1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-26 10:19:45 +03:00
occt/src/Geom/Geom_OsculatingSurface.cxx
azv 6b84c3f7db 0026252: GeomAdaptor_Surface should use inner adaptor to calculate values of complex surfaces
* Implement GeomEvaluator package
* Inject evaluators to GeomAdaptor_Surface to calculate values of complex surfaces
* Inject evaluators to Geom_Surface classes to calculate values for offset surfaces, surfaces of revolution and surfaces of extrusion
* Move Adaptor3d_SurfaceOfLinearExtrusion and Adaptor3d_SurfaceOfRevolution to GeomAdaptor and unify calculation of their values and derivatives
* Code optimizations
* Update test cases

Update of test-cases according to the new behavior
2015-11-19 14:50:54 +03:00

802 lines
24 KiB
C++

// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <BSplSLib.hxx>
#include <Convert_GridPolynomialToPoles.hxx>
#include <Geom_BezierSurface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_OsculatingSurface.hxx>
#include <Geom_Surface.hxx>
#include <PLib.hxx>
#include <Precision.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_Array2OfPnt.hxx>
#include <TColgp_Array2OfVec.hxx>
#include <TColgp_HArray2OfPnt.hxx>
#include <TColStd_Array1OfInteger.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_HArray1OfInteger.hxx>
#include <TColStd_HArray1OfReal.hxx>
#include <TColStd_HArray2OfInteger.hxx>
//=======================================================================
//function : Geom_OffsetOsculatingSurface
//purpose :
//=======================================================================
Geom_OsculatingSurface::Geom_OsculatingSurface()
: myAlong(1,4)
{
myAlong.Init(Standard_False);
}
//=======================================================================
//function : Geom_OffsetOsculatingSurface
//purpose :
//=======================================================================
Geom_OsculatingSurface::Geom_OsculatingSurface(const Handle(Geom_Surface)& BS,
const Standard_Real Tol)
: myAlong(1,4)
{
Init(BS,Tol);
}
//=======================================================================
//function : Init
//purpose :
//=======================================================================
void Geom_OsculatingSurface::Init(const Handle(Geom_Surface)& BS,
const Standard_Real Tol)
{
ClearOsculFlags();
myTol=Tol;
Standard_Real TolMin=0.;//consider all singularities below Tol, not just above 1.e-12 (id23943)
Standard_Boolean OsculSurf = Standard_True;
myBasisSurf = Handle(Geom_Surface)::DownCast(BS->Copy());
myOsculSurf1 = new Geom_HSequenceOfBSplineSurface();
myOsculSurf2 = new Geom_HSequenceOfBSplineSurface();
if ((BS->IsKind(STANDARD_TYPE(Geom_BSplineSurface))) ||
(BS->IsKind(STANDARD_TYPE(Geom_BezierSurface))))
{
Standard_Real U1=0,U2=0,V1=0,V2=0;
Standard_Integer i = 1;
BS->Bounds(U1,U2,V1,V2);
myAlong.SetValue(1,IsQPunctual(BS,V1,GeomAbs_IsoV,TolMin,Tol));
myAlong.SetValue(2,IsQPunctual(BS,V2,GeomAbs_IsoV,TolMin,Tol));
myAlong.SetValue(3,IsQPunctual(BS,U1,GeomAbs_IsoU,TolMin,Tol));
myAlong.SetValue(4,IsQPunctual(BS,U2,GeomAbs_IsoU,TolMin,Tol));
