mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
498 lines
14 KiB
C++
498 lines
14 KiB
C++
// Created on: 1994-01-04
|
|
// Created by: Christophe MARION
|
|
// Copyright (c) 1994-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <ElCLib.hxx>
|
|
#include <Extrema_ExtElC2d.hxx>
|
|
#include <Extrema_ExtPElC2d.hxx>
|
|
#include <Extrema_POnCurv2d.hxx>
|
|
#include <gp_Circ2d.hxx>
|
|
#include <gp_Elips2d.hxx>
|
|
#include <gp_Hypr2d.hxx>
|
|
#include <gp_Lin2d.hxx>
|
|
#include <gp_Parab2d.hxx>
|
|
#include <Precision.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
|
|
//=======================================================================
|
|
//function : Extrema_ExtElC2d
|
|
//purpose :
|
|
//=======================================================================
|
|
Extrema_ExtElC2d::Extrema_ExtElC2d()
|
|
{
|
|
myDone = Standard_False;
|
|
myIsPar = Standard_False;
|
|
myNbExt = 0;
|
|
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
|
|
{
|
|
mySqDist[anIdx] = RealLast();
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Extrema_ExtElC2d
|
|
//purpose :
|
|
//=======================================================================
|
|
Extrema_ExtElC2d::Extrema_ExtElC2d (const gp_Lin2d& C1,
|
|
const gp_Lin2d& C2,
|
|
const Standard_Real)
|
|
/*-----------------------------------------------------------------------------
|
|
Function:
|
|
Find min distance between 2 straight lines.
|
|
|
|
Method:
|
|
Let D1 and D2 be 2 directions of straight lines C1 and C2.
|
|
2 cases are considered:
|
|
1- if Angle(D1,D2) < AngTol, the straight lines are parallel.
|
|
The distance is the distance between any point of C1 and straight line C2.
|
|
2- if Angle(D1,D2) > AngTol:
|
|
Let P = C1(u1) and P =C2(u2) the point intersection:
|
|
|
|
-----------------------------------------------------------------------------*/
|
|
{
|
|
myDone = Standard_False;
|
|
myIsPar = Standard_False;
|
|
myNbExt = 0;
|
|
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
|
|
{
|
|
mySqDist[anIdx] = RealLast();
|
|
}
|
|
|
|
gp_Vec2d D1(C1.Direction());
|
|
gp_Vec2d D2(C2.Direction());
|
|
if (D1.IsParallel(D2, Precision::Angular()))
|
|
{
|
|
myIsPar = Standard_True;
|
|
mySqDist[0] = C2.SquareDistance(C1.Location());
|
|
myNbExt = 1;
|
|
}
|
|
else
|
|
{
|
|
// Vector from P1 to P2 (P2 - P1).
|
|
gp_Vec2d aP1P2(C1.Location(), C2.Location());
|
|
|
|
// Solve linear system using Cramer's rule:
|
|
// D1.X * t1 + D2.X * (-t2) = P2.X - P1.X
|
|
// D1.Y * t1 + D2.Y * (-t2) = P2.Y - P1.Y
|
|
|
|
// There is no division by zero since lines are not parallel.
|
|
Standard_Real aDelim = 1 / (D1^D2);
|
|
|
|
Standard_Real aParam1 = (aP1P2 ^ D2) * aDelim;
|
|
Standard_Real aParam2 = -(D1 ^ aP1P2) * aDelim; // -1.0 coefficient before t2.
|
|
|
|
gp_Pnt2d P1 = ElCLib::Value(aParam1, C1);
|
|
gp_Pnt2d P2 = ElCLib::Value(aParam2, C2);
|
|
|
|
mySqDist[myNbExt] = 0.0;
|
|
myPoint[myNbExt][0] = Extrema_POnCurv2d(aParam1,P1);
|
|
myPoint[myNbExt][1] = Extrema_POnCurv2d(aParam2,P2);
|
|
myNbExt = 1;
|
|
}
|
|
|
|
myDone = Standard_True;
|
|
}
|
|
//=============================================================================
|
|
|
|
Extrema_ExtElC2d::Extrema_ExtElC2d (const gp_Lin2d& C1,
|
|
const gp_Circ2d& C2,
|
|
const Standard_Real)
|
|
/*-----------------------------------------------------------------------------
|
|
Function:
|
|
Find extreme distances between straight line C1 and circle C2.
