1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-10 18:51:21 +03:00
occt/src/BRepMesh/BRepMesh_ModelHealer.cxx

505 lines
17 KiB
C++

// Created on: 2016-06-23
// Copyright (c) 2016 OPEN CASCADE SAS
// Created by: Oleg AGASHIN
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <BRepMesh_ModelHealer.hxx>
#include <BRepMesh_Deflection.hxx>
#include <BRepMesh_FaceChecker.hxx>
#include <BRepMesh_EdgeDiscret.hxx>
#include <IMeshData_Face.hxx>
#include <IMeshData_Wire.hxx>
#include <IMeshData_Edge.hxx>
#include <IMeshData_PCurve.hxx>
#include <OSD_Parallel.hxx>
#include <TopExp.hxx>
#include <TopoDS_Vertex.hxx>
#ifdef DEBUG_HEALER
#include <BRepBuilderAPI_MakePolygon.hxx>
#include <BRepTools.hxx>
#include <BRep_Builder.hxx>
#include <TopoDS_Compound.hxx>
#endif
IMPLEMENT_STANDARD_RTTIEXT(BRepMesh_ModelHealer, IMeshTools_ModelAlgo)
namespace
{
//! Decreases deflection of the given edge and tries to update discretization.
class EdgeAmplifier
{
public:
//! Constructor.
EdgeAmplifier(const IMeshTools_Parameters& theParameters)
: myParameters(theParameters)
{
}
//! Main operator.
void operator()(const IMeshData::IEdgePtr& theDEdge) const
{
const IMeshData::IEdgeHandle aDEdge = theDEdge;
aDEdge->Clear(Standard_True);
aDEdge->SetDeflection(Max(aDEdge->GetDeflection() / 3., Precision::Confusion()));
const IMeshData::IPCurveHandle& aPCurve = aDEdge->GetPCurve(0);
const IMeshData::IFaceHandle aDFace = aPCurve->GetFace();
Handle(IMeshTools_CurveTessellator) aTessellator =
BRepMesh_EdgeDiscret::CreateEdgeTessellator(
aDEdge, aPCurve->GetOrientation(), aDFace, myParameters);
BRepMesh_EdgeDiscret::Tessellate3d(aDEdge, aTessellator, Standard_False);
BRepMesh_EdgeDiscret::Tessellate2d(aDEdge, Standard_False);
}
private:
EdgeAmplifier (const EdgeAmplifier& theOther);
void operator=(const EdgeAmplifier& theOther);
private:
const IMeshTools_Parameters& myParameters;
};
//! Returns True if some of two vertcies is same with reference one.
Standard_Boolean isSameWithSomeOf(
const TopoDS_Vertex& theRefVertex,
const TopoDS_Vertex& theVertex1,
const TopoDS_Vertex& theVertex2)
{
return (theRefVertex.IsSame(theVertex1) ||
theRefVertex.IsSame(theVertex2));
}
//! Returns True if some of two vertcies is within tolerance of reference one.
Standard_Boolean isInToleranceWithSomeOf(
const gp_Pnt& theRefPoint,
const gp_Pnt& thePoint1,
const gp_Pnt& thePoint2,
const Standard_Real theTol)
{
const Standard_Real aSqTol = theTol * theTol;
return (theRefPoint.SquareDistance(thePoint1) < aSqTol ||
theRefPoint.SquareDistance(thePoint2) < aSqTol);
}
}
//=======================================================================
// Function: Constructor
// Purpose :
//=======================================================================
BRepMesh_ModelHealer::BRepMesh_ModelHealer()
{
}
//=======================================================================
// Function: Destructor
// Purpose :
//=======================================================================
BRepMesh_ModelHealer::~BRepMesh_ModelHealer()
{
}
//=======================================================================
// Function: Perform
// Purpose :
//=======================================================================
Standard_Boolean BRepMesh_ModelHealer::performInternal(
const Handle(IMeshData_Model)& theModel,
const IMeshTools_Parameters& theParameters,
const Message_ProgressRange& theRange)
{
(void )theRange;
myModel = theModel;
myParameters = theParameters;
if (myModel.IsNull())
{
return Standard_False;
}
// MinSize is made as a constant. It is connected with
// the fact that too rude discretisation can lead to
// self-intersecting polygon, which cannot be fixed.
// As result the face will not be triangulated at all.