#ifdef OCCT_DEBUG
cout<<myAlong(1)<<endl<<myAlong(2)<<endl<<myAlong(3)<<endl<<myAlong(4)<<endl;
#endif
if (myAlong(1) || myAlong(2) || myAlong(3) || myAlong(4))
{
Handle(Geom_BSplineSurface) InitSurf, L,S;
if (BS->IsKind(STANDARD_TYPE(Geom_BezierSurface)))
{
Handle(Geom_BezierSurface) BzS = Handle(Geom_BezierSurface)::DownCast(BS);
TColgp_Array2OfPnt P(1,BzS->NbUPoles(),1,BzS->NbVPoles());
TColStd_Array1OfReal UKnots(1,2);
TColStd_Array1OfReal VKnots(1,2);
TColStd_Array1OfInteger UMults(1,2);
TColStd_Array1OfInteger VMults(1,2);
for (i=1;i<=2;i++)
{
UKnots.SetValue(i,(i-1));
VKnots.SetValue(i,(i-1));
UMults.SetValue(i,BzS->UDegree()+1);
VMults.SetValue(i,BzS->VDegree()+1);
}
BzS->Poles(P);
InitSurf = new Geom_BSplineSurface(P,UKnots,VKnots,
UMults,VMults,
BzS->UDegree(),
BzS->VDegree(),
BzS->IsUPeriodic(),
BzS->IsVPeriodic());
}
else
{
InitSurf = Handle(Geom_BSplineSurface)::DownCast(myBasisSurf);
}
#ifdef OCCT_DEBUG
cout<<"UDEG: "<<InitSurf->UDegree()<<endl;
cout<<"VDEG: "<<InitSurf->VDegree()<<endl;
#endif
if(IsAlongU() && IsAlongV()) ClearOsculFlags();
// Standard_ConstructionError_Raise_if((IsAlongU() && IsAlongV()),"Geom_OsculatingSurface");
if ((IsAlongU() && InitSurf->VDegree()>1) ||
(IsAlongV() && InitSurf->UDegree()>1))
{
myKdeg = new TColStd_HSequenceOfInteger();
Standard_Integer k=0;
Standard_Boolean IsQPunc;
Standard_Integer UKnot,VKnot;
if (myAlong(1) || myAlong(2))
{
for (i=1;i<InitSurf->NbUKnots();i++)
{
if (myAlong(1))
{
S = InitSurf; k=0; IsQPunc=Standard_True;
UKnot=i;
VKnot=1;
while(IsQPunc)
{
OsculSurf = BuildOsculatingSurface(V1,UKnot,VKnot,S,L);
if(!OsculSurf) break;
k++;
#ifdef OCCT_DEBUG
cout<<"1.k = "<<k<<endl;
#endif
IsQPunc=IsQPunctual(L,V1,GeomAbs_IsoV,0.,Tol);
UKnot=1;
VKnot=1;
S=L;
}
if (OsculSurf)
myOsculSurf1->Append(L);
else
ClearOsculFlags(); //myAlong.SetValue(1,Standard_False);
if (myAlong(2) && OsculSurf)
{
S = InitSurf; k=0; IsQPunc=Standard_True;
UKnot=i;
VKnot=InitSurf->NbVKnots()-1;
while(IsQPunc)
{
OsculSurf = BuildOsculatingSurface(V2,UKnot,VKnot,S,L);
if(!OsculSurf) break;
k++;
#ifdef OCCT_DEBUG
cout<<"2.k = "<<k<<endl;
#endif
IsQPunc=IsQPunctual(L,V2,GeomAbs_IsoV,0.,Tol);
UKnot=1;
VKnot=1;
S=L;
}
if(OsculSurf)
{
myOsculSurf2->Append(L);
myKdeg->Append(k);
}
}
}
else
//if (myAlong(2))
{
S = InitSurf; k=0; IsQPunc=Standard_True;
UKnot=i;
VKnot=InitSurf->NbVKnots()-1;
while(IsQPunc)
{
OsculSurf = BuildOsculatingSurface(V2,UKnot,VKnot,S,L);
if(!OsculSurf) break;
k++;
#ifdef OCCT_DEBUG
cout<<"2.k = "<<k<<endl;
#endif
IsQPunc=IsQPunctual(L,V2,GeomAbs_IsoV,0.,Tol);
UKnot=1;
VKnot=1;
S=L;
}
if(OsculSurf)
{
myOsculSurf2->Append(L);
myKdeg->Append(k);
}
else
ClearOsculFlags(); //myAlong.SetValue(2,Standard_False);
}
}
}
if (myAlong(3) || myAlong(4))
{
for (i=1;i<InitSurf->NbVKnots();i++)
{
if (myAlong(3))
{
S = InitSurf; k=0; IsQPunc=Standard_True;
UKnot=1;
VKnot=i;
while(IsQPunc)
{
OsculSurf = BuildOsculatingSurface(U1,UKnot,VKnot,S,L);
if(!OsculSurf) break;
k++;
#ifdef OCCT_DEBUG
cout<<"1.k = "<<k<<endl;
#endif
IsQPunc=IsQPunctual(L,U1,GeomAbs_IsoU,0.,Tol);