|
|
|
|
Method:
|
|
Let P1=C1(u1) and P2=C2(u2) be two solution points
|
|
D the direction of straight line C1
|
|
T the tangent at point P2;
|
|
Then, ( P1P2.D = 0. (1)
|
|
( P1P2.T = 0. (2)
|
|
-----------------------------------------------------------------------------*/
|
|
{
|
|
myIsPar = Standard_False;
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
|
|
{
|
|
mySqDist[anIdx] = RealLast();
|
|
}
|
|
|
|
// Calculate T1 in the reference of the circle ...
|
|
gp_Dir2d D = C1.Direction();
|
|
gp_Dir2d x2, y2;
|
|
x2 = C2.XAxis().Direction();
|
|
y2 = C2.YAxis().Direction();
|
|
|
|
Standard_Real Dx = D.Dot(x2);
|
|
Standard_Real Dy = D.Dot(y2);
|
|
Standard_Real U1, teta[2];
|
|
gp_Pnt2d O1=C1.Location();
|
|
gp_Pnt2d P1, P2;
|
|
|
|
if (Abs(Dy) <= RealEpsilon()) {
|
|
teta[0] = M_PI/2.0;
|
|
}
|
|
else teta[0] = ATan(-Dx/Dy);
|
|
teta[1] = teta[0]+ M_PI;
|
|
if (teta[0] < 0.0) teta[0] = teta[0] + 2.0*M_PI;
|
|
|
|
P2 = ElCLib::Value(teta[0], C2);
|
|
U1 = (gp_Vec2d(O1, P2)).Dot(D);
|
|
P1 = ElCLib::Value(U1, C1);
|
|
mySqDist[myNbExt] = P1.SquareDistance(P2);
|
|
myPoint[myNbExt][0] = Extrema_POnCurv2d(U1,P1);
|
|
myPoint[myNbExt][1] = Extrema_POnCurv2d(teta[0],P2);
|
|
myNbExt++;
|
|
|
|
P2 = ElCLib::Value(teta[1], C2);
|
|
U1 = (gp_Vec2d(O1, P2)).Dot(D);
|
|
P1 = ElCLib::Value(U1, C1);
|
|
mySqDist[myNbExt] = P1.SquareDistance(P2);
|
|
myPoint[myNbExt][0] = Extrema_POnCurv2d(U1,P1);
|
|
myPoint[myNbExt][1] = Extrema_POnCurv2d(teta[1],P2);
|
|
myNbExt++;
|
|
myDone = Standard_True;
|
|
}
|
|
|
|
|
|
// =============================================================================
|
|
Extrema_ExtElC2d::Extrema_ExtElC2d (const gp_Lin2d& C1,
|
|
const gp_Elips2d& C2)
|
|
{
|
|
myDone = Standard_True;
|
|
myIsPar = Standard_False;
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
|
|
{
|
|
mySqDist[anIdx] = RealLast();
|
|
}
|
|
|
|
// Calculate T1 in the reference of the ellipse ...
