1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-06-15 11:44:07 +03:00
occt/src/Graphic3d/Graphic3d_TransformUtils.hxx
apl 825aa485a3 0026344: Visualization - provide a support of zoom persistent selection
1) New Graphic3d_TransformPers structure for defining parameters and algorithm methods, featuring:
    a) application of transformation to projection and world view matrices;
    b) computation of model-world transformation of persistent object;
    c) computation of transformed bounding box of persistent object.

2) Transform persistence algorithm does not make any changes to model-world transformation of object (deals with projection and world view matrices only), thus making possible to employ local transformation in a usual way.

3) Support of BVH selection for transform persistent objects (pan, rotate, zoom, trihedron persistence only).

4) Support efficient frustum culling for transform persistent objects (pan, rotate, zoom, trihedron persistence only).

5) Support of z-fitting algorithm for world-view space transform persistent objects (rotate, zoom persistence only).

6) Rewrite usage of transform persistence structures and utilities classes:
    a) Replaced Graphic3d_CTransPers, TEL_TRANSFORM_PERSISTENCE by Graphic3d_TransformPers;
    b) Move functions from OpenGl_Utils.hxx to Graphic3d_TransformUtils.hxx;
    c) Extract matrix stack class from OpenGl_Utils.hxx to OpenGl_MatrixStack.hxx;

7) New class Graphic3d_WorldViewProjState to keep track of projection, world view matrices changes for a camera.

8) New test case bugs/vis/bug26344.

9) Renamed method Graphic3d_Camera::ModelViewState of  to ::WorldViewState for consistency.
2015-07-29 13:39:27 +03:00