UKnot=1;
VKnot=1;
S=L;
}
if(OsculSurf)
myOsculSurf1->Append(L);
else
ClearOsculFlags(); //myAlong.SetValue(3,Standard_False);
if (myAlong(4) && OsculSurf )
{
S = InitSurf; k=0; IsQPunc=Standard_True;
UKnot=InitSurf->NbUKnots()-1;
VKnot=i;
while(IsQPunc)
{
OsculSurf = BuildOsculatingSurface(U2,UKnot,VKnot,S,L);
if(!OsculSurf) break;
k++;
#ifdef OCCT_DEBUG
cout<<"2.k = "<<k<<endl;
#endif
IsQPunc=IsQPunctual(L,U2,GeomAbs_IsoU,0.,Tol);
UKnot=1;
VKnot=1;
S=L;
}
if(OsculSurf)
{
myOsculSurf2->Append(L);
myKdeg->Append(k);
}
}
}
else
{
S = InitSurf; k=0; IsQPunc=Standard_True;
UKnot=InitSurf->NbUKnots()-1;
VKnot=i;
while(IsQPunc)
{
OsculSurf = BuildOsculatingSurface(U2,UKnot,VKnot,S,L);
if(!OsculSurf) break;
k++;
#ifdef OCCT_DEBUG
cout<<"2.k = "<<k<<endl;
#endif
IsQPunc=IsQPunctual(L,U2,GeomAbs_IsoU,0.,Tol);
UKnot=1;
VKnot=1;
S=L;
}
if(OsculSurf)
{
myOsculSurf2->Append(L);
myKdeg->Append(k);
}
else
ClearOsculFlags(); //myAlong.SetValue(4,Standard_False);
}
}
}
}
else
{
ClearOsculFlags();
}
}
}
else
ClearOsculFlags();
}
//=======================================================================
//function : BasisSurface
//purpose :
//=======================================================================
Handle(Geom_Surface) Geom_OsculatingSurface::BasisSurface() const
{
return myBasisSurf;
}
//=======================================================================
//function : Tolerance
//purpose :
//=======================================================================
Standard_Real Geom_OsculatingSurface::Tolerance() const
{
return myTol;
}
//=======================================================================
//function : UOscSurf
//purpose :
//=======================================================================
Standard_Boolean Geom_OsculatingSurface::UOscSurf
(const Standard_Real U,
const Standard_Real V,
Standard_Boolean& t,
Handle(Geom_BSplineSurface)& L) const
{
Standard_Boolean along = Standard_False;
if (myAlong(1) || myAlong(2))
{
Standard_Integer NU = 1, NV = 1;
Standard_Real u1,u2,v1,v2;
t = Standard_False;
myBasisSurf->Bounds(u1,u2,v1,v2);
Standard_Integer NbUK,NbVK;
Standard_Boolean isToSkipSecond = Standard_False;
if (myBasisSurf->IsKind(STANDARD_TYPE(Geom_BSplineSurface)))
{
Handle(Geom_BSplineSurface) BSur =
Handle(Geom_BSplineSurface)::DownCast (myBasisSurf);
NbUK = BSur->NbUKnots();
NbVK = BSur->NbVKnots();
TColStd_Array1OfReal UKnots(1,NbUK);
TColStd_Array1OfReal VKnots(1,NbVK);
BSur->UKnots(UKnots);
BSur->VKnots(VKnots);
BSplCLib::Hunt(UKnots,U,NU);
BSplCLib::Hunt(VKnots,V,NV);
if (NU < 1) NU=1;
if (NU >= NbUK) NU=NbUK-1;
if (NbVK==2 && NV==1)
// Need to find the closest end
if (VKnots(NbVK)-V > V-VKnots(1))
isToSkipSecond = Standard_True;
}
else {NU = 1; NV = 1 ; NbVK = 2 ;}
if (myAlong(1) && NV == 1)
{
L = *((Handle(Geom_BSplineSurface)*)& myOsculSurf1->Value(NU));
along = Standard_True;
}
if (myAlong(2) && (NV == NbVK-1) && !isToSkipSecond)
{
// t means that derivative vector of osculating surface is opposite
// to the original. This happens when (v-t)^k is negative, i.e.
