1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-08-04 13:13:25 +03:00
Files
occt/src/AppParCurves/AppParCurves_Gradient.gxx
abv d5f74e42d6 0024624: Lost word in license statement in source files
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast
Wrong license statements corrected in several files.
Copyright and license statements added in XSD and GLSL files.
Copyright year updated in some files.
Obsolete documentation files removed from DrawResources.
2014-02-20 16:15:17 +04:00

240 lines
7.0 KiB
Plaintext

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// lpa, le 11/09/91
// Application de la methode du gradient corrige pour minimiser
// F = somme(||C(ui, Poles(ui)) - ptli||2.
// La methode de gradient conjugue est programmee dans la bibliotheque
// mathematique: math_BFGS.
// cet algorithme doit etre appele uniquement lorsque on a affaire a un set
// de points contraints (ailleurs qu aux extremites). En effet, l appel de la
// fonction F a minimiser implique un appel a ParLeastSquare et ResConstraint.
// Si ce n est pas le cas, l appel a ResConstraint est equivalent a une
// seconde resolution par les moindres carres donc beaucoup de temps perdu.
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#include <AppParCurves_Constraint.hxx>
#include <math_BFGS.hxx>
#include <StdFail_NotDone.hxx>
#include <AppParCurves_MultiPoint.hxx>
#include <gp_Pnt.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec.hxx>
#include <gp_Vec2d.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <TColgp_Array1OfVec.hxx>
#include <TColgp_Array1OfVec2d.hxx>
#include <BSplCLib.hxx>
#include <PLib.hxx>
// #define AppParCurves_Gradient_BFGS BFGS_/**/AppParCurves_Gradient
AppParCurves_Gradient::
AppParCurves_Gradient(const MultiLine& SSP,
const Standard_Integer FirstPoint,
const Standard_Integer LastPoint,
const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
math_Vector& Parameters,
const Standard_Integer Deg,
const Standard_Real Tol3d,
const Standard_Real Tol2d,
const Standard_Integer NbIterations):
ParError(FirstPoint, LastPoint,0.0) {
// Standard_Boolean grad = Standard_True;
Standard_Integer j, k, i2, l;
Standard_Real UF, DU, Fval = 0.0, FU, DFU;
Standard_Integer nbP3d = ToolLine::NbP3d(SSP);
Standard_Integer nbP2d = ToolLine::NbP2d(SSP);
Standard_Integer mynbP3d=nbP3d, mynbP2d=nbP2d;
Standard_Integer nbP = nbP3d + nbP2d;
// gp_Pnt Pt, P1, P2;
gp_Pnt Pt;
// gp_Pnt2d Pt2d, P12d, P22d;
gp_Pnt2d Pt2d;
// gp_Vec V1, V2, MyV;
gp_Vec V1, MyV;
// gp_Vec2d V12d, V22d, MyV2d;
gp_Vec2d V12d, MyV2d;
Done = Standard_False;
if (nbP3d == 0) mynbP3d = 1;
if (nbP2d == 0) mynbP2d = 1;
TColgp_Array1OfPnt TabP(1, mynbP3d);
TColgp_Array1OfPnt2d TabP2d(1, mynbP2d);
TColgp_Array1OfVec TabV(1, mynbP3d);
TColgp_Array1OfVec2d TabV2d(1, mynbP2d);
// Calcul de la fonction F= somme(||C(ui)-Ptli||2):
// Appel a une fonction heritant de MultipleVarFunctionWithGradient
// pour calculer F et grad_F.
