1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-06 18:26:22 +03:00
occt/src/Contap/Contap_SurfFunction.cxx
abk 681f3919f0 0027870: Modeling - refactoring of HLR algorithms
Toolkit 'TKHLR' was fully refactored for 'Standard_Address' and macros except about half of package 'HLRBREP' there 'Standard_Address' is used through the 'generic' mechanism.
2016-11-03 14:16:56 +03:00

291 lines
8.5 KiB
C++

// Created on: 1993-06-03
// Created by: Jacques GOUSSARD
// Copyright (c) 1993-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// jag 940616 Tolpetit = 1.e-16
#include <Adaptor3d_HSurface.hxx>
#include <Adaptor3d_HSurfaceTool.hxx>
#include <Contap_HContTool.hxx>
#include <Contap_SurfFunction.hxx>
#include <Contap_SurfProps.hxx>
#include <gp_Dir.hxx>
#include <gp_Dir2d.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <math_Matrix.hxx>
#include <StdFail_UndefinedDerivative.hxx>
Contap_SurfFunction::Contap_SurfFunction ():
myMean(1.),
myType(Contap_ContourStd),
myDir(0.,0.,1.),
myCosAng(0.), // PI/2 - Angle de depouille
tol(1.e-6),
computed(Standard_False),
derived(Standard_False)
{}
void Contap_SurfFunction::Set(const Handle(Adaptor3d_HSurface)& S)
{
mySurf = S;
Standard_Integer i;
Standard_Integer nbs = Contap_HContTool::NbSamplePoints(S);
Standard_Real U,V;
gp_Vec norm;
if (nbs > 0) {
myMean = 0.;
for (i = 1; i <= nbs; i++) {
Contap_HContTool::SamplePoint(S,i,U,V);
// Adaptor3d_HSurfaceTool::D1(S,U,V,solpt,d1u,d1v);
// myMean = myMean + d1u.Crossed(d1v).Magnitude();
Contap_SurfProps::Normale(S,U,V,solpt,norm);
myMean = myMean + norm.Magnitude();
}
myMean = myMean / ((Standard_Real)nbs);
}
computed = Standard_False;
derived = Standard_False;
}
Standard_Integer Contap_SurfFunction::NbVariables () const
{
return 2;
}
Standard_Integer Contap_SurfFunction::NbEquations () const
{
return 1;
}
Standard_Boolean Contap_SurfFunction::Value(const math_Vector& X,
math_Vector& F)
{
Usol = X(1); Vsol = X(2);
// Adaptor3d_HSurfaceTool::D1(mySurf,Usol,Vsol,solpt,d1u,d1v);
// gp_Vec norm(d1u.Crossed(d1v));
gp_Vec norm;
Contap_SurfProps::Normale(mySurf,Usol,Vsol,solpt,norm);
switch (myType) {
case Contap_ContourStd:
{
F(1) = valf = (norm.Dot(myDir))/myMean;
}
break;
case Contap_ContourPrs:
{
F(1) = valf = (norm.Dot(gp_Vec(myEye,solpt)))/myMean;
}
break;
case Contap_DraftStd:
{
F(1) = valf = (norm.Dot(myDir)-myCosAng*norm.Magnitude())/myMean;
}
break;
default:
{
}
}
computed = Standard_False;
derived = Standard_False;
return Standard_True;
}
Standard_Boolean Contap_SurfFunction::Derivatives(const math_Vector& X,
math_Matrix& Grad)
{
// gp_Vec d2u,d2v,d2uv;
Usol = X(1); Vsol = X(2);
// Adaptor3d_HSurfaceTool::D2(mySurf,Usol,Vsol,solpt,d1u,d1v,d2u,d2v,d2uv);
gp_Vec norm,dnu,dnv;
Contap_SurfProps::NormAndDn(mySurf,Usol,Vsol,solpt,norm,dnu,dnv);
switch (myType) {
case Contap_ContourStd:
{
// Grad(1,1) = ((d2u.Crossed(d1v) + d1u.Crossed(d2uv)).Dot(myDir))/myMean;
// Grad(1,2) = ((d2uv.Crossed(d1v) + d1u.Crossed(d2v)).Dot(myDir))/myMean;
Grad(1,1) = (dnu.Dot(myDir))/myMean;
Grad(1,2) = (dnv.Dot(myDir))/myMean;
}
break;
case Contap_ContourPrs:
{
gp_Vec Ep(myEye,solpt);
Grad(1,1) = (dnu.Dot(Ep))/myMean;
Grad(1,2) = (dnv.Dot(Ep))/myMean;
}
break;
case Contap_DraftStd:
{
// gp_Vec norm(d1u.Crossed(d1v).Normalized());
// gp_Vec dnorm(d2u.Crossed(d1v) + d1u.Crossed(d2uv));
// Grad(1,1) = (dnorm.Dot(myDir)-myCosAng*dnorm.Dot(norm))/myMean;
// dnorm = d2uv.Crossed(d1v) + d1u.Crossed(d2v);
// Grad(1,2) = (dnorm.Dot(myDir)-myCosAng*dnorm.Dot(norm))/myMean;
norm.Normalize();
Grad(1,1) = (dnu.Dot(myDir)-myCosAng*dnu.Dot(norm))/myMean;