// difference between degrees (k) is odd and t is the last parameter
if (myKdeg->Value(NU)%2) t = Standard_True;
L = *((Handle(Geom_BSplineSurface)*)& myOsculSurf2->Value(NU));
along = Standard_True;
}
}
return along;
}
//=======================================================================
//function : VOscSurf
//purpose :
//=======================================================================
Standard_Boolean Geom_OsculatingSurface::VOscSurf
(const Standard_Real U,
const Standard_Real V,
Standard_Boolean& t,
Handle(Geom_BSplineSurface)& L) const
{
Standard_Boolean along = Standard_False;
if (myAlong(3) || myAlong(4))
{
Standard_Integer NU = 1, NV = 1;
Standard_Real u1,u2,v1,v2;
t = Standard_False;
myBasisSurf->Bounds(u1,u2,v1,v2);
Standard_Integer NbUK,NbVK;
Standard_Boolean isToSkipSecond = Standard_False;
if (myBasisSurf->IsKind(STANDARD_TYPE(Geom_BSplineSurface)))
{
Handle(Geom_BSplineSurface) BSur =
Handle(Geom_BSplineSurface)::DownCast (myBasisSurf);
NbUK = BSur->NbUKnots();
NbVK = BSur->NbVKnots();
TColStd_Array1OfReal UKnots(1,NbUK);
TColStd_Array1OfReal VKnots(1,NbVK);
BSur->UKnots(UKnots);
BSur->VKnots(VKnots);
BSplCLib::Hunt(UKnots,U,NU);
BSplCLib::Hunt(VKnots,V,NV);
if (NV < 1) NV=1;
if (NV >= NbVK) NV=NbVK-1;
if (NbUK==2 && NU==1)
// Need to find the closest end
if (UKnots(NbUK)-U > U-UKnots(1))
isToSkipSecond = Standard_True;
}
else {NU = 1; NV = 1 ; NbUK = 2;}
if (myAlong(3) && NU == 1)
{
L = *((Handle(Geom_BSplineSurface)*)& myOsculSurf1->Value(NV));
along = Standard_True;
}
if (myAlong(4) && (NU == NbUK-1) && !isToSkipSecond)
{
if (myKdeg->Value(NV)%2) t = Standard_True;
L = *((Handle(Geom_BSplineSurface)*)& myOsculSurf2->Value(NV));
along = Standard_True;
}
}
return along;
}
//=======================================================================
//function : BuildOsculatingSurface
//purpose :
//=======================================================================
Standard_Boolean Geom_OsculatingSurface::BuildOsculatingSurface
(const Standard_Real Param,
const Standard_Integer SUKnot,
const Standard_Integer SVKnot,
const Handle(Geom_BSplineSurface)& BS,
Handle(Geom_BSplineSurface)& BSpl) const
{
Standard_Integer i, j;
Standard_Boolean OsculSurf=Standard_True;
#ifdef OCCT_DEBUG
cout<<"t = "<<Param<<endl;
cout<<"======================================"<<endl<<endl;
#endif
// for cache
Standard_Integer MinDegree,
MaxDegree ;
Standard_Real udeg, vdeg;
udeg = BS->UDegree();
vdeg = BS->VDegree();
if( (IsAlongU() && vdeg <=1) || (IsAlongV() && udeg <=1))
{
#ifdef OCCT_DEBUG
cout<<" surface osculatrice nulle "<<endl;
#endif
//Standard_ConstructionError::Raise("Geom_OsculatingSurface");
OsculSurf=Standard_False;
}
else
{
MinDegree = (Standard_Integer ) Min(udeg,vdeg) ;
MaxDegree = (Standard_Integer ) Max(udeg,vdeg) ;
TColgp_Array2OfPnt cachepoles(1, MaxDegree + 1, 1, MinDegree + 1);
