mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-26 10:19:45 +03:00
219 lines
9.5 KiB
Plaintext
Executable File
219 lines
9.5 KiB
Plaintext
Executable File
// Created on: 1992-01-20
|
|
// Created by: Remi GILET
|
|
// Copyright (c) 1992-1999 Matra Datavision
|
|
// Copyright (c) 1999-2012 OPEN CASCADE SAS
|
|
//
|
|
// The content of this file is subject to the Open CASCADE Technology Public
|
|
// License Version 6.5 (the "License"). You may not use the content of this file
|
|
// except in compliance with the License. Please obtain a copy of the License
|
|
// at http://www.opencascade.org and read it completely before using this file.
|
|
//
|
|
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
|
|
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
|
|
//
|
|
// The Original Code and all software distributed under the License is
|
|
// distributed on an "AS IS" basis, without warranty of any kind, and the
|
|
// Initial Developer hereby disclaims all such warranties, including without
|
|
// limitation, any warranties of merchantability, fitness for a particular
|
|
// purpose or non-infringement. Please see the License for the specific terms
|
|
// and conditions governing the rights and limitations under the License.
|
|
|
|
|
|
#include <gp_Vec2d.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <ElCLib.hxx>
|
|
|
|
void GccIter_FunctionTanCuCu::
|
|
InitDerivative(const math_Vector& X ,
|
|
gp_Pnt2d& Point1,
|
|
gp_Pnt2d& Point2,
|
|
gp_Vec2d& Tan1 ,
|
|
gp_Vec2d& Tan2 ,
|
|
gp_Vec2d& D21 ,
|
|
gp_Vec2d& D22 ) {
|
|
switch (TheType) {
|
|
case GccIter_CuCu:
|
|
{
|
|
TheCurveTool::D2(TheCurve1,X(1),Point1,Tan1,D21);
|
|
TheCurveTool::D2(TheCurve2,X(2),Point2,Tan2,D22);
|
|
}
|
|
break;
|
|
case GccIter_CiCu:
|
|
{
|
|
ElCLib::D2(X(1),TheCirc1,Point1,Tan1,D21);
|
|
TheCurveTool::D2(TheCurve2,X(2),Point2,Tan2,D22);
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
}
|
|
}
|
|
}
|
|
|
|
GccIter_FunctionTanCuCu::
|
|
GccIter_FunctionTanCuCu(const TheCurve& C1 ,
|
|
const TheCurve& C2 ) {
|
|
TheCurve1 = C1;
|
|
TheCurve2 = C2;
|
|
TheType = GccIter_CuCu;
|
|
}
|
|
|
|
GccIter_FunctionTanCuCu::
|
|
GccIter_FunctionTanCuCu(const gp_Circ2d& C1 ,
|
|
const TheCurve& C2 ) {
|
|
TheCirc1 = C1;
|
|
TheCurve2 = C2;
|
|
TheType = GccIter_CiCu;
|
|
}
|
|
|
|
|
|
//=========================================================================
|
|
// soit P1 le point sur la courbe TheCurve1 d abscisse u1. +
|
|
// soit P2 le point sur la courbe TheCurve2 d abscisse u2. +
|
|
// soit T1 la tangente a la courbe TheCurve1 en P1. +
|
|
// soit T2 la tangente a la courbe TheCurve2 en P2. +