453 lines
18 KiB
C++

// Created on: 2015-06-18
// Copyright (c) 2015 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _Graphic3d_TransformUtils_HeaderFile
#define _Graphic3d_TransformUtils_HeaderFile
#include <Graphic3d_Vec.hxx>
#include <Standard_math.hxx> // M_PI
//! Helper class that implements transformation matrix functionality.
namespace Graphic3d_TransformUtils
{
template<class T> struct MatrixType {};
template<> struct MatrixType<Standard_Real> { typedef Graphic3d_Mat4d Mat4; };
template<> struct MatrixType<Standard_ShortReal> { typedef Graphic3d_Mat4 Mat4; };
template<class T> struct VectorType {};
template<> struct VectorType<Standard_Real> {
typedef Graphic3d_Vec2d Vec2;
typedef Graphic3d_Vec3d Vec3;
typedef Graphic3d_Vec4d Vec4;
};
template<> struct VectorType<Standard_ShortReal> {
typedef Graphic3d_Vec2 Vec2;
typedef Graphic3d_Vec3 Vec3;
typedef Graphic3d_Vec4 Vec4;
};
//! Constructs a 3D orthographic projection matrix.
template<class T>
static void Ortho (typename MatrixType<T>::Mat4& theOut,
const T theLeft,
const T theRight,
const T theBottom,
const T theTop,
const T theZNear,
const T theZFar);
//! Constructs a 2D orthographic projection matrix.
template<class T>
static void Ortho2D (typename MatrixType<T>::Mat4& theOut,
const T theLeft,
const T theRight,
const T theBottom,
const T theTop);
//! Maps object coordinates to window coordinates.
template<class T>
static Standard_Boolean Project (const T theObjX,
const T theObjY,
const T theObjZ,
const typename MatrixType<T>::Mat4& theModViewMat,
const typename MatrixType<T>::Mat4& theProjectMat,
const Standard_Integer theViewport[4],
T& theWinX,
T& theWinY,
T& theWinZ);
//! Maps window coordinates to object coordinates.
template<class T>
static Standard_Boolean UnProject (const T theWinX,
const T theWinY,
const T theWinZ,
const typename MatrixType<T>::Mat4& theModViewMat,
const typename MatrixType<T>::Mat4& theProjectMat,
const Standard_Integer theViewport[4],
T& theObjX,
T& theObjY,
T& theObjZ);
//! Constructs a 4x4 rotation matrix.
template<class T>
static void ConstructRotate (typename MatrixType<T>::Mat4& theOut,
T theA,
T theX,
T theY,
T theZ);
//! Constructs a 4x4 rotation matrix.
template<class T>
static void Rotate (typename MatrixType<T>::Mat4& theOut,
T theA,
T theX,
T theY,
T theZ);
//! Constructs a 4x4 scaling matrix.
template<class T>
static void Scale (typename MatrixType<T>::Mat4& theOut,
T theX,
T theY,
T theZ);
//! Constructs a 4x4 translation matrix.
template<class T>
static void Translate (typename MatrixType<T>::Mat4& theOut,
T theX,
T theY,
T theZ);
}
// =======================================================================
// function : Rotate
// purpose : Constructs a 4x4 rotation matrix
// =======================================================================
template<class T>
void Graphic3d_TransformUtils::Rotate (typename MatrixType<T>::Mat4& theOut,
T theA,
T theX,
T theY,
T theZ)
{
typename MatrixType<T>::Mat4 aMat;
ConstructRotate (aMat, theA, theX, theY, theZ);
theOut = theOut * aMat;
}
// =======================================================================
// function : Translate
// purpose : Constructs a 4x4 translation matrix
// =======================================================================
template<class T>
void Graphic3d_TransformUtils::Translate (typename MatrixType<T>::Mat4& theOut,
T theX,
T theY,
T theZ)
{
theOut.ChangeValue (0, 3) = theOut.GetValue (0, 0) * theX +
theOut.GetValue (0, 1) * theY +
theOut.GetValue (0, 2) * theZ +
theOut.GetValue (0, 3);
theOut.ChangeValue (1, 3) = theOut.GetValue (1, 0) * theX +
theOut.GetValue (1, 1) * theY +
theOut.GetValue (1, 2) * theZ +
theOut.GetValue (1, 3);
theOut.ChangeValue (2, 3) = theOut.GetValue (2, 0) * theX +
theOut.GetValue (2, 1) * theY +
theOut.GetValue (2, 2) * theZ +
theOut.GetValue (2, 3);
theOut.ChangeValue (3, 3) = theOut.GetValue (3, 0) * theX +
theOut.GetValue (3, 1) * theY +