// ================================================================
AppParCurves_ParFunction MyF(SSP, FirstPoint,LastPoint, TheConstraints, Parameters, Deg);
if (!MyF.Value(Parameters, Fval)) {
Done = Standard_False;
return;
}
SCU = MyF.CurveValue();
Standard_Integer deg = SCU.NbPoles()-1;
TColgp_Array1OfPnt TabPole(1, deg+1), TabCoef(1, deg+1);
TColgp_Array1OfPnt2d TabPole2d(1, deg+1), TabCoef2d(1, deg+1);
TColgp_Array1OfPnt TheCoef(1, (deg+1)*mynbP3d);
TColgp_Array1OfPnt2d TheCoef2d(1, (deg+1)*mynbP2d);
// Stockage des Poles des courbes pour projeter:
// ============================================
i2 = 0;
for (k = 1; k <= nbP3d; k++) {
SCU.Curve(k, TabPole);
BSplCLib::PolesCoefficients(TabPole, PLib::NoWeights(),
TabCoef, PLib::NoWeights());
for (j=1; j<=deg+1; j++) TheCoef(j+i2) = TabCoef(j);
i2 += deg+1;
}
i2 = 0;
for (k = 1; k <= nbP2d; k++) {
SCU.Curve(nbP3d+k, TabPole2d);
BSplCLib::PolesCoefficients(TabPole2d, PLib::NoWeights(),
TabCoef2d, PLib::NoWeights());
for (j=1; j<=deg+1; j++) TheCoef2d(j+i2) = TabCoef2d(j);
i2 += deg+1;
}
// Une iteration rapide de projection est faite par la methode de
// Rogers & Fog 89, methode equivalente a Hoschek 88 qui ne necessite pas
// le calcul de D2.
// Iteration de Projection:
// =======================
for (j = FirstPoint+1; j <= LastPoint-1; j++) {
UF = Parameters(j);
if (nbP != 0 && nbP2d != 0) ToolLine::Value(SSP, j, TabP, TabP2d);
else if (nbP2d != 0) ToolLine::Value(SSP, j, TabP2d);
else ToolLine::Value(SSP, j, TabP);
FU = 0.0;
DFU = 0.0;
i2 = 0;
for (k = 1; k <= nbP3d; k++) {
for (l=1; l<=deg+1; l++) TabCoef(l) = TheCoef(l+i2);
i2 += deg+1;
BSplCLib::CoefsD1(UF, TabCoef, PLib::NoWeights(), Pt, V1);
MyV = gp_Vec(Pt, TabP(k));
FU += MyV*V1;
DFU += V1.SquareMagnitude();
}
i2 = 0;
for (k = 1; k <= nbP2d; k++) {
for (l=1; l<=deg+1; l++) TabCoef2d(l) = TheCoef2d(l+i2);
i2 += deg+1;
BSplCLib::CoefsD1(UF, TabCoef2d, PLib::NoWeights(), Pt2d, V12d);
MyV2d = gp_Vec2d(Pt2d, TabP2d(k));
FU += MyV2d*V12d;
DFU += V12d.SquareMagnitude();
}
if (DFU >= RealEpsilon()) {
DU = FU/DFU;
DU = Sign(Min(5.e-02, Abs(DU)), DU);
UF += DU;
Parameters(j) = UF;
}
}
if (!MyF.Value(Parameters, Fval)) {
SCU = AppParCurves_MultiCurve();
Done = Standard_False;
return;
}
MError3d = MyF.MaxError3d();
MError2d = MyF.MaxError2d();
if (MError3d<= Tol3d && MError2d <= Tol2d) {
Done = Standard_True;
SCU = MyF.CurveValue();
}
else if (NbIterations != 0) {
// NbIterations de gradient conjugue:
// =================================
Standard_Real Eps = 1.e-07;
AppParCurves_Gradient_BFGS FResol(MyF, Parameters, Tol3d, Tol2d, Eps, NbIterations);
Parameters = MyF.NewParameters();
SCU = MyF.CurveValue();
}
AvError = 0.;
for (j = FirstPoint; j <= LastPoint; j++) {
// Recherche des erreurs maxi et moyenne a un index donne:
for (k = 1; k <= nbP; k++) {
ParError(j) = Max(ParError(j), MyF.Error(j, k));
}
AvError += ParError(j);
}
AvError = AvError/(LastPoint-FirstPoint+1);
MError3d = MyF.MaxError3d();
MError2d = MyF.MaxError2d();
if (MError3d <= Tol3d && MError2d <= Tol2d) {
Done = Standard_True;
}
}
AppParCurves_MultiCurve AppParCurves_Gradient::Value() const {
return SCU;
}
Standard_Boolean AppParCurves_Gradient::IsDone() const {
return Done;
}
Standard_Real AppParCurves_Gradient::Error(const Standard_Integer Index) const {
return ParError(Index);
}
Standard_Real AppParCurves_Gradient::AverageError() const {
return AvError;
}
Standard_Real AppParCurves_Gradient::MaxError3d() const {
return MError3d;
}
Standard_Real AppParCurves_Gradient::MaxError2d() const {
return MError2d;
}