// E.g. see "Test mesh standard_mesh C7", the face #17.
myParameters.MinSize = Precision::Confusion();
myFaceIntersectingEdges = new IMeshData::DMapOfIFacePtrsMapOfIEdgePtrs;
for (Standard_Integer aFaceIt = 0; aFaceIt < myModel->FacesNb(); ++aFaceIt)
{
myFaceIntersectingEdges->Bind(myModel->GetFace(aFaceIt).get(), Handle(IMeshData::MapOfIEdgePtr)());
}
// TODO: Here we can process edges in order to remove close discrete points.
OSD_Parallel::For(0, myModel->FacesNb(), *this, !isParallel());
amplifyEdges();
IMeshData::DMapOfIFacePtrsMapOfIEdgePtrs::Iterator aFaceIt(*myFaceIntersectingEdges);
for (; aFaceIt.More(); aFaceIt.Next())
{
if (!aFaceIt.Value().IsNull())
{
const IMeshData::IFaceHandle aDFace = aFaceIt.Key();
aDFace->SetStatus(IMeshData_SelfIntersectingWire);
aDFace->SetStatus(IMeshData_Failure);
}
}
myFaceIntersectingEdges.Nullify();
myModel.Nullify(); // Do not hold link to model.
return Standard_True;
}
//=======================================================================
// Function: amplifyEdges
// Purpose :
//=======================================================================
void BRepMesh_ModelHealer::amplifyEdges()
{
Handle(NCollection_IncAllocator) aTmpAlloc =
new NCollection_IncAllocator(IMeshData::MEMORY_BLOCK_SIZE_HUGE);
Standard_Integer aAmpIt = 0;
const Standard_Real aIterNb = 5;
IMeshData::MapOfIEdgePtr aEdgesToUpdate(1, aTmpAlloc);
EdgeAmplifier anEdgeAmplifier (myParameters);
while (aAmpIt++ < aIterNb && popEdgesToUpdate(aEdgesToUpdate))
{
// Try to update discretization by decreasing deflection of problematic edges.
OSD_Parallel::ForEach(aEdgesToUpdate.cbegin(), aEdgesToUpdate.cend(),
anEdgeAmplifier,
!(myParameters.InParallel && aEdgesToUpdate.Size() > 1),
aEdgesToUpdate.Size());
IMeshData::MapOfIFacePtr aFacesToCheck(1, aTmpAlloc);
IMeshData::MapOfIEdgePtr::Iterator aEdgeIt(aEdgesToUpdate);
for (; aEdgeIt.More(); aEdgeIt.Next())
{
const IMeshData::IEdgeHandle aDEdge = aEdgeIt.Value();
for (Standard_Integer aPCurveIt = 0; aPCurveIt < aDEdge->PCurvesNb(); ++aPCurveIt)
{
aFacesToCheck.Add(aDEdge->GetPCurve(aPCurveIt)->GetFace());
}
}
OSD_Parallel::ForEach(aFacesToCheck.cbegin(), aFacesToCheck.cend(),
*this, !(myParameters.InParallel && aFacesToCheck.Size() > 1),
aFacesToCheck.Size());
aEdgesToUpdate.Clear();
aTmpAlloc->Reset(Standard_False);
}
}
//=======================================================================
// Function: popEdgesToUpdate
// Purpose :
//=======================================================================
Standard_Boolean BRepMesh_ModelHealer::popEdgesToUpdate(
IMeshData::MapOfIEdgePtr& theEdgesToUpdate)
{
IMeshData::DMapOfIFacePtrsMapOfIEdgePtrs::Iterator aFaceIt(*myFaceIntersectingEdges);
for (; aFaceIt.More(); aFaceIt.Next())
{
Handle(IMeshData::MapOfIEdgePtr)& aIntersections = aFaceIt.ChangeValue();
if (!aIntersections.IsNull())
{
theEdgesToUpdate.Unite(*aIntersections);
aIntersections.Nullify();
}
}
return !theEdgesToUpdate.IsEmpty();
}
//=======================================================================
// Function: process
// Purpose :
//=======================================================================
void BRepMesh_ModelHealer::process(const IMeshData::IFaceHandle& theDFace) const
{
try
{
OCC_CATCH_SIGNALS
Handle(IMeshData::MapOfIEdgePtr)& aIntersections = myFaceIntersectingEdges->ChangeFind(theDFace.get());
aIntersections.Nullify();