|
|
gp_Dir2d D = C1.Direction();
|
|
gp_Dir2d x2, y2;
|
|
x2 = C2.XAxis().Direction();
|
|
y2 = C2.YAxis().Direction();
|
|
|
|
Standard_Real Dx = D.Dot(x2);
|
|
Standard_Real Dy = D.Dot(y2);
|
|
Standard_Real U1, teta[2], r1 = C2.MajorRadius(), r2 = C2.MinorRadius();
|
|
gp_Pnt2d O1=C1.Location(), P1, P2;
|
|
|
|
if (Abs(Dy) <= RealEpsilon()) {
|
|
teta[0] = M_PI/2.0;
|
|
}
|
|
else teta[0] = ATan(-Dx*r2/(Dy*r1));
|
|
|
|
teta[1] = teta[0] + M_PI;
|
|
if (teta[0] < 0.0) teta[0] += 2.0*M_PI;
|
|
P2 = ElCLib::Value(teta[0], C2);
|
|
U1 = (gp_Vec2d(O1, P2)).Dot(D);
|
|
P1 = ElCLib::Value(U1, C1);
|
|
mySqDist[myNbExt] = P1.SquareDistance(P2);
|
|
myPoint[myNbExt][0] = Extrema_POnCurv2d(U1,P1);
|
|
myPoint[myNbExt][1] = Extrema_POnCurv2d(teta[0],P2);
|
|
myNbExt++;
|
|
|
|
|
|
P2 = ElCLib::Value(teta[1], C2);
|
|
U1 = (gp_Vec2d(O1, P2)).Dot(D);
|
|
P1 = ElCLib::Value(U1, C1);
|
|
mySqDist[myNbExt] = P1.SquareDistance(P2);
|
|
myPoint[myNbExt][0] = Extrema_POnCurv2d(U1,P1);
|
|
myPoint[myNbExt][1] = Extrema_POnCurv2d(teta[1],P2);
|
|
myNbExt++;
|
|
myDone = Standard_True;
|
|
}
|
|
|
|
|
|
|
|
//=============================================================================
|
|
|
|
Extrema_ExtElC2d::Extrema_ExtElC2d (const gp_Lin2d& C1, const gp_Hypr2d& C2)
|
|
{
|
|
myIsPar = Standard_False;
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
|
|
{
|
|
mySqDist[anIdx] = RealLast();
|
|
}
|
|
|
|
// Calculate T1 in the reference of the parabole ...
|
|
gp_Dir2d D = C1.Direction();
|
|
gp_Dir2d x2, y2;
|
|
x2 = C2.XAxis().Direction();
|
|
y2 = C2.YAxis().Direction();
|
|
Standard_Real Dx = D.Dot(x2);
|
|
Standard_Real Dy = D.Dot(y2);
|
|
|
|
Standard_Real U1, v2, U2=0, R = C2.MajorRadius(), r = C2.MinorRadius();
|
|
gp_Pnt2d P1, P2;
|
|
if (Abs(Dy) < RealEpsilon()) { return;}
|
|
if (Abs(R - r*Dx/Dy) < RealEpsilon()) return;
|
|
|
|
v2 = (R + r*Dx/Dy)/(R - r*Dx/Dy);
|
|
if (v2 > 0.0) U2 = Log(Sqrt(v2));
|
|
P2 = ElCLib::Value(U2, C2);
|
|
|
|
U1 = (gp_Vec2d(C1.Location(), P2)).Dot(D);
|
|
P1 = ElCLib::Value(U1, C1);
|
|
mySqDist[myNbExt] = P1.SquareDistance(P2);
|
|
myPoint[myNbExt][0] = Extrema_POnCurv2d(U1,P1);
|
|
myPoint[myNbExt][1] = Extrema_POnCurv2d(U2,P2);
|
|
myNbExt++;
|
|
myDone = Standard_True;
|
|
}
|
|
|
|
|
|
|
|
//============================================================================
|
|
|
|
Extrema_ExtElC2d::Extrema_ExtElC2d (const gp_Lin2d& C1, const gp_Parab2d& C2)
|
|
{
|
|
myIsPar = Standard_False;
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
|
|
{
|
|
mySqDist[anIdx] = RealLast();
|
|
}
|
|
|
|
// Calculate T1 in the reference of the parabole ...
