1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-05 18:16:23 +03:00
occt/src/math/math_GaussMultipleIntegration.cxx
bugmaster b311480ed5 0023024: Update headers of OCCT files
Added appropriate copyright and license information in source files
2012-03-21 19:43:04 +04:00

219 lines
6.5 KiB
C++
Executable File

// Copyright (c) 1997-1999 Matra Datavision
// Copyright (c) 1999-2012 OPEN CASCADE SAS
//
// The content of this file is subject to the Open CASCADE Technology Public
// License Version 6.5 (the "License"). You may not use the content of this file
// except in compliance with the License. Please obtain a copy of the License
// at http://www.opencascade.org and read it completely before using this file.
//
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
//
// The Original Code and all software distributed under the License is
// distributed on an "AS IS" basis, without warranty of any kind, and the
// Initial Developer hereby disclaims all such warranties, including without
// limitation, any warranties of merchantability, fitness for a particular
// purpose or non-infringement. Please see the License for the specific terms
// and conditions governing the rights and limitations under the License.
/*
Ce programme permet le calcul de l'integrale nieme d'une fonction. La
resolution peut etre vue comme l'integrale de l'integrale de ....(n fois), ce
qui necessite l'emploi de fonction recursive.
Une integrale simple de Gauss est la somme de la fonction donnee sur les points
de Gauss affectee du poids de Gauss correspondant.
I = somme(F(GaussPt) * GaussW) sur i = 1 jusqu'a l'ordre d'integration.
Une integrale multiple est une somme recursive sur toutes les variables.
Tout le calcul est effectue dans la methode recursive_iteration appelee n fois.
(n = nombre de variables)
Cette methode fait une sommation sur toutes les variables, sur tous les ordres
d'integration correspondants de la valeur de la fonction aux points et poids
de Gauss.
*/
//#ifndef DEB
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#define No_Standard_DimensionError
//#endif
#include <math_GaussMultipleIntegration.ixx>
#include <math.hxx>
#include <math_Matrix.hxx>
#include <math_Vector.hxx>
#include <math_IntegerVector.hxx>
#include <math_MultipleVarFunction.hxx>
class IntegrationFunction {
// Cette classe sert a conserver dans les champs les valeurs de tests de
// la fonction recursive.(En particulier le pointeur sur la fonction F,
// heritant d'une classe abstraite, non traite en cdl.)
math_MultipleVarFunction *Fsav;
math_IntegerVector Ordsav;
Standard_Integer NVarsav;
math_Vector xr;
math_Vector xm;
math_Matrix GaussPoint;
math_Matrix GaussWeight;
Standard_Real Val;
Standard_Boolean Done;
public:
IntegrationFunction(math_MultipleVarFunction& F,
const Standard_Integer maxsav, const Standard_Integer NVar,
const math_IntegerVector& Ord,
const math_Vector& Lowsav,
const math_Vector& Uppsav);
Standard_Real Value() ;
Standard_Boolean IsDone() const;
Standard_Boolean recursive_iteration(Standard_Integer& n, math_IntegerVector& inc);
};
IntegrationFunction::IntegrationFunction(math_MultipleVarFunction& F,
const Standard_Integer maxsav, const Standard_Integer NVar,
const math_IntegerVector& Ord,
const math_Vector& Lowsav,const math_Vector& Uppsav):
Ordsav(1, NVar),
xr(1, NVar),
xm(1, NVar),
GaussPoint(1, NVar, 1, maxsav),
GaussWeight(1, NVar, 1, maxsav)
{
Standard_Integer i, k;
math_IntegerVector inc(1, NVar);
inc.Init(0);
Fsav = &F;
NVarsav = NVar;
Ordsav = Ord;
Done = Standard_False;
//Recuperation des points et poids de Gauss dans le fichier GaussPoints
for (i =1; i<= NVarsav; i++) {
xm(i) = 0.5*(Lowsav(i) + Uppsav(i));
xr(i) = 0.5*(Uppsav(i) - Lowsav(i));
math_Vector GP(1,Ordsav(i)), GW(1,Ordsav(i));
math::GaussPoints(Ordsav(i),GP);
math::GaussWeights(Ordsav(i),GW);
for (k = 1; k <= Ordsav(i); k++) {
GaussPoint(i,k) = GP(k); //kieme point et poids de
GaussWeight(i,k) = GW(k);//Gauss de la variable i.
}
}
Val = 0.0;
Standard_Integer Iterdeb = 1;
Standard_Boolean recur = recursive_iteration(Iterdeb, inc);
if (recur) {
//On ramene l'integration a la bonne echelle.
for ( i = 1; i <= NVarsav; i++) {
Val *= xr(i);
}
Done = Standard_True;
}
}
Standard_Real IntegrationFunction::Value() {
return Val;
}
Standard_Boolean IntegrationFunction::IsDone() const{
return Done;
}
Standard_Boolean IntegrationFunction::recursive_iteration(Standard_Integer& n,
math_IntegerVector& inc) {
// Termination criterium :
// Calcul de la valeur de la fonction aux points de Gauss fixes:
int local;
if (n == (NVarsav+1)) {
math_Vector dx(1, NVarsav);
Standard_Integer j ;
for ( j = 1; j <= NVarsav; j++) {
dx(j) = xr(j)* GaussPoint(j, inc(j));
}
Standard_Real F1;
Standard_Boolean Ok = Fsav->Value(xm + dx, F1);
if (!Ok) {return Standard_False;};
Standard_Real Interm = 1;
for ( j = 1; j <= NVarsav; j++) {
Interm *= GaussWeight(j, inc(j));
}
Val += Interm*F1;
return Standard_True;
}
// Calcul recursif, pour chaque variable n de la valeur de la fonction aux
// Ordsav(n) points de Gauss.
Standard_Boolean OK=Standard_False;
for (inc(n) = 1; inc(n) <= Ordsav(n); inc(n)++) {
local = n + 1;
OK = recursive_iteration(local, inc);
}
return OK;
}
math_GaussMultipleIntegration::
math_GaussMultipleIntegration(math_MultipleVarFunction& F,
const math_Vector& Lower,
const math_Vector& Upper,
const math_IntegerVector& Order)
{
Standard_Integer MaxOrder = math::GaussPointsMax();
Standard_Integer i, max =0;
Standard_Integer NVar = F.NbVariables();
math_IntegerVector Ord(1, NVar);
math_Vector Lowsav(1, NVar);
math_Vector Uppsav(1, NVar);
Lowsav = Lower;
Uppsav = Upper;
// Ord = Order;
Done = Standard_False;
for (i = 1; i <= NVar; i++) {
if (Order(i) > MaxOrder) {
Ord(i) = MaxOrder;
}
else {
Ord(i) = Order(i);
}
if(Ord(i) >= max) {max = Ord(i);}
}
//Calcul de l'integrale aux points de Gauss.
// Il s agit d une somme multiple sur le domaine [Lower, Upper].
IntegrationFunction Func(F, max, NVar, Ord, Lowsav, Uppsav);
if (Func.IsDone()) {
Val = Func.Value();
Done = Standard_True;
}
}
void math_GaussMultipleIntegration::Dump(Standard_OStream& o) const {
o <<"math_GaussMultipleIntegration ";
if (Done) {
o << " Status = Done \n";
o << " Integration value = " << Val <<"\n";
}
else {
o << "Status = not Done \n";
}
}