mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
200 lines
5.5 KiB
C++
Executable File
200 lines
5.5 KiB
C++
Executable File
// Created on: 2005-12-21
|
|
// Created by: Julia GERASIMOVA
|
|
// Copyright (c) 2005-2012 OPEN CASCADE SAS
|
|
//
|
|
// The content of this file is subject to the Open CASCADE Technology Public
|
|
// License Version 6.5 (the "License"). You may not use the content of this file
|
|
// except in compliance with the License. Please obtain a copy of the License
|
|
// at http://www.opencascade.org and read it completely before using this file.
|
|
//
|
|
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
|
|
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
|
|
//
|
|
// The Original Code and all software distributed under the License is
|
|
// distributed on an "AS IS" basis, without warranty of any kind, and the
|
|
// Initial Developer hereby disclaims all such warranties, including without
|
|
// limitation, any warranties of merchantability, fitness for a particular
|
|
// purpose or non-infringement. Please see the License for the specific terms
|
|
// and conditions governing the rights and limitations under the License.
|
|
|
|
|
|
|
|
#include <math_ComputeKronrodPointsAndWeights.ixx>
|
|
#include <math_EigenValuesSearcher.hxx>
|
|
#include <math_Array1OfValueAndWeight.hxx>
|
|
#include <math_CompareOfValueAndWeight.hxx>
|
|
#include <math_QuickSortOfValueAndWeight.hxx>
|
|
#include <Standard_ErrorHandler.hxx>
|
|
|
|
math_ComputeKronrodPointsAndWeights::math_ComputeKronrodPointsAndWeights(const Standard_Integer Number)
|
|
{
|
|
myIsDone = Standard_False;
|
|
|
|
try {
|
|
Standard_Integer i, j;
|
|
Standard_Integer a2NP1 = 2*Number + 1;
|
|
|
|
myPoints = new TColStd_HArray1OfReal(1, a2NP1);
|
|
myWeights = new TColStd_HArray1OfReal(1, a2NP1);
|
|
|
|
TColStd_Array1OfReal aDiag(1, a2NP1);
|
|
TColStd_Array1OfReal aSubDiag(1, a2NP1);
|
|
|
|
// Initialize symmetric tridiagonal matrix.
|
|
Standard_Integer n = Number;
|
|
Standard_Integer aKronrodN = 2*Number + 1;
|
|
Standard_Integer a3KN2p1 = Min(3*(Number + 1)/2 + 1, aKronrodN);
|
|
for (i = 1; i <= a3KN2p1; i++) {
|
|
aDiag(i) = 0.;
|
|
|
|
if (i == 1)
|
|
aSubDiag(i) = 0.;
|
|
else {
|
|
Standard_Integer sqrIm1 = (i-1)*(i-1);
|
|
aSubDiag(i) = sqrIm1/(4.*sqrIm1 - 1);
|
|
}
|
|
}
|
|
|
|
for (i = a3KN2p1 + 1; i <= aKronrodN; i++) {
|
|
aDiag(i) = 0.;
|
|
aSubDiag(i) = 0.;
|
|
}
|
|
|
|
// Initialization of temporary data structures.
|
|
Standard_Integer aNd2 = Number/2;
|
|
Standard_Real *s = new Standard_Real[aNd2 + 2];
|
|
Standard_Real *t = new Standard_Real[aNd2 + 2];
|
|
Standard_Real *ss = s++;
|
|
Standard_Real *tt = t++;
|
|
|
|
for (i = -1; i <= aNd2; i++) {
|
|
s[i] = 0.;
|
|
t[i] = 0.;
|
|
}
|
|
|
|
// Generation of Jacobi-Kronrod matrix.
|
|
Standard_Real *aa = new Standard_Real [a2NP1+1];
|
|
Standard_Real *bb = new Standard_Real [a2NP1+1];
|
|
for (i = 1; i <= a2NP1; i++) {
|
|
aa[i] = aDiag(i);
|
|
bb[i] = aSubDiag(i);
|
|
}
|
|
Standard_Real *ptrtmp;
|
|
Standard_Real u;
|
|
Standard_Integer m;
|
|
Standard_Integer k;
|
|
Standard_Integer l;
|
|
|
|
Standard_Real *a = aa+1;
|
|
Standard_Real *b = bb+1;
|
|
|
|
// Eastward phase.