|
|
gp_Dir2d D = C1.Direction();
|
|
gp_Dir2d x2, y2;
|
|
x2 = C2.MirrorAxis().Direction();
|
|
y2 = C2.Axis().YAxis().Direction();
|
|
Standard_Real Dx = D.Dot(x2);
|
|
Standard_Real Dy = D.Dot(y2);
|
|
|
|
Standard_Real U1, U2, P = C2.Parameter();
|
|
gp_Pnt2d P1, P2;
|
|
if (Abs(Dy) < RealEpsilon()) { return; }
|
|
U2 = Dx*P/Dy;
|
|
P2 = ElCLib::Value(U2, C2);
|
|
|
|
U1 = (gp_Vec2d(C1.Location(), P2)).Dot(D);
|
|
P1 = ElCLib::Value(U1, C1);
|
|
mySqDist[myNbExt] = P1.SquareDistance(P2);
|
|
myPoint[myNbExt][0] = Extrema_POnCurv2d(U1,P1);
|
|
myPoint[myNbExt][1] = Extrema_POnCurv2d(U2,P2);
|
|
myNbExt++;
|
|
myDone = Standard_True;
|
|
}
|
|
|
|
|
|
|
|
//============================================================================
|
|
|
|
Extrema_ExtElC2d::Extrema_ExtElC2d (const gp_Circ2d& C1, const gp_Circ2d& C2)
|
|
{
|
|
myIsPar = Standard_False;
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
myDone = Standard_True;
|
|
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
|
|
{
|
|
mySqDist[anIdx] = RealLast();
|
|
}
|
|
|
|
gp_Pnt2d O1 = C1.Location();
|
|
gp_Pnt2d O2 = C2.Location();
|
|
|
|
gp_Vec2d DO1O2 (O1, O2);
|
|
const Standard_Real aSqDCenters = DO1O2.SquareMagnitude();
|
|
if (aSqDCenters < Precision::SquareConfusion()) {
|
|
myIsPar = Standard_True;
|
|
myNbExt = 1;
|
|
myDone = Standard_True;
|
|
const Standard_Real aDR = C1.Radius() - C2.Radius();
|
|
mySqDist[0] = aDR*aDR;
|
|
return;
|
|
}
|
|
|
|
Standard_Integer NoSol, kk;
|
|
Standard_Real U1, U2;
|
|
Standard_Real r1 = C1.Radius(), r2 = C2.Radius();
|
|
Standard_Real Usol2[2], Usol1[2];
|
|
gp_Pnt2d P1[2], P2[2];
|
|
gp_Vec2d O1O2(DO1O2/Sqrt(aSqDCenters));
|
|
|
|
P1[0] = O1.Translated(r1*O1O2);
|
|
Usol1[0] = ElCLib::Parameter(C1, P1[0]);
|
|
P1[1] = O1.Translated(-r1*O1O2);
|
|
Usol1[1] = ElCLib::Parameter(C1, P1[1]);
|
|
|
|
P2[0] = O2.Translated(r2*O1O2);
|
|
Usol2[0] = ElCLib::Parameter(C2, P2[0]);
|
|
P2[1] = O2.Translated(-r2*O1O2);
|
|
Usol2[1] = ElCLib::Parameter(C2, P2[1]);
|
|
|
|
for (NoSol = 0; NoSol <= 1; NoSol++) {
|
|
U1 = Usol1[NoSol];
|
|
for (kk = 0; kk <= 1; kk++) {
|
|
U2 = Usol2[kk];
|
|
mySqDist[myNbExt] = P2[kk].SquareDistance(P1[NoSol]);
|
|
myPoint[myNbExt][0] = Extrema_POnCurv2d(U1, P1[NoSol]);
|
|
myPoint[myNbExt][1] = Extrema_POnCurv2d(U2, P2[kk]);
|
|
myNbExt++;
|
|
}
|
|
}
|
|
}
|
|
//===========================================================================
|
|
|
|
Extrema_ExtElC2d::Extrema_ExtElC2d (const gp_Circ2d& C1, const gp_Elips2d& C2)
|
|
{
|
|
myIsPar = Standard_False;
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
|
|
{
|
|
mySqDist[anIdx] = RealLast();
|
|
}
|
|
|
|
Standard_Integer i, j;
|
|
|
|
Extrema_ExtPElC2d ExtElip(C1.Location(), C2,
|
|
Precision::Confusion(), 0.0, 2.0*M_PI);
|
|
|
|
if (ExtElip.IsDone()) {
|
|
for (i = 1; i <= ExtElip.NbExt(); i++) {
|
|
Extrema_ExtPElC2d ExtCirc(ExtElip.Point(i).Value(), C1,
|
|
Precision::Confusion(), 0.0, 2.0*M_PI);
|
|
if (ExtCirc.IsDone()) {
|
|
for (j = 1; j <= ExtCirc.NbExt(); j++) {
|
|
mySqDist[myNbExt] = ExtCirc.SquareDistance(j);
|
|
myPoint[myNbExt][0] = ExtCirc.Point(j);
|
|
myPoint[myNbExt][1] = ExtElip.Point(i);
|
|
myNbExt++;
|
|
}
|
|
}
|
|
myDone = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
