1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-05 18:16:23 +03:00
occt/src/Extrema/Extrema_ExtElC2d.cxx

498 lines
14 KiB
C++

// Created on: 1994-01-04
// Created by: Christophe MARION
// Copyright (c) 1994-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <ElCLib.hxx>
#include <Extrema_ExtElC2d.hxx>
#include <Extrema_ExtPElC2d.hxx>
#include <Extrema_POnCurv2d.hxx>
#include <gp_Circ2d.hxx>
#include <gp_Elips2d.hxx>
#include <gp_Hypr2d.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Parab2d.hxx>
#include <Precision.hxx>
#include <Standard_OutOfRange.hxx>
#include <StdFail_NotDone.hxx>
//=======================================================================
//function : Extrema_ExtElC2d
//purpose :
//=======================================================================
Extrema_ExtElC2d::Extrema_ExtElC2d()
{
myDone = Standard_False;
myIsPar = Standard_False;
myNbExt = 0;
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
{
mySqDist[anIdx] = RealLast();
}
}
//=======================================================================
//function : Extrema_ExtElC2d
//purpose :
//=======================================================================
Extrema_ExtElC2d::Extrema_ExtElC2d (const gp_Lin2d& C1,
const gp_Lin2d& C2,
const Standard_Real)
/*-----------------------------------------------------------------------------
Function:
Find min distance between 2 straight lines.
Method:
Let D1 and D2 be 2 directions of straight lines C1 and C2.
2 cases are considered:
1- if Angle(D1,D2) < AngTol, the straight lines are parallel.
The distance is the distance between any point of C1 and straight line C2.
2- if Angle(D1,D2) > AngTol:
Let P = C1(u1) and P =C2(u2) the point intersection:
-----------------------------------------------------------------------------*/
{
myDone = Standard_False;
myIsPar = Standard_False;
myNbExt = 0;
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
{
mySqDist[anIdx] = RealLast();
}
gp_Vec2d D1(C1.Direction());
gp_Vec2d D2(C2.Direction());
if (D1.IsParallel(D2, Precision::Angular()))
{
myIsPar = Standard_True;
mySqDist[0] = C2.SquareDistance(C1.Location());
myNbExt = 1;
}
else
{
// Vector from P1 to P2 (P2 - P1).
gp_Vec2d aP1P2(C1.Location(), C2.Location());
// Solve linear system using Cramer's rule:
// D1.X * t1 + D2.X * (-t2) = P2.X - P1.X
// D1.Y * t1 + D2.Y * (-t2) = P2.Y - P1.Y
// There is no division by zero since lines are not parallel.
Standard_Real aDelim = 1 / (D1^D2);
Standard_Real aParam1 = (aP1P2 ^ D2) * aDelim;
Standard_Real aParam2 = -(D1 ^ aP1P2) * aDelim; // -1.0 coefficient before t2.
gp_Pnt2d P1 = ElCLib::Value(aParam1, C1);
gp_Pnt2d P2 = ElCLib::Value(aParam2, C2);
mySqDist[myNbExt] = 0.0;
myPoint[myNbExt][0] = Extrema_POnCurv2d(aParam1,P1);
myPoint[myNbExt][1] = Extrema_POnCurv2d(aParam2,P2);
myNbExt = 1;
}
myDone = Standard_True;
}
//=============================================================================
Extrema_ExtElC2d::Extrema_ExtElC2d (const gp_Lin2d& C1,
const gp_Circ2d& C2,
const Standard_Real)
/*-----------------------------------------------------------------------------
Function:
Find extreme distances between straight line C1 and circle C2.
Method:
Let P1=C1(u1) and P2=C2(u2) be two solution points
D the direction of straight line C1
T the tangent at point P2;
Then, ( P1P2.D = 0. (1)
( P1P2.T = 0. (2)
-----------------------------------------------------------------------------*/
{
myIsPar = Standard_False;
myDone = Standard_False;
myNbExt = 0;
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
{
mySqDist[anIdx] = RealLast();
}
// Calculate T1 in the reference of the circle ...