|
|
t[0] = b[Number + 1];
|
|
|
|
for (m = 0; m <= n - 2; m++) {
|
|
u = 0;
|
|
|
|
for (k = (m + 1)/2; k >= 0; k--) {
|
|
l = m - k;
|
|
u += (a[k + n + 1] - a[l])*t[k] + b[k + n + 1]*s[k - 1] - b[l]*s[k];
|
|
s[k] = u;
|
|
}
|
|
|
|
ptrtmp = t;
|
|
t = s;
|
|
s = ptrtmp;
|
|
}
|
|
|
|
for (j = aNd2; j >= 0; j--)
|
|
s[j] = s[j - 1];
|
|
|
|
// Southward phase.
|
|
for (m = n - 1; m <= 2*n - 3; m++) {
|
|
u = 0;
|
|
|
|
for (k = m + 1 - n; k <= (m - 1)/2; k++) {
|
|
l = m - k;
|
|
j = n - 1 - l;
|
|
u += -(a[k + n + 1] - a[l])*t[j] - b[k + n + 1]*s[j] + b[l]*s[j + 1];
|
|
s[j] = u;
|
|
}
|
|
|
|
if (m % 2 == 0) {
|
|
k = m/2;
|
|
a[k + n + 1] = a[k] + (s[j] - b[k + n + 1]*s[j + 1])/ t[j + 1];
|
|
} else {
|
|
k = (m + 1)/2;
|
|
b[k + n + 1] = s[j]/s[j + 1];
|
|
}
|
|
|
|
ptrtmp = t;
|
|
t = s;
|
|
s = ptrtmp;
|
|
}
|
|
|
|
// Termination phase.
|
|
a[2*Number] = a[n - 1] - b[2*Number]*s[0]/t[0];
|
|
|
|
delete [] ss;
|
|
delete [] tt;
|
|
for (i = 1; i <= a2NP1; i++) {
|
|
aDiag(i) = aa[i];
|
|
aSubDiag(i) = bb[i];
|
|
}
|
|
delete [] aa;
|
|
delete [] bb;
|
|
|
|
for (i = 1; i <= a2NP1; i++)
|
|
aSubDiag(i) = Sqrt(aSubDiag(i));
|
|
|
|
// Compute eigen values.
|
|
math_EigenValuesSearcher EVsearch(aDiag, aSubDiag);
|
|
|
|
if (EVsearch.IsDone()) {
|
|
math_Array1OfValueAndWeight VWarray(1, a2NP1);
|
|
for (i = 1; i <= a2NP1; i++) {
|
|
math_Vector anEigenVector = EVsearch.EigenVector(i);
|
|
Standard_Real aWeight = anEigenVector(1);
|
|
aWeight = 2. * aWeight * aWeight;
|
|
math_ValueAndWeight EVW( EVsearch.EigenValue(i), aWeight );
|
|
VWarray(i) = EVW;
|
|
}
|
|
|
|
math_CompareOfValueAndWeight theComparator;
|
|
math_QuickSortOfValueAndWeight::Sort(VWarray, theComparator);
|
|
|
|
for (i = 1; i <= a2NP1; i++) {
|
|
myPoints->ChangeValue(i) = VWarray(i).Value();
|
|
myWeights->ChangeValue(i) = VWarray(i).Weight();
|
|
}
|
|
myIsDone = Standard_True;
|
|
}
|
|
} catch (Standard_Failure) {
|
|
}
|
|
}
|
|
|
|
Standard_Boolean math_ComputeKronrodPointsAndWeights::IsDone() const
|
|
{
|
|
return myIsDone;
|
|
}
|
|
|
|
math_Vector math_ComputeKronrodPointsAndWeights::Points() const
|
|
{
|
|
Standard_Integer Number = myPoints->Length();
|
|
math_Vector thePoints(1, Number);
|
|
for (Standard_Integer i = 1; i <= Number; i++)
|
|
thePoints(i) = myPoints->Value(i);
|
|
|
|
return thePoints;
|
|
}
|
|
|
|
math_Vector math_ComputeKronrodPointsAndWeights::Weights() const
|
|
{
|
|
Standard_Integer Number = myWeights->Length();
|
|
math_Vector theWeights(1, Number);
|
|
for (Standard_Integer i = 1; i <= Number; i++)
|
|
theWeights(i) = myWeights->Value(i);
|
|
|
|
return theWeights;
|
|
}
|