//============================================================================
|
|
|
|
Extrema_ExtElC2d::Extrema_ExtElC2d (const gp_Circ2d& C1, const gp_Hypr2d& C2)
|
|
{
|
|
myIsPar = Standard_False;
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
|
|
{
|
|
mySqDist[anIdx] = RealLast();
|
|
}
|
|
|
|
Standard_Integer i, j;
|
|
|
|
Extrema_ExtPElC2d ExtHyp(C1.Location(), C2, Precision::Confusion(),
|
|
RealFirst(), RealLast());
|
|
|
|
if (ExtHyp.IsDone()) {
|
|
for (i = 1; i <= ExtHyp.NbExt(); i++) {
|
|
Extrema_ExtPElC2d ExtCirc(ExtHyp.Point(i).Value(), C1,
|
|
Precision::Confusion(), 0.0, 2.0*M_PI);
|
|
if (ExtCirc.IsDone()) {
|
|
for (j = 1; j <= ExtCirc.NbExt(); j++) {
|
|
mySqDist[myNbExt] = ExtCirc.SquareDistance(j);
|
|
myPoint[myNbExt][0] = ExtCirc.Point(j);
|
|
myPoint[myNbExt][1] = ExtHyp.Point(i);
|
|
myNbExt++;
|
|
}
|
|
}
|
|
myDone = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
//============================================================================
|
|
|
|
Extrema_ExtElC2d::Extrema_ExtElC2d (const gp_Circ2d& C1, const gp_Parab2d& C2)
|
|
{
|
|
myIsPar = Standard_False;
|
|
myDone = Standard_False;
|
|
myNbExt = 0;
|
|
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
|
|
{
|
|
mySqDist[anIdx] = RealLast();
|
|
}
|
|
|
|
Standard_Integer i, j;
|
|
|
|
Extrema_ExtPElC2d ExtParab(C1.Location(), C2, Precision::Confusion(),
|
|
RealFirst(), RealLast());
|
|
|
|
if (ExtParab.IsDone()) {
|
|
for (i = 1; i <= ExtParab.NbExt(); i++) {
|
|
Extrema_ExtPElC2d ExtCirc(ExtParab.Point(i).Value(),
|
|
C1, Precision::Confusion(), 0.0, 2.0*M_PI);
|
|
if (ExtCirc.IsDone()) {
|
|
for (j = 1; j <= ExtCirc.NbExt(); j++) {
|
|
mySqDist[myNbExt] = ExtCirc.SquareDistance(j);
|
|
myPoint[myNbExt][0] = ExtCirc.Point(j);
|
|
myPoint[myNbExt][1] = ExtParab.Point(i);
|
|
myNbExt++;
|
|
}
|
|
}
|
|
myDone = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
//============================================================================
|
|
|
|
Standard_Boolean Extrema_ExtElC2d::IsDone () const { return myDone; }
|
|
//============================================================================
|
|
|
|
Standard_Boolean Extrema_ExtElC2d::IsParallel () const
|
|
{
|
|
if (!IsDone()) { throw StdFail_NotDone(); }
|
|
return myIsPar;
|
|
}
|
|
//============================================================================
|
|
|
|
Standard_Integer Extrema_ExtElC2d::NbExt () const
|
|
{
|
|
if (!IsDone())
|
|
{
|
|
throw StdFail_NotDone();
|
|
}
|
|
|
|
return myNbExt;
|
|
}
|
|
//============================================================================
|
|
|
|
Standard_Real Extrema_ExtElC2d::SquareDistance (const Standard_Integer N) const
|
|
{
|
|
if (N < 1 || N > NbExt())
|
|
{
|
|
throw Standard_OutOfRange();
|
|
}
|
|
|
|
return mySqDist[N - 1];
|
|
}
|
|
//============================================================================
|
|
|
|
void Extrema_ExtElC2d::Points (const Standard_Integer N,
|
|
Extrema_POnCurv2d& P1,
|
|
Extrema_POnCurv2d& P2) const
|
|
{
|
|
if (N < 1 || N > NbExt()) { throw Standard_OutOfRange(); }
|
|
P1 = myPoint[N-1][0];
|
|
P2 = myPoint[N-1][1];
|
|
}
|
|
//============================================================================
|