gp_Dir2d D = C1.Direction();
gp_Dir2d x2, y2;
x2 = C2.XAxis().Direction();
y2 = C2.YAxis().Direction();
Standard_Real Dx = D.Dot(x2);
Standard_Real Dy = D.Dot(y2);
Standard_Real U1, teta[2];
gp_Pnt2d O1=C1.Location();
gp_Pnt2d P1, P2;
if (Abs(Dy) <= RealEpsilon()) {
teta[0] = M_PI/2.0;
}
else teta[0] = ATan(-Dx/Dy);
teta[1] = teta[0]+ M_PI;
if (teta[0] < 0.0) teta[0] = teta[0] + 2.0*M_PI;
P2 = ElCLib::Value(teta[0], C2);
U1 = (gp_Vec2d(O1, P2)).Dot(D);
P1 = ElCLib::Value(U1, C1);
mySqDist[myNbExt] = P1.SquareDistance(P2);
myPoint[myNbExt][0] = Extrema_POnCurv2d(U1,P1);
myPoint[myNbExt][1] = Extrema_POnCurv2d(teta[0],P2);
myNbExt++;
P2 = ElCLib::Value(teta[1], C2);
U1 = (gp_Vec2d(O1, P2)).Dot(D);
P1 = ElCLib::Value(U1, C1);
mySqDist[myNbExt] = P1.SquareDistance(P2);
myPoint[myNbExt][0] = Extrema_POnCurv2d(U1,P1);
myPoint[myNbExt][1] = Extrema_POnCurv2d(teta[1],P2);
myNbExt++;
myDone = Standard_True;
}
// =============================================================================
Extrema_ExtElC2d::Extrema_ExtElC2d (const gp_Lin2d& C1,
const gp_Elips2d& C2)
{
myDone = Standard_True;
myIsPar = Standard_False;
myDone = Standard_False;
myNbExt = 0;
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
{
mySqDist[anIdx] = RealLast();
}
// Calculate T1 in the reference of the ellipse ...
gp_Dir2d D = C1.Direction();
gp_Dir2d x2, y2;
x2 = C2.XAxis().Direction();
y2 = C2.YAxis().Direction();
Standard_Real Dx = D.Dot(x2);
Standard_Real Dy = D.Dot(y2);
Standard_Real U1, teta[2], r1 = C2.MajorRadius(), r2 = C2.MinorRadius();
gp_Pnt2d O1=C1.Location(), P1, P2;
if (Abs(Dy) <= RealEpsilon()) {
teta[0] = M_PI/2.0;
}
else teta[0] = ATan(-Dx*r2/(Dy*r1));
teta[1] = teta[0] + M_PI;
if (teta[0] < 0.0) teta[0] += 2.0*M_PI;
P2 = ElCLib::Value(teta[0], C2);
U1 = (gp_Vec2d(O1, P2)).Dot(D);
P1 = ElCLib::Value(U1, C1);
mySqDist[myNbExt] = P1.SquareDistance(P2);
myPoint[myNbExt][0] = Extrema_POnCurv2d(U1,P1);
myPoint[myNbExt][1] = Extrema_POnCurv2d(teta[0],P2);
myNbExt++;
P2 = ElCLib::Value(teta[1], C2);
U1 = (gp_Vec2d(O1, P2)).Dot(D);
P1 = ElCLib::Value(U1, C1);
mySqDist[myNbExt] = P1.SquareDistance(P2);
myPoint[myNbExt][0] = Extrema_POnCurv2d(U1,P1);
myPoint[myNbExt][1] = Extrema_POnCurv2d(teta[1],P2);
myNbExt++;
myDone = Standard_True;
}
//=============================================================================
Extrema_ExtElC2d::Extrema_ExtElC2d (const gp_Lin2d& C1, const gp_Hypr2d& C2)
{
myIsPar = Standard_False;
myDone = Standard_False;
myNbExt = 0;
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
{
mySqDist[anIdx] = RealLast();
}
// Calculate T1 in the reference of the parabole ...
