1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-05-11 10:44:53 +03:00
occt/src/gp/gp_Cone.cxx
abv 42cf5bc1ca 0024002: Overall code and build procedure refactoring -- automatic
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl":
- WOK-generated header files from inc and sources from drv are moved to src
- CDL files removed
- All packages are converted to nocdlpack
2015-07-12 07:42:38 +03:00

92 lines
2.8 KiB
C++

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// LPA, JCV 07/92 passage sur C1.
// JCV 07/92 Introduction de la method Dump
#include <gp_Ax1.hxx>
#include <gp_Ax2.hxx>
#include <gp_Ax3.hxx>
#include <gp_Cone.hxx>
#include <gp_Pnt.hxx>
#include <gp_Trsf.hxx>
#include <gp_Vec.hxx>
#include <Standard_ConstructionError.hxx>
void gp_Cone::Coefficients
(Standard_Real& A1, Standard_Real& A2, Standard_Real& A3,
Standard_Real& B1, Standard_Real& B2, Standard_Real& B3,
Standard_Real& C1, Standard_Real& C2, Standard_Real& C3,
Standard_Real& D) const
{
// Dans le repere du cone :
// X**2 + Y**2 - (radius + Z * Tan(semiAngle))**2 = 0.0
gp_Trsf T;
T.SetTransformation (pos);
Standard_Real KAng = Tan (semiAngle);
Standard_Real T11 = T.Value (1, 1);
Standard_Real T12 = T.Value (1, 2);
Standard_Real T13 = T.Value (1, 3);
Standard_Real T14 = T.Value (1, 4);
Standard_Real T21 = T.Value (2, 1);
Standard_Real T22 = T.Value (2, 2);
Standard_Real T23 = T.Value (2, 3);
Standard_Real T24 = T.Value (2, 4);
Standard_Real T31 = T.Value (3, 1) * KAng;
Standard_Real T32 = T.Value (3, 2) * KAng;
Standard_Real T33 = T.Value (3, 3) * KAng;
Standard_Real T34 = T.Value (3, 4) * KAng;
A1 = T11 * T11 + T21 * T21 - T31 * T31;
A2 = T12 * T12 + T22 * T22 - T32 * T32;
A3 = T13 * T13 + T23 * T23 - T33 * T33;
B1 = T11 * T12 + T21 * T22 - T31 * T32;
B2 = T11 * T13 + T21 * T23 - T31 * T33;
B3 = T12 * T13 + T22 * T23 - T32 * T33;
C1 = T11 * T14 + T21 * T24 - T31 * (radius + T34);
C2 = T12 * T14 + T22 * T24 - T32 * (radius + T34);
C3 = T13 * T14 + T23 * T24 - T33 * (radius + T34);
D = T14*T14 + T24*T24 - radius*radius - T34*T34 - 2.0*radius*T34;
}
void gp_Cone::Mirror (const gp_Pnt& P)
{ pos.Mirror (P); }
gp_Cone gp_Cone::Mirrored (const gp_Pnt& P) const
{
gp_Cone C = *this;
C.pos.Mirror (P);
return C;
}
void gp_Cone::Mirror (const gp_Ax1& A1)
{ pos.Mirror (A1); }
gp_Cone gp_Cone::Mirrored (const gp_Ax1& A1) const
{
gp_Cone C = *this;
C.pos.Mirror (A1);
return C;
}
void gp_Cone::Mirror (const gp_Ax2& A2)
{ pos.Mirror (A2); }
gp_Cone gp_Cone::Mirrored (const gp_Ax2& A2) const
{
gp_Cone C = *this;
C.pos.Mirror (A2);
return C;
}