theOut.GetValue (3, 2) * theZ +
theOut.GetValue (3, 3);
}
// =======================================================================
// function : Scale
// purpose : Constructs a 4x4 scaling matrix
// =======================================================================
template<class T>
void Graphic3d_TransformUtils::Scale (typename MatrixType<T>::Mat4& theOut,
T theX,
T theY,
T theZ)
{
theOut.ChangeValue (0, 0) *= theX;
theOut.ChangeValue (1, 0) *= theX;
theOut.ChangeValue (2, 0) *= theX;
theOut.ChangeValue (3, 0) *= theX;
theOut.ChangeValue (0, 1) *= theY;
theOut.ChangeValue (1, 1) *= theY;
theOut.ChangeValue (2, 1) *= theY;
theOut.ChangeValue (3, 1) *= theY;
theOut.ChangeValue (0, 2) *= theZ;
theOut.ChangeValue (1, 2) *= theZ;
theOut.ChangeValue (2, 2) *= theZ;
theOut.ChangeValue (3, 2) *= theZ;
}
// =======================================================================
// function : ConstructRotate
// purpose : Constructs a 4x4 rotation matrix
// =======================================================================
template<class T>
void Graphic3d_TransformUtils::ConstructRotate (typename MatrixType<T>::Mat4& theOut,
T theA,
T theX,
T theY,
T theZ)
{
const T aSin = std::sin (theA * static_cast<T> (M_PI / 180.0));
const T aCos = std::cos (theA * static_cast<T> (M_PI / 180.0));
const Standard_Boolean isOnlyX = (theX != static_cast<T> (0.0))
&& (theY == static_cast<T> (0.0))
&& (theZ == static_cast<T> (0.0));
const Standard_Boolean isOnlyY = (theX == static_cast<T> (0.0))
&& (theY != static_cast<T> (0.0))
&& (theZ == static_cast<T> (0.0));
const Standard_Boolean isOnlyZ = (theX == static_cast<T> (0.0))
&& (theY == static_cast<T> (0.0))
&& (theZ != static_cast<T> (0.0));
if (isOnlyX) // Rotation only around X.
{
theOut.SetValue (1, 1, aCos);
theOut.SetValue (2, 2, aCos);
if (theX < static_cast<T> (0.0))
{
theOut.SetValue (1, 2, aSin);
theOut.SetValue (2, 1, -aSin);
}
else
{
theOut.SetValue (1, 2, -aSin);
theOut.SetValue (2, 1, aSin);
}
return;
}
else if (isOnlyY) // Rotation only around Y.
{
theOut.SetValue (0, 0, aCos);
theOut.SetValue (2, 2, aCos);
if (theY < static_cast<T> (0.0))
{
theOut.SetValue (0, 2, -aSin);
theOut.SetValue (2, 0, aSin);
}
else
{
theOut.SetValue (0, 2, aSin);
theOut.SetValue (2, 0, -aSin);
}
return;
}
else if (isOnlyZ) // Rotation only around Z.
{
theOut.SetValue (0, 0, aCos);
theOut.SetValue (1, 1, aCos);
if (theZ < static_cast<T> (0.0))
{
theOut.SetValue (0, 1, aSin);
theOut.SetValue (1, 0, -aSin);
}
else
{
theOut.SetValue (0, 1, -aSin);
theOut.SetValue (1, 0, aSin);
}
return;
}
T aNorm = std::sqrt (theX * theX + theY * theY + theZ * theZ);
if (aNorm <= static_cast<T> (1.0e-4))
{
return; // Negligible rotation.
}
aNorm = static_cast<T> (1.0) / aNorm;
theX *= aNorm;
theY *= aNorm;
theZ *= aNorm;
const T aXX = theX * theX;
const T aYY = theY * theY;
const T aZZ = theZ * theZ;
const T aXY = theX * theY;
const T aYZ = theY * theZ;
const T aZX = theZ * theX;
const T aSinX = theX * aSin;
const T aSinY = theY * aSin;
const T aSinZ = theZ * aSin;
const T aOneMinusCos = static_cast<T> (1.0) - aCos;
theOut.SetValue (0, 0, aOneMinusCos * aXX + aCos);
theOut.SetValue (0, 1, aOneMinusCos * aXY - aSinZ);
theOut.SetValue (0, 2, aOneMinusCos * aZX + aSinY);
theOut.SetValue (1, 0, aOneMinusCos * aXY + aSinZ);
theOut.SetValue (1, 1, aOneMinusCos * aYY + aCos);
theOut.SetValue (1, 2, aOneMinusCos * aYZ - aSinX);
theOut.SetValue (2, 0, aOneMinusCos * aZX - aSinY);
theOut.SetValue (2, 1, aOneMinusCos * aYZ + aSinX);
theOut.SetValue (2, 2, aOneMinusCos * aZZ + aCos);
}
// =======================================================================
// function : Ortho
// purpose : Constructs a 3D orthographic projection matrix
// =======================================================================
template<class T>
void Graphic3d_TransformUtils::Ortho (typename MatrixType<T>::Mat4& theOut,
const T theLeft,
const T theRight,
const T theBottom,