|
|
// Nous voulons P1 et P2 tels que : +
|
|
// ---> --> +
|
|
// * P1P2 /\ T1 = 0 +
|
|
// +
|
|
// --> --> +
|
|
// * T1 /\ T2 = 0 +
|
|
// +
|
|
// Nous cherchons donc les zeros des fonctions suivantes: +
|
|
// ---> --> +
|
|
// * P1P2 /\ T1 +
|
|
// --------------- = F1(u) +
|
|
// ---> --> +
|
|
// ||P1P2||*||T1|| +
|
|
// +
|
|
// --> --> +
|
|
// * T1 /\ T2 +
|
|
// --------------- = F2(u) +
|
|
// --> --> +
|
|
// ||T2||*||T1|| +
|
|
// +
|
|
// Les derivees de ces fonctions sont : +
|
|
// 2 2 +
|
|
// dF1 P1P2/\N1 (P1P2/\T1)*[T1*(-T1).P1P2+P1P2*(T1.N1)] +
|
|
// ----- = --------------- - ----------------------------------------- +
|
|
// du1 3 3 +
|
|
// ||P1P2||*||T1|| ||P1P2|| * ||T1|| +
|
|
// +
|
|
// 2 +
|
|
// dF1 T2/\T1 (P1P2/\T1)*[T1*(T2.P1P2) +
|
|
// ----- = --------------- - ----------------------------------------- +
|
|
// du2 3 3 +
|
|
// ||P1P2||*||T1|| ||P1P2|| * ||T1|| +
|
|
// +
|
|
// 2 +
|
|
// dF2 N1/\T2 T1/\T2*(N1.T1)T2 +
|
|
// ----- = ---------------- - ----------------------------- +
|
|
// du1 3 3 +
|
|
// ||T1||*||T2|| ||T1|| * ||T2|| +
|
|
// +
|
|
// 2 +
|
|
// dF2 T1/\N2 T1/\T2*(N2.T2)T1 +
|
|
// ----- = ---------------- - ----------------------------- +
|
|
// du2 3 3 +
|
|
// ||T1||*||T2|| ||T1|| * ||T2|| +
|
|
// +
|
|
//=========================================================================
|
|
|
|
Standard_Integer GccIter_FunctionTanCuCu::
|
|
NbVariables() const { return 2; }
|
|
|
|
Standard_Integer GccIter_FunctionTanCuCu::
|
|
NbEquations() const { return 2; }
|
|
|
|
Standard_Boolean GccIter_FunctionTanCuCu::
|
|
Value (const math_Vector& X ,
|
|
math_Vector& Fval ) {
|
|
gp_Pnt2d Point1;
|
|
gp_Pnt2d Point2;
|
|
gp_Vec2d Vect11;
|
|
gp_Vec2d Vect21;
|
|
gp_Vec2d Vect12;
|
|
gp_Vec2d Vect22;
|
|
InitDerivative(X,Point1,Point2,Vect11,Vect21,Vect12,Vect22);
|
|
Standard_Real NormeD11 = Vect11.Magnitude();
|
|
Standard_Real NormeD21 = Vect21.Magnitude();
|
|
gp_Vec2d TheDirection(Point1,Point2);
|
|
Standard_Real squaredir = TheDirection.Dot(TheDirection);
|
|
Fval(1) = TheDirection.Crossed(Vect11)/(NormeD11*squaredir);
|
|
Fval(2) = Vect11.Crossed(Vect21)/(NormeD11*NormeD21);
|
|
return Standard_True;
|
|
}
|
|
|
|
Standard_Boolean GccIter_FunctionTanCuCu::
|
|
Derivatives (const math_Vector& X ,
|
|
math_Matrix& Deriv ) {
|
|
gp_Pnt2d Point1;
|
|
gp_Pnt2d Point2;
|
|
gp_Vec2d Vect11;
|
|
gp_Vec2d Vect21;
|
|
gp_Vec2d Vect12;
|
|
gp_Vec2d Vect22;
|
|
InitDerivative(X,Point1,Point2,Vect11,Vect21,Vect12,Vect22);
|
|
Standard_Real NormeD11 = Vect11.Magnitude();
|
|
Standard_Real NormeD21 = Vect21.Magnitude();
|
|
#ifdef DEB
|