gp_Dir2d D = C1.Direction();
gp_Dir2d x2, y2;
x2 = C2.XAxis().Direction();
y2 = C2.YAxis().Direction();
Standard_Real Dx = D.Dot(x2);
Standard_Real Dy = D.Dot(y2);
Standard_Real U1, v2, U2=0, R = C2.MajorRadius(), r = C2.MinorRadius();
gp_Pnt2d P1, P2;
if (Abs(Dy) < RealEpsilon()) { return;}
if (Abs(R - r*Dx/Dy) < RealEpsilon()) return;
v2 = (R + r*Dx/Dy)/(R - r*Dx/Dy);
if (v2 > 0.0) U2 = Log(Sqrt(v2));
P2 = ElCLib::Value(U2, C2);
U1 = (gp_Vec2d(C1.Location(), P2)).Dot(D);
P1 = ElCLib::Value(U1, C1);
mySqDist[myNbExt] = P1.SquareDistance(P2);
myPoint[myNbExt][0] = Extrema_POnCurv2d(U1,P1);
myPoint[myNbExt][1] = Extrema_POnCurv2d(U2,P2);
myNbExt++;
myDone = Standard_True;
}
//============================================================================
Extrema_ExtElC2d::Extrema_ExtElC2d (const gp_Lin2d& C1, const gp_Parab2d& C2)
{
myIsPar = Standard_False;
myDone = Standard_False;
myNbExt = 0;
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
{
mySqDist[anIdx] = RealLast();
}
// Calculate T1 in the reference of the parabole ...
gp_Dir2d D = C1.Direction();
gp_Dir2d x2, y2;
x2 = C2.MirrorAxis().Direction();
y2 = C2.Axis().YAxis().Direction();
Standard_Real Dx = D.Dot(x2);
Standard_Real Dy = D.Dot(y2);
Standard_Real U1, U2, P = C2.Parameter();
gp_Pnt2d P1, P2;
if (Abs(Dy) < RealEpsilon()) { return; }
U2 = Dx*P/Dy;
P2 = ElCLib::Value(U2, C2);
U1 = (gp_Vec2d(C1.Location(), P2)).Dot(D);
P1 = ElCLib::Value(U1, C1);
mySqDist[myNbExt] = P1.SquareDistance(P2);
myPoint[myNbExt][0] = Extrema_POnCurv2d(U1,P1);
myPoint[myNbExt][1] = Extrema_POnCurv2d(U2,P2);
myNbExt++;
myDone = Standard_True;
}
//============================================================================
Extrema_ExtElC2d::Extrema_ExtElC2d (const gp_Circ2d& C1, const gp_Circ2d& C2)
{
myIsPar = Standard_False;
myDone = Standard_False;
myNbExt = 0;
myDone = Standard_True;
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
{
mySqDist[anIdx] = RealLast();
}
gp_Pnt2d O1 = C1.Location();
gp_Pnt2d O2 = C2.Location();
gp_Vec2d DO1O2 (O1, O2);
const Standard_Real aSqDCenters = DO1O2.SquareMagnitude();
if (aSqDCenters < Precision::SquareConfusion()) {
myIsPar = Standard_True;
myNbExt = 1;
myDone = Standard_True;
const Standard_Real aDR = C1.Radius() - C2.Radius();
mySqDist[0] = aDR*aDR;
return;
}
Standard_Integer NoSol, kk;
Standard_Real U1, U2;
Standard_Real r1 = C1.Radius(), r2 = C2.Radius();
Standard_Real Usol2[2], Usol1[2];
gp_Pnt2d P1[2], P2[2];
gp_Vec2d O1O2(DO1O2/Sqrt(aSqDCenters));
P1[0] = O1.Translated(r1*O1O2);
Usol1[0] = ElCLib::Parameter(C1, P1[0]);
P1[1] = O1.Translated(-r1*O1O2);
Usol1[1] = ElCLib::Parameter(C1, P1[1]);
P2[0] = O2.Translated(r2*O1O2);
Usol2[0] = ElCLib::Parameter(C2, P2[0]);
P2[1] = O2.Translated(-r2*O1O2);
Usol2[1] = ElCLib::Parameter(C2, P2[1]);
for (NoSol = 0; NoSol <= 1; NoSol++) {
U1 = Usol1[NoSol];
for (kk = 0; kk <= 1; kk++) {
U2 = Usol2[kk];
mySqDist[myNbExt] = P2[kk].SquareDistance(P1[NoSol]);
myPoint[myNbExt][0] = Extrema_POnCurv2d(U1, P1[NoSol]);
myPoint[myNbExt][1] = Extrema_POnCurv2d(U2, P2[kk]);
myNbExt++;
}
}
}
//===========================================================================
Extrema_ExtElC2d::Extrema_ExtElC2d (const gp_Circ2d& C1, const gp_Elips2d& C2)
{
myIsPar = Standard_False;
myDone = Standard_False;
myNbExt = 0;
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
{
mySqDist[anIdx] = RealLast();
