef)
|
|
{
|
|
Standard_Integer n = RealToInt(tolog10 * Log(epsu / anEpsRef) + 1) + 1;
|
|
Standard_Integer i;
|
|
Standard_Real tol = aTolRef;
|
|
for (i = 1; i <= n; ++i)
|
|
{
|
|
tol *= 10.;
|
|
}
|
|
theTol(1) = Max(theTol(1), tol);
|
|
}
|
|
Standard_Real epsv = Epsilon(theV0);
|
|
if (epsv > anEpsRef)
|
|
{
|
|
Standard_Integer n = RealToInt(tolog10 * Log(epsv / anEpsRef) + 1) + 1;
|
|
Standard_Integer i;
|
|
Standard_Real tol = aTolRef;
|
|
for (i = 1; i <= n; ++i)
|
|
{
|
|
tol *= 10.;
|
|
}
|
|
theTol(2) = Max(theTol(2), tol);
|
|
}
|
|
}
|
|
//=======================================================================
|
|
//function : IsMinDist
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Standard_Boolean Extrema_GenLocateExtPS::IsMinDist(const gp_Pnt& theP, const Adaptor3d_Surface& theS,
|
|
const Standard_Real theU0, const Standard_Real theV0)
|
|
{
|
|
Standard_Real du = Max(theS.UResolution(10.*Precision::Confusion()), 10.*Precision::PConfusion());
|
|
Standard_Real dv = Max(theS.VResolution(10.*Precision::Confusion()), 10.*Precision::PConfusion());
|
|
Standard_Real u, v;
|
|
gp_Pnt aP0 = theS.Value(theU0, theV0);
|
|
Standard_Real d0 = theP.SquareDistance(aP0);
|
|
Standard_Integer iu, iv;
|
|
for (iu = -1; iu <= 1; ++iu)
|
|
{
|
|
u = theU0 + iu * du;
|
|
if (!theS.IsUPeriodic())
|
|
{
|
|
u = Max(u, theS.FirstUParameter());
|
|
u = Min(u, theS.LastUParameter());
|
|
}
|
|
for (iv = -1; iv <= 1; ++iv)
|
|
{
|
|
if (iu == 0 && iv == 0)
|
|
continue;
|
|
|
|
v = theV0 + iv * dv;
|
|
if (!theS.IsVPeriodic())
|
|
{
|
|
v = Max(v, theS.FirstVParameter());
|
|
v = Min(v, theS.LastVParameter());
|
|
}
|
|
Standard_Real d = theP.SquareDistance(theS.Value(u, v));
|
|
if (d < d0)
|
|
return Standard_False;
|
|
}
|
|
}
|
|
return Standard_True;
|
|
}
|
|
//=======================================================================
|
|
//function : Extrema_GenLocateExtPS
|
|
//purpose :
|
|
//=======================================================================
|
|
Extrema_GenLocateExtPS::Extrema_GenLocateExtPS(const Adaptor3d_Surface& theS,
|
|
const Standard_Real theTolU,
|
|
const Standard_Real theTolV)
|
|
: mySurf(theS),
|
|
myTolU(theTolU), myTolV(theTolV),
|
|
myDone(Standard_False),
|
|
mySqDist(-1.0)
|
|
{
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Perform
|
|
//purpose :
|
|
//=======================================================================
|
|
void Extrema_GenLocateExtPS::Perform(const gp_Pnt& theP,
|
|
const Standard_Real theU0,
|
|
const Standard_Real theV0,
|
|
const Standard_Boolean isDistanceCriteria)
|
|
{
|
|
myDone = Standard_False;
|
|
|
|
// Prepare initial data structures.
|
|
math_Vector aTol(1, 2), aStart(1, 2), aBoundInf(1, 2), aBoundSup(1, 2);
|
|
|
|
// Tolerance.
|
|
aTol(1) = myTolU;
|
|
aTol(2) = myTolV;
|
|
|
|
// Initial solution approximation.