|
gp_Vec2d V2V1(Vect11.XY(),Vect21.XY());
|
|
#else
|
|
Vect11.XY();
|
|
Vect21.XY();
|
|
#endif
|
|
gp_Vec2d TheDirection(Point1,Point2);
|
|
Standard_Real squaredir = TheDirection.Dot(TheDirection);
|
|
Deriv(1,1) = TheDirection.Crossed(Vect12)/(NormeD11*squaredir)+
|
|
(TheDirection.Crossed(Vect11)*NormeD11*NormeD11*Vect11.Dot(TheDirection))/
|
|
(NormeD11*NormeD11*NormeD11*squaredir*squaredir*squaredir);
|
|
Deriv(1,2) = Vect21.Crossed(Vect11)/(NormeD11*squaredir)-
|
|
(TheDirection.Crossed(Vect11)*NormeD11*NormeD11*Vect21.Dot(TheDirection))/
|
|
(NormeD11*NormeD11*NormeD11*squaredir*squaredir*squaredir);
|
|
Deriv(2,1)=(Vect12.Crossed(Vect21))/(NormeD11*NormeD21)-
|
|
(Vect11.Crossed(Vect21))*(Vect12.Dot(Vect11))*NormeD21*NormeD21/
|
|
(NormeD11*NormeD11*NormeD11*NormeD21*NormeD21*NormeD21);
|
|
Deriv(2,2)=(Vect11.Crossed(Vect22))/(NormeD11*NormeD21)-
|
|
(Vect11.Crossed(Vect21))*(Vect22.Dot(Vect21))*NormeD11*NormeD11/
|
|
(NormeD11*NormeD11*NormeD11*NormeD21*NormeD21*NormeD21);
|
|
return Standard_True;
|
|
}
|
|
|
|
Standard_Boolean GccIter_FunctionTanCuCu::
|
|
Values (const math_Vector& X ,
|
|
math_Vector& Fval ,
|
|
math_Matrix& Deriv ) {
|
|
gp_Pnt2d Point1;
|
|
gp_Pnt2d Point2;
|
|
gp_Vec2d Vect11;
|
|
gp_Vec2d Vect21;
|
|
gp_Vec2d Vect12;
|
|
gp_Vec2d Vect22;
|
|
InitDerivative(X,Point1,Point2,Vect11,Vect21,Vect12,Vect22);
|
|
Standard_Real NormeD11 = Vect11.Magnitude();
|
|
Standard_Real NormeD21 = Vect21.Magnitude();
|
|
#ifdef DEB
|
|
gp_Vec2d V2V1(Vect11.XY(),Vect21.XY());
|
|
#else
|
|
Vect11.XY();
|
|
Vect21.XY();
|
|
#endif
|
|
gp_Vec2d TheDirection(Point1,Point2);
|
|
Standard_Real squaredir = TheDirection.Dot(TheDirection);
|
|
Fval(1) = TheDirection.Crossed(Vect11)/(NormeD11*squaredir);
|
|
Fval(2) = Vect11.Crossed(Vect21)/(NormeD11*NormeD21);
|
|
Deriv(1,1) = TheDirection.Crossed(Vect12)/(NormeD11*squaredir)+
|
|
(TheDirection.Crossed(Vect11)*NormeD11*NormeD11*Vect11.Dot(TheDirection))/
|
|
(NormeD11*NormeD11*NormeD11*squaredir*squaredir*squaredir);
|
|
Deriv(1,2) = Vect21.Crossed(Vect11)/(NormeD11*squaredir)-
|
|
(TheDirection.Crossed(Vect11)*NormeD11*NormeD11*Vect21.Dot(TheDirection))/
|
|
(NormeD11*NormeD11*NormeD11*squaredir*squaredir*squaredir);
|
|
Deriv(2,1)=(Vect12.Crossed(Vect21))/(NormeD11*NormeD21)-
|
|
(Vect11.Crossed(Vect21))*(Vect12.Dot(Vect11))*NormeD21*NormeD21/
|
|
(NormeD11*NormeD11*NormeD11*NormeD21*NormeD21*NormeD21);
|
|
Deriv(2,2)=(Vect11.Crossed(Vect22))/(NormeD11*NormeD21)-
|
|
(Vect11.Crossed(Vect21))*(Vect22.Dot(Vect21))*NormeD11*NormeD11/
|
|
(NormeD11*NormeD11*NormeD11*NormeD21*NormeD21*NormeD21);
|
|
return Standard_True;
|
|
}
|