}
Standard_Integer i, j;
Extrema_ExtPElC2d ExtElip(C1.Location(), C2,
Precision::Confusion(), 0.0, 2.0*M_PI);
if (ExtElip.IsDone()) {
for (i = 1; i <= ExtElip.NbExt(); i++) {
Extrema_ExtPElC2d ExtCirc(ExtElip.Point(i).Value(), C1,
Precision::Confusion(), 0.0, 2.0*M_PI);
if (ExtCirc.IsDone()) {
for (j = 1; j <= ExtCirc.NbExt(); j++) {
mySqDist[myNbExt] = ExtCirc.SquareDistance(j);
myPoint[myNbExt][0] = ExtCirc.Point(j);
myPoint[myNbExt][1] = ExtElip.Point(i);
myNbExt++;
}
}
myDone = Standard_True;
}
}
}
//============================================================================
Extrema_ExtElC2d::Extrema_ExtElC2d (const gp_Circ2d& C1, const gp_Hypr2d& C2)
{
myIsPar = Standard_False;
myDone = Standard_False;
myNbExt = 0;
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
{
mySqDist[anIdx] = RealLast();
}
Standard_Integer i, j;
Extrema_ExtPElC2d ExtHyp(C1.Location(), C2, Precision::Confusion(),
RealFirst(), RealLast());
if (ExtHyp.IsDone()) {
for (i = 1; i <= ExtHyp.NbExt(); i++) {
Extrema_ExtPElC2d ExtCirc(ExtHyp.Point(i).Value(), C1,
Precision::Confusion(), 0.0, 2.0*M_PI);
if (ExtCirc.IsDone()) {
for (j = 1; j <= ExtCirc.NbExt(); j++) {
mySqDist[myNbExt] = ExtCirc.SquareDistance(j);
myPoint[myNbExt][0] = ExtCirc.Point(j);
myPoint[myNbExt][1] = ExtHyp.Point(i);
myNbExt++;
}
}
myDone = Standard_True;
}
}
}
//============================================================================
Extrema_ExtElC2d::Extrema_ExtElC2d (const gp_Circ2d& C1, const gp_Parab2d& C2)
{
myIsPar = Standard_False;
myDone = Standard_False;
myNbExt = 0;
for (size_t anIdx = 0; anIdx < sizeof (mySqDist) / sizeof (mySqDist[0]); anIdx++)
{
mySqDist[anIdx] = RealLast();
}
Standard_Integer i, j;
Extrema_ExtPElC2d ExtParab(C1.Location(), C2, Precision::Confusion(),
RealFirst(), RealLast());
if (ExtParab.IsDone()) {
for (i = 1; i <= ExtParab.NbExt(); i++) {
Extrema_ExtPElC2d ExtCirc(ExtParab.Point(i).Value(),
C1, Precision::Confusion(), 0.0, 2.0*M_PI);
if (ExtCirc.IsDone()) {
for (j = 1; j <= ExtCirc.NbExt(); j++) {
mySqDist[myNbExt] = ExtCirc.SquareDistance(j);
myPoint[myNbExt][0] = ExtCirc.Point(j);
myPoint[myNbExt][1] = ExtParab.Point(i);
myNbExt++;
}
}
myDone = Standard_True;
}
}
}
//============================================================================
Standard_Boolean Extrema_ExtElC2d::IsDone () const { return myDone; }
//============================================================================
Standard_Boolean Extrema_ExtElC2d::IsParallel () const
{
if (!IsDone()) { throw StdFail_NotDone(); }
return myIsPar;
}
//============================================================================
Standard_Integer Extrema_ExtElC2d::NbExt () const
{
if (!IsDone())
{
throw StdFail_NotDone();
}
return myNbExt;
}
//============================================================================
Standard_Real Extrema_ExtElC2d::SquareDistance (const Standard_Integer N) const
{
if (N < 1 || N > NbExt())
{
throw Standard_OutOfRange();
}
return mySqDist[N - 1];
}
//============================================================================
void Extrema_ExtElC2d::Points (const Standard_Integer N,
Extrema_POnCurv2d& P1,
Extrema_POnCurv2d& P2) const
{
if (N < 1 || N > NbExt()) { throw Standard_OutOfRange(); }
P1 = myPoint[N-1][0];
P2 = myPoint[N-1][1];
}
//============================================================================