Grad(1,2) = (dnv.Dot(myDir)-myCosAng*dnv.Dot(norm))/myMean;
}
break;
case Contap_DraftPrs:
default:
{
}
}
Fpu = Grad(1,1); Fpv = Grad(1,2);
computed = Standard_False;
derived = Standard_True;
return Standard_True;
}
Standard_Boolean Contap_SurfFunction::Values (const math_Vector& X,
math_Vector& F,
math_Matrix& Grad)
{
// gp_Vec d2u,d2v,d2uv;
Usol = X(1); Vsol = X(2);
// Adaptor3d_HSurfaceTool::D2(mySurf,Usol,Vsol,solpt,d1u,d1v,d2u,d2v,d2uv);
// gp_Vec norm(d1u.Crossed(d1v));
gp_Vec norm,dnu,dnv;
Contap_SurfProps::NormAndDn(mySurf,Usol,Vsol,solpt,norm,dnu,dnv);
switch (myType) {
case Contap_ContourStd:
{
F(1) = (norm.Dot(myDir))/myMean;
// Grad(1,1) = ((d2u.Crossed(d1v) + d1u.Crossed(d2uv)).Dot(myDir))/myMean;
// Grad(1,2) = ((d2uv.Crossed(d1v) + d1u.Crossed(d2v)).Dot(myDir))/myMean;
Grad(1,1) = (dnu.Dot(myDir))/myMean;
Grad(1,2) = (dnv.Dot(myDir))/myMean;
}
break;
case Contap_ContourPrs:
{
gp_Vec Ep(myEye,solpt);
F(1) = (norm.Dot(Ep))/myMean;
// Grad(1,1) = ((d2u.Crossed(d1v) + d1u.Crossed(d2uv)).Dot(Ep))/myMean;
// Grad(1,2) = ((d2uv.Crossed(d1v) + d1u.Crossed(d2v)).Dot(Ep))/myMean;
Grad(1,1) = (dnu.Dot(Ep))/myMean;
Grad(1,2) = (dnv.Dot(Ep))/myMean;
}
break;
case Contap_DraftStd:
{
F(1) = (norm.Dot(myDir)-myCosAng*norm.Magnitude())/myMean;
norm.Normalize();
/*
gp_Vec dnorm(d2u.Crossed(d1v) + d1u.Crossed(d2uv));
Grad(1,1) = (dnorm.Dot(myDir)-myCosAng*dnorm.Dot(norm))/myMean;
dnorm = d2uv.Crossed(d1v) + d1u.Crossed(d2v);
Grad(1,2) = (dnorm.Dot(myDir)-myCosAng*dnorm.Dot(norm))/myMean;
*/
Grad(1,1) = (dnu.Dot(myDir)-myCosAng*dnu.Dot(norm))/myMean;
Grad(1,2) = (dnv.Dot(myDir)-myCosAng*dnv.Dot(norm))/myMean;
}
break;
case Contap_DraftPrs:
default:
{
}
}
valf = F(1);
Fpu = Grad(1,1); Fpv = Grad(1,2);
computed = Standard_False;
derived = Standard_True;
return Standard_True;
}
Standard_Boolean Contap_SurfFunction::IsTangent ()
{
if (!computed) {
computed = Standard_True;
if(!derived) {
// gp_Vec d2u,d2v,d2uv;
// Adaptor3d_HSurfaceTool::D2(mySurf, Usol, Vsol, solpt, d1u, d1v, d2u, d2v, d2uv);
gp_Vec norm,dnu,dnv;
Contap_SurfProps::NormAndDn(mySurf,Usol,Vsol,solpt,norm,dnu,dnv);
switch (myType) {
case Contap_ContourStd:
{
// Fpu = ((d2u.Crossed(d1v) + d1u.Crossed(d2uv)).Dot(myDir))/myMean;
// Fpv = ((d2uv.Crossed(d1v) + d1u.Crossed(d2v)).Dot(myDir))/myMean;
Fpu = (dnu.Dot(myDir))/myMean;
Fpv = (dnv.Dot(myDir))/myMean;
}
break;
case Contap_ContourPrs:
{
gp_Vec Ep(myEye,solpt);
// Fpu = ((d2u.Crossed(d1v) + d1u.Crossed(d2uv)).Dot(Ep))/myMean;
// Fpv = ((d2uv.Crossed(d1v) + d1u.Crossed(d2v)).Dot(Ep))/myMean;
Fpu = (dnu.Dot(Ep))/myMean;
Fpv = (dnv.Dot(Ep))/myMean;
}
break;
case Contap_DraftStd:
{
/*
gp_Vec norm(d1u.Crossed(d1v).Normalized());
gp_Vec dnorm(d2u.Crossed(d1v) + d1u.Crossed(d2uv));
Fpu = (dnorm.Dot(myDir)-myCosAng*dnorm.Dot(norm))/myMean;
dnorm = d2uv.Crossed(d1v) + d1u.Crossed(d2v);
Fpv = (dnorm.Dot(myDir)-myCosAng*dnorm.Dot(norm))/myMean;
*/
norm.Normalize();
Fpu = (dnu.Dot(myDir)-myCosAng*dnu.Dot(norm))/myMean;
Fpv = (dnv.Dot(myDir)-myCosAng*dnv.Dot(norm))/myMean;
}
break;
case Contap_DraftPrs:
default:
{
}
}
derived = Standard_True;
}
tangent = Standard_False;
Standard_Real D = Sqrt (Fpu * Fpu + Fpv * Fpv);
if (D <= gp::Resolution()) {
tangent = Standard_True;
}
else {
d2d = gp_Dir2d(-Fpv,Fpu);
gp_Vec d1u,d1v;
Adaptor3d_HSurfaceTool::D1(mySurf, Usol, Vsol, solpt, d1u, d1v); // ajout jag 02.95
gp_XYZ d3dxyz(-Fpv*d1u.XYZ());
d3dxyz.Add(Fpu*d1v.XYZ());
d3d.SetXYZ(d3dxyz);
//jag 940616 if (d3d.Magnitude() <= Tolpetit) {
if (d3d.Magnitude() <= tol) {
tangent = Standard_True;
}
}
}
return tangent;
}