|
|
aStart(1) = theU0;
|
|
aStart(2) = theV0;
|
|
|
|
// Borders.
|
|
aBoundInf(1) = mySurf.FirstUParameter();
|
|
aBoundInf(2) = mySurf.FirstVParameter();
|
|
aBoundSup(1) = mySurf.LastUParameter();
|
|
aBoundSup(2) = mySurf.LastVParameter();
|
|
|
|
if (isDistanceCriteria)
|
|
{
|
|
// Distance criteria.
|
|
Standard_Real aRelTol = 1.e-8;
|
|
math_Vector aResPnt(1, 2);
|
|
|
|
Extrema_FuncPSDist F(mySurf, theP);
|
|
|
|
math_BFGS aSolver(2, aRelTol);
|
|
aSolver.Perform(F, aStart);
|
|
|
|
if (!aSolver.IsDone())
|
|
{
|
|
//Try another method
|
|
math_FRPR aSolver1(F, aRelTol);
|
|
aSolver1.Perform(F, aStart);
|
|
if(!aSolver1.IsDone())
|
|
return;
|
|
aSolver1.Location(aResPnt);
|
|
mySqDist = aSolver1.Minimum();
|
|
}
|
|
else
|
|
{
|
|
aSolver.Location(aResPnt);
|
|
mySqDist = aSolver.Minimum();
|
|
}
|
|
|
|
myPoint.SetParameters(aResPnt(1), aResPnt(2), mySurf.Value(aResPnt(1), aResPnt(2)));
|
|
myDone = Standard_True;
|
|
}
|
|
else
|
|
{
|
|
// Normal projection criteria.
|
|
Extrema_FuncPSNorm F(theP, mySurf);
|
|
|
|
if (mySurf.GetType() == GeomAbs_BSplineSurface)
|
|
{
|
|
aTol(1) = myTolU;
|
|
aTol(2) = myTolV;
|
|
CorrectTol(theU0, theV0, aTol);
|
|
}
|
|
|
|
Standard_Boolean isCorrectTol = (Abs(aTol(1) - myTolU) > Precision::PConfusion() ||
|
|
Abs(aTol(2) - myTolV) > Precision::PConfusion());
|
|
|
|
math_FunctionSetRoot aSR(F, aTol);
|
|
aSR.Perform(F, aStart, aBoundInf, aBoundSup);
|
|
|
|
if (!aSR.IsDone() || isCorrectTol)
|
|
{
|
|
if (isCorrectTol)
|
|
{
|
|
aTol(1) = myTolU;
|
|
aTol(2) = myTolV;
|
|
}
|
|
math_NewtonFunctionSetRoot aNSR(F, aTol, Precision::Confusion());
|
|
aNSR.Perform(F, aStart, aBoundInf, aBoundSup);
|
|
if (!aSR.IsDone() && !aNSR.IsDone())
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
|
|
Standard_Real aNbExt = F.NbExt();
|
|
mySqDist = F.SquareDistance(1);
|
|
myPoint = F.Point(1);
|
|
Standard_Integer i;
|
|
for (i = 2; i <= aNbExt; ++i)
|
|
{
|
|
if (F.SquareDistance(i) < mySqDist)
|
|
{
|
|
mySqDist = F.SquareDistance(i);
|
|
myPoint = F.Point(i);
|
|
}
|
|
}
|
|
myDone = Standard_True;
|
|
}
|
|
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : IsDone
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean Extrema_GenLocateExtPS::IsDone () const
|
|
{
|
|
return myDone;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : SquareDistance
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Real Extrema_GenLocateExtPS::SquareDistance () const
|
|
{
|
|
if (!IsDone()) { throw StdFail_NotDone(); }
|
|
return mySqDist;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Point
|
|
//purpose :
|
|
//=======================================================================
|
|
const Extrema_POnSurf& Extrema_GenLocateExtPS::Point () const
|
|
{
|
|
if (!IsDone()) { throw StdFail_NotDone(); }
|
|
return myPoint;
|
|
}
|