// end for cache
// for polynomial grid
Standard_Integer MaxUDegree, MaxVDegree;
Standard_Integer UContinuity, VContinuity;
Handle(TColStd_HArray2OfInteger) NumCoeffPerSurface =
new TColStd_HArray2OfInteger(1, 1, 1, 2);
Handle(TColStd_HArray1OfReal) PolynomialUIntervals =
new TColStd_HArray1OfReal(1, 2);
Handle(TColStd_HArray1OfReal) PolynomialVIntervals =
new TColStd_HArray1OfReal(1, 2);
Handle(TColStd_HArray1OfReal) TrueUIntervals =
new TColStd_HArray1OfReal(1, 2);
Handle(TColStd_HArray1OfReal) TrueVIntervals =
new TColStd_HArray1OfReal(1, 2);
MaxUDegree = (Standard_Integer ) udeg;
MaxVDegree = (Standard_Integer ) vdeg;
for (i=1;i<=2;i++)
{
PolynomialUIntervals->ChangeValue(i) = i-1;
PolynomialVIntervals->ChangeValue(i) = i-1;
TrueUIntervals->ChangeValue(i) = BS->UKnot(SUKnot+i-1);
TrueVIntervals->ChangeValue(i) = BS->VKnot(SVKnot+i-1);
}
Standard_Integer OscUNumCoeff=0, OscVNumCoeff=0;
if (IsAlongU())
{
#ifdef OCCT_DEBUG
cout<<">>>>>>>>>>> AlongU"<<endl;
#endif
OscUNumCoeff = (Standard_Integer ) udeg + 1;
OscVNumCoeff = (Standard_Integer ) vdeg;
}
if (IsAlongV())
{
#ifdef OCCT_DEBUG
cout<<">>>>>>>>>>> AlongV"<<endl;
#endif
OscUNumCoeff = (Standard_Integer ) udeg;
OscVNumCoeff = (Standard_Integer ) vdeg + 1;
}
NumCoeffPerSurface->ChangeValue(1,1) = OscUNumCoeff;
NumCoeffPerSurface->ChangeValue(1,2) = OscVNumCoeff;
Standard_Integer nbc = NumCoeffPerSurface->Value(1,1)*NumCoeffPerSurface->Value(1,2)*3;
//
if(nbc == 0)
{
return Standard_False;
}
//
Handle(TColStd_HArray1OfReal) Coefficients = new TColStd_HArray1OfReal(1, nbc);
// end for polynomial grid
// building the cache
Standard_Integer ULocalIndex, VLocalIndex;
Standard_Real ucacheparameter, vcacheparameter,uspanlength, vspanlength;
TColgp_Array2OfPnt NewPoles(1, BS->NbUPoles(), 1, BS->NbVPoles());
Standard_Integer aUfKnotsLength = BS->NbUPoles() + BS->UDegree() + 1;
Standard_Integer aVfKnotsLength = BS->NbVPoles() + BS->VDegree() + 1;
if(BS->IsUPeriodic())
{
TColStd_Array1OfInteger aMults(1, BS->NbUKnots());
BS->UMultiplicities(aMults);
aUfKnotsLength = BSplCLib::KnotSequenceLength(aMults, BS->UDegree(), Standard_True);
}
if(BS->IsVPeriodic())
{
TColStd_Array1OfInteger aMults(1, BS->NbVKnots());
BS->VMultiplicities(aMults);
aVfKnotsLength = BSplCLib::KnotSequenceLength(aMults, BS->VDegree(), Standard_True);
}
TColStd_Array1OfReal UFlatKnots(1, aUfKnotsLength);
TColStd_Array1OfReal VFlatKnots(1, aVfKnotsLength);
BS->Poles(NewPoles);
BS->UKnotSequence(UFlatKnots);
BS->VKnotSequence(VFlatKnots);
VLocalIndex = 0;
ULocalIndex = 0;
for(j = 1; j <= SVKnot; j++) VLocalIndex += BS->VMultiplicity(j);
for(i = 1; i <= SUKnot; i++) ULocalIndex += BS->UMultiplicity(i);
ucacheparameter = BS->UKnot(SUKnot);
vcacheparameter = BS->VKnot(SVKnot);
vspanlength = BS->VKnot(SVKnot + 1) - BS->VKnot(SVKnot);