const T theTop,
const T theZNear,
const T theZFar)
{
theOut.InitIdentity();
T* aData = theOut.ChangeData();
const T anInvDx = static_cast<T> (1.0) / (theRight - theLeft);
const T anInvDy = static_cast<T> (1.0) / (theTop - theBottom);
const T anInvDz = static_cast<T> (1.0) / (theZFar - theZNear);
aData[0] = static_cast<T> ( 2.0) * anInvDx;
aData[5] = static_cast<T> ( 2.0) * anInvDy;
aData[10] = static_cast<T> (-2.0) * anInvDz;
aData[12] = -(theRight + theLeft) * anInvDx;
aData[13] = -(theTop + theBottom) * anInvDy;
aData[14] = -(theZFar + theZNear) * anInvDz;
}
// =======================================================================
// function : Ortho2D
// purpose : Constructs a 2D orthographic projection matrix
// =======================================================================
template<class T>
void Graphic3d_TransformUtils::Ortho2D (typename MatrixType<T>::Mat4& theOut,
const T theLeft,
const T theRight,
const T theBottom,
const T theTop)
{
Ortho (theOut, theLeft, theRight, theBottom, theTop, static_cast<T> (-1.0), static_cast<T> (1.0));
}
// =======================================================================
// function : Project
// purpose : Maps object coordinates to window coordinates
// =======================================================================
template<class T>
static Standard_Boolean Graphic3d_TransformUtils::Project (const T theObjX,
const T theObjY,
const T theObjZ,
const typename MatrixType<T>::Mat4& theModViewMat,
const typename MatrixType<T>::Mat4& theProjectMat,
const Standard_Integer theViewport[4],
T& theWinX,
T& theWinY,
T& theWinZ)
{
typename VectorType<T>::Vec4 anIn (theObjX, theObjY, theObjZ, static_cast<T> (1.0));
typename VectorType<T>::Vec4 anOut = theProjectMat * (theModViewMat * anIn);
if (anOut.w() == static_cast<T> (0.0))
{
return Standard_False;
}
anOut.w() = static_cast<T> (1.0) / anOut.w();
anOut.x() *= anOut.w();
anOut.y() *= anOut.w();
anOut.z() *= anOut.w();
// Map x, y and z to range 0-1.
anOut.x() = anOut.x() * static_cast<T> (0.5) + static_cast<T> (0.5);
anOut.y() = anOut.y() * static_cast<T> (0.5) + static_cast<T> (0.5);
anOut.z() = anOut.z() * static_cast<T> (0.5) + static_cast<T> (0.5);
// Map x,y to viewport.
anOut.x() = anOut.x() * theViewport[2] + theViewport[0];
anOut.y() = anOut.y() * theViewport[3] + theViewport[1];
theWinX = anOut.x();
theWinY = anOut.y();
theWinZ = anOut.z();
return Standard_True;
}
// =======================================================================
// function : UnProject
// purpose : Maps window coordinates to object coordinates
// =======================================================================
template<class T>
static Standard_Boolean Graphic3d_TransformUtils::UnProject (const T theWinX,
const T theWinY,
const T theWinZ,
const typename MatrixType<T>::Mat4& theModViewMat,
const typename MatrixType<T>::Mat4& theProjectMat,
const Standard_Integer theViewport[4],
T& theObjX,
T& theObjY,
T& theObjZ)
{
typename MatrixType<T>::Mat4 anUnviewMat;
if (!(theProjectMat * theModViewMat).Inverted (anUnviewMat))
{
return Standard_False;
}
typename VectorType<T>::Vec4 anIn (theWinX, theWinY, theWinZ, static_cast<T> (1.0));
// Map x and y from window coordinates.
anIn.x() = (anIn.x() - theViewport[0]) / theViewport[2];
anIn.y() = (anIn.y() - theViewport[1]) / theViewport[3];
// Map to range -1 to 1.
anIn.x() = anIn.x() * static_cast<T> (2.0) - static_cast<T> (1.0);
anIn.y() = anIn.y() * static_cast<T> (2.0) - static_cast<T> (1.0);
anIn.z() = anIn.z() * static_cast<T> (2.0) - static_cast<T> (1.0);
typename VectorType<T>::Vec4 anOut = anUnviewMat * anIn;
if (anOut.w() == static_cast<T> (0.0))
{
return Standard_False;
}
anOut.w() = static_cast<T> (1.0) / anOut.w();
anOut.x() *= anOut.w();
anOut.y() *= anOut.w();
anOut.z() *= anOut.w();
theObjX = anOut.x();
theObjY = anOut.y();
theObjZ = anOut.z();
return Standard_True;
}
#endif // _Graphic3d_TransformUtils_HeaderFile