fixFaceBoundaries(theDFace);
if (!theDFace->IsSet(IMeshData_Failure))
{
BRepMesh_FaceChecker aChecker(theDFace, myParameters);
if (!aChecker.Perform())
{
#ifdef DEBUG_HEALER
std::cout << "Failed : #" << aChecker.GetIntersectingEdges()->Size() << std::endl;
#endif
aIntersections = aChecker.GetIntersectingEdges();
}
else
{
if (theDFace->WiresNb () == 1)
{
const IMeshData::IWireHandle& aDWire = theDFace->GetWire (0);
if (aDWire->EdgesNb () == 2)
{
const IMeshData::IEdgePtr& aDEdge0 = aDWire->GetEdge (0);
const IMeshData::IEdgePtr& aDEdge1 = aDWire->GetEdge (1);
const IMeshData::IPCurveHandle& aPCurve0 = aDEdge0->GetPCurve (theDFace.get (), aDWire->GetEdgeOrientation (0));
const IMeshData::IPCurveHandle& aPCurve1 = aDEdge1->GetPCurve (theDFace.get (), aDWire->GetEdgeOrientation (1));
if (aPCurve0->ParametersNb () == 2 && aPCurve1->ParametersNb () == 2)
{
aIntersections = new IMeshData::MapOfIEdgePtr;
// a kind of degenerated face - 1 wire, 2 edges and both edges are very small
aIntersections->Add (aDEdge0);
aIntersections->Add (aDEdge1);
}
}
}
}
}
}
catch (Standard_Failure const&)
{
theDFace->SetStatus (IMeshData_Failure);
}
}
//=======================================================================
// Function: fixFaceBoundaries
// Purpose :
//=======================================================================
void BRepMesh_ModelHealer::fixFaceBoundaries(const IMeshData::IFaceHandle& theDFace) const
{
#ifdef DEBUG_HEALER
TopoDS_Compound aComp;
BRep_Builder aBuilder;
aBuilder.MakeCompound(aComp);
#endif
for (int aWireIt = 0; aWireIt < theDFace->WiresNb(); ++aWireIt)
{
const IMeshData::IWireHandle& aDWire = theDFace->GetWire(aWireIt);
BRepMesh_Deflection::ComputeDeflection(aDWire, myParameters);
for (int aEdgeIt = 0; aEdgeIt < aDWire->EdgesNb(); ++aEdgeIt)
{
const int aPrevEdgeIt = (aEdgeIt + aDWire->EdgesNb() - 1) % aDWire->EdgesNb();
const int aNextEdgeIt = (aEdgeIt + 1) % aDWire->EdgesNb();
const IMeshData::IEdgeHandle aPrevEdge = aDWire->GetEdge(aPrevEdgeIt);
const IMeshData::IEdgeHandle aCurrEdge = aDWire->GetEdge(aEdgeIt);
const IMeshData::IEdgeHandle aNextEdge = aDWire->GetEdge(aNextEdgeIt);
Standard_Boolean isConnected = !getCommonVertex(aCurrEdge, aNextEdge).IsNull() &&
!getCommonVertex(aPrevEdge, aCurrEdge).IsNull();
if (isConnected)
{
const IMeshData::IPCurveHandle& aPrevPCurve =
aPrevEdge->GetPCurve(theDFace.get(), aDWire->GetEdgeOrientation(aPrevEdgeIt));
const IMeshData::IPCurveHandle& aCurrPCurve =
aCurrEdge->GetPCurve(theDFace.get(), aDWire->GetEdgeOrientation(aEdgeIt));
const IMeshData::IPCurveHandle& aNextPCurve =
aNextEdge->GetPCurve(theDFace.get(), aDWire->GetEdgeOrientation(aNextEdgeIt));
isConnected = connectClosestPoints(aPrevPCurve, aCurrPCurve, aNextPCurve);
#ifdef DEBUG_HEALER
BRepBuilderAPI_MakePolygon aPoly;
for (int i = 0; i < aCurrPCurve->ParametersNb(); ++i)
{
const gp_Pnt2d& aPnt = aCurrPCurve->GetPoint(i);
aPoly.Add(gp_Pnt(aPnt.X(), aPnt.Y(), 0.));
}
if (aPoly.IsDone())
{
aBuilder.Add(aComp, aPoly.Shape());
}
TCollection_AsciiString aName("face_discr.brep");
BRepTools::Write(aComp, aName.ToCString());
#endif
}
if (!isConnected || aCurrEdge->IsSet(IMeshData_Outdated))
{
// We have to clean face from triangulation.
theDFace->SetStatus(IMeshData_Outdated);
if (!isConnected)
{
// Just mark wire as open, but continue fixing other inconsistencies
// in hope that this data could be suitable to build mesh somehow.