uspanlength = BS->UKnot(SUKnot + 1) - BS->UKnot(SUKnot);
// On se ramene toujours a un parametrage tel que localement ce soit l'iso
// u=0 ou v=0 qui soit degeneree
Standard_Boolean IsVNegative = Param > vcacheparameter + vspanlength/2;
Standard_Boolean IsUNegative = Param > ucacheparameter + uspanlength/2;
if (IsAlongU() && (Param > vcacheparameter + vspanlength/2))
vcacheparameter = vcacheparameter + vspanlength;
if (IsAlongV() && (Param > ucacheparameter + uspanlength/2))
ucacheparameter = ucacheparameter + uspanlength;
BSplSLib::BuildCache(ucacheparameter,
vcacheparameter,
uspanlength,
vspanlength,
BS->IsUPeriodic(),
BS->IsVPeriodic(),
BS->UDegree(),
BS->VDegree(),
ULocalIndex,
VLocalIndex,
UFlatKnots,
VFlatKnots,
NewPoles,
BSplSLib::NoWeights(),
cachepoles,
BSplSLib::NoWeights());
Standard_Integer m, n, index;
TColgp_Array2OfPnt OscCoeff(1,OscUNumCoeff , 1, OscVNumCoeff);
if (IsAlongU())
{
if (udeg > vdeg)
{
for(n = 1; n <= udeg + 1; n++)
for(m = 1; m <= vdeg; m++)
OscCoeff(n,m) = cachepoles(n,m+1) ;
}
else
{
for(n = 1; n <= udeg + 1; n++)
for(m = 1; m <= vdeg; m++)
OscCoeff(n,m) = cachepoles(m+1,n) ;
}
if (IsVNegative) PLib::VTrimming(-1,0,OscCoeff,PLib::NoWeights2());
index=1;
for(n = 1; n <= udeg + 1; n++)
for(m = 1; m <= vdeg; m++)
{
Coefficients->ChangeValue(index++) = OscCoeff(n,m).X();
Coefficients->ChangeValue(index++) = OscCoeff(n,m).Y();
Coefficients->ChangeValue(index++) = OscCoeff(n,m).Z();
}
}
if (IsAlongV())
{
if (udeg > vdeg)
{
for(n = 1; n <= udeg; n++)
for(m = 1; m <= vdeg + 1; m++)
OscCoeff(n,m) = cachepoles(n+1,m);
}
else
{
for(n = 1; n <= udeg; n++)
for(m = 1; m <= vdeg + 1; m++)
OscCoeff(n,m) = cachepoles(m,n+1);
}
if (IsUNegative) PLib::UTrimming(-1,0,OscCoeff,PLib::NoWeights2());
index=1;
for(n = 1; n <= udeg; n++)
for(m = 1; m <= vdeg + 1; m++)
{
Coefficients->ChangeValue(index++) = OscCoeff(n,m).X();
Coefficients->ChangeValue(index++) = OscCoeff(n,m).Y();
Coefficients->ChangeValue(index++) = OscCoeff(n,m).Z();
}
}
if (IsAlongU()) MaxVDegree--;
if (IsAlongV()) MaxUDegree--;
UContinuity = - 1;
VContinuity = - 1;
Convert_GridPolynomialToPoles Data(1,1,
UContinuity,
VContinuity,
MaxUDegree,
MaxVDegree,
NumCoeffPerSurface,
Coefficients,
PolynomialUIntervals,
PolynomialVIntervals,
TrueUIntervals,
TrueVIntervals);
// Handle(Geom_BSplineSurface) BSpl =
BSpl =new Geom_BSplineSurface(Data.Poles()->Array2(),
Data.UKnots()->Array1(),
Data.VKnots()->Array1(),
Data.UMultiplicities()->Array1(),
Data.VMultiplicities()->Array1(),
Data.UDegree(),
Data.VDegree(),
0, 0);
#ifdef OCCT_DEBUG
cout<<"^====================================^"<<endl<<endl;
#endif
// L=BSpl;
}
return OsculSurf;
}
//=======================================================================
//function : IsQPunctual
//purpose :
//=======================================================================
