mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-05-26 11:05:31 +03:00
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast Wrong license statements corrected in several files. Copyright and license statements added in XSD and GLSL files. Copyright year updated in some files. Obsolete documentation files removed from DrawResources.
97 lines
3.0 KiB
C++
97 lines
3.0 KiB
C++
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
// JCV 08/01/90 Modifs suite a l'introduction des classes XY et Mat2d dans gp
|
|
|
|
#include <gp_Dir2d.ixx>
|
|
|
|
Standard_Real gp_Dir2d::Angle (const gp_Dir2d& Other) const
|
|
{
|
|
// Commentaires :
|
|
// Au dessus de 45 degres l'arccos donne la meilleur precision pour le
|
|
// calcul de l'angle. Sinon il vaut mieux utiliser l'arcsin.
|
|
// Les erreurs commises sont loin d'etre negligeables lorsque l'on est
|
|
// proche de zero ou de 90 degres.
|
|
// En 2D les valeurs angulaires sont comprises entre -PI et PI
|
|
Standard_Real Cosinus = coord.Dot (Other.coord);
|
|
Standard_Real Sinus = coord.Crossed (Other.coord);
|
|
if (Cosinus > -0.70710678118655 && Cosinus < 0.70710678118655) {
|
|
if (Sinus > 0.0) return acos (Cosinus);
|
|
else return - acos (Cosinus);
|
|
}
|
|
else {
|
|
if (Cosinus > 0.0) return asin (Sinus);
|
|
else {
|
|
if (Sinus > 0.0) return M_PI - asin (Sinus);
|
|
else return -M_PI - asin (Sinus);
|
|
}
|
|
}
|
|
}
|
|
|
|
void gp_Dir2d::Mirror (const gp_Ax2d& A2)
|
|
{
|
|
const gp_XY& XY = A2.Direction().XY();
|
|
Standard_Real A = XY.X();
|
|
Standard_Real B = XY.Y();
|
|
Standard_Real X = coord.X();
|
|
Standard_Real Y = coord.Y();
|
|
Standard_Real M1 = 2.0 * A * B;
|
|
Standard_Real XX = ((2.0 * A * A) - 1.0) * X + M1 * Y;
|
|
Standard_Real YY = M1 * X + ((2.0 * B * B) - 1.0) * Y;
|
|
coord.SetCoord(XX,YY);
|
|
}
|
|
|
|
void gp_Dir2d::Transform (const gp_Trsf2d& T)
|
|
{
|
|
if (T.Form() == gp_Identity || T.Form() == gp_Translation) { }
|
|
else if (T.Form() == gp_PntMirror) { coord.Reverse(); }
|
|
else if (T.Form() == gp_Scale) {
|
|
if (T.ScaleFactor() < 0.0) { coord.Reverse(); }
|
|
}
|
|
else {
|
|
coord.Multiply (T.HVectorialPart());
|
|
Standard_Real D = coord.Modulus();
|
|
coord.Divide(D);
|
|
if (T.ScaleFactor() < 0.0) { coord.Reverse(); }
|
|
}
|
|
}
|
|
|
|
void gp_Dir2d::Mirror (const gp_Dir2d& V)
|
|
{
|
|
const gp_XY& XY = V.coord;
|
|
Standard_Real A = XY.X();
|
|
Standard_Real B = XY.Y();
|
|
Standard_Real X = coord.X();
|
|
Standard_Real Y = coord.Y();
|
|
Standard_Real M1 = 2.0 * A * B;
|
|
Standard_Real XX = ((2.0 * A * A) - 1.0) * X + M1 * Y;
|
|
Standard_Real YY = M1 * X + ((2.0 * B * B) - 1.0) * Y;
|
|
coord.SetCoord(XX,YY);
|
|
}
|
|
|
|
gp_Dir2d gp_Dir2d::Mirrored (const gp_Dir2d& V) const
|
|
{
|
|
gp_Dir2d Vres = *this;
|
|
Vres.Mirror (V);
|
|
return Vres;
|
|
}
|
|
|
|
gp_Dir2d gp_Dir2d::Mirrored (const gp_Ax2d& A) const
|
|
{
|
|
gp_Dir2d V = *this;
|
|
V.Mirror (A);
|
|
return V;
|
|
}
|
|
|