Standard_Boolean Geom_OsculatingSurface::IsQPunctual
(const Handle(Geom_Surface)& S,
const Standard_Real Param,
const GeomAbs_IsoType IT,
const Standard_Real TolMin,
const Standard_Real TolMax) const
{
Standard_Real U1=0,U2=0,V1=0,V2=0,T;
Standard_Boolean Along = Standard_True;
S->Bounds(U1,U2,V1,V2);
gp_Vec D1U,D1V;
gp_Pnt P;
Standard_Real Step,D1NormMax;
if (IT == GeomAbs_IsoV)
{
Step = (U2 - U1)/10;
D1NormMax=0.;
for (T=U1;T<=U2;T=T+Step)
{
S->D1(T,Param,P,D1U,D1V);
D1NormMax=Max(D1NormMax,D1U.Magnitude());
}
#ifdef OCCT_DEBUG
cout << " D1NormMax = " << D1NormMax << endl;
#endif
if (D1NormMax >TolMax || D1NormMax < TolMin )
Along = Standard_False;
}
else
{
Step = (V2 - V1)/10;
D1NormMax=0.;
for (T=V1;T<=V2;T=T+Step)
{
S->D1(Param,T,P,D1U,D1V);
D1NormMax=Max(D1NormMax,D1V.Magnitude());
}
#ifdef OCCT_DEBUG
cout << " D1NormMax = " << D1NormMax << endl;
#endif
if (D1NormMax >TolMax || D1NormMax < TolMin )
Along = Standard_False;
}
return Along;
}
//=======================================================================
//function : HasOscSurf
//purpose :
//=======================================================================
Standard_Boolean Geom_OsculatingSurface::HasOscSurf() const
{
return (myAlong(1) || myAlong(2) || myAlong(3) || myAlong(4));
}
//=======================================================================
//function : IsAlongU
//purpose :
//=======================================================================
Standard_Boolean Geom_OsculatingSurface::IsAlongU() const
{
return (myAlong(1) || myAlong(2));
}
//=======================================================================
//function : IsAlongV
//purpose :
//=======================================================================
Standard_Boolean Geom_OsculatingSurface::IsAlongV() const
{
return (myAlong(3) || myAlong(4));
}
//=======================================================================
//function : IsGetSeqOfL1
//purpose :
//=======================================================================
const Geom_SequenceOfBSplineSurface& Geom_OsculatingSurface::GetSeqOfL1() const
{
return myOsculSurf1->Sequence();
}
//=======================================================================
//function : IsGetSeqOfL2
//purpose :
//=======================================================================
const Geom_SequenceOfBSplineSurface& Geom_OsculatingSurface::GetSeqOfL2() const
{
return myOsculSurf2->Sequence();
}
//=======================================================================
//function : ClearOsculFlags
//purpose :
//=======================================================================
void Geom_OsculatingSurface::ClearOsculFlags()
{
myAlong.SetValue(1,Standard_False);
myAlong.SetValue(2,Standard_False);
myAlong.SetValue(3,Standard_False);
myAlong.SetValue(4,Standard_False);
}