aDWire->SetStatus(IMeshData_OpenWire);
}
}
}
}
#ifdef DEBUG_HEALER
TCollection_AsciiString aName ("face_discr.brep");
TCollection_AsciiString aFaceName("face_geom.brep");
BRepTools::Write(aComp, aName.ToCString());
BRepTools::Write(theDFace->GetFace(), aFaceName.ToCString());
#endif
BRepMesh_Deflection::ComputeDeflection(theDFace, myParameters);
}
//=======================================================================
// Function: hasCommonVertex
// Purpose :
//=======================================================================
TopoDS_Vertex BRepMesh_ModelHealer::getCommonVertex(
const IMeshData::IEdgeHandle& theEdge1,
const IMeshData::IEdgeHandle& theEdge2) const
{
TopoDS_Vertex aVertex1_1, aVertex1_2;
TopExp::Vertices(theEdge1->GetEdge(), aVertex1_1, aVertex1_2);
//Test bugs moddata_2 bug428.
// restore [locate_data_file OCC428.brep] rr
// explode rr f
// explode rr_91 w
// explode rr_91_2 e
// nbshapes rr_91_2_2
// # 0 vertices; 1 edge
//This shape is invalid and can lead to exception in this code.
if (aVertex1_1.IsNull() || aVertex1_2.IsNull())
return TopoDS_Vertex();
if (theEdge1->GetEdge().IsSame(theEdge2->GetEdge()))
{
return aVertex1_1.IsSame(aVertex1_2) ? aVertex1_1 : TopoDS_Vertex();
}
TopoDS_Vertex aVertex2_1, aVertex2_2;
TopExp::Vertices(theEdge2->GetEdge(), aVertex2_1, aVertex2_2);
if (aVertex2_1.IsNull() || aVertex2_2.IsNull())
return TopoDS_Vertex();
if (isSameWithSomeOf(aVertex1_1, aVertex2_1, aVertex2_2))
{
return aVertex1_1;
}
else if (isSameWithSomeOf(aVertex1_2, aVertex2_1, aVertex2_2))
{
return aVertex1_2;
}
const gp_Pnt aPnt1_1 = BRep_Tool::Pnt(aVertex1_1);
const gp_Pnt aPnt1_2 = BRep_Tool::Pnt(aVertex1_2);
const Standard_Real aTol1_1 = BRep_Tool::Tolerance(aVertex1_1);
const Standard_Real aTol1_2 = BRep_Tool::Tolerance(aVertex1_2);
const gp_Pnt aPnt2_1 = BRep_Tool::Pnt(aVertex2_1);
const gp_Pnt aPnt2_2 = BRep_Tool::Pnt(aVertex2_2);
const Standard_Real aTol2_1 = BRep_Tool::Tolerance(aVertex2_1);
const Standard_Real aTol2_2 = BRep_Tool::Tolerance(aVertex2_2);
if (isInToleranceWithSomeOf(aPnt1_1, aPnt2_1, aPnt2_2, aTol1_1 + Max(aTol2_1, aTol2_2)))
{
return aVertex1_1;
}
else if (isInToleranceWithSomeOf(aPnt1_2, aPnt2_1, aPnt2_2, aTol1_2 + Max(aTol2_1, aTol2_2)))
{
return aVertex1_2;
}
return TopoDS_Vertex();
}
//=======================================================================
// Function: connectClosestPoints
// Purpose :
//=======================================================================
Standard_Boolean BRepMesh_ModelHealer::connectClosestPoints(
const IMeshData::IPCurveHandle& thePrevDEdge,
const IMeshData::IPCurveHandle& theCurrDEdge,
const IMeshData::IPCurveHandle& theNextDEdge) const
{
if (thePrevDEdge->IsInternal() ||
theCurrDEdge->IsInternal() ||
theNextDEdge->IsInternal())
{
return Standard_True;
}
gp_Pnt2d& aPrevFirstUV = thePrevDEdge->GetPoint(0);
gp_Pnt2d& aPrevLastUV = thePrevDEdge->GetPoint(thePrevDEdge->ParametersNb() - 1);
if (thePrevDEdge == theCurrDEdge)
{
// Wire consists of a single edge.
aPrevFirstUV = aPrevLastUV;
return Standard_True;
}
gp_Pnt2d& aCurrFirstUV = theCurrDEdge->GetPoint(0);
gp_Pnt2d& aCurrLastUV = theCurrDEdge->GetPoint(theCurrDEdge->ParametersNb() - 1);
gp_Pnt2d *aPrevUV = NULL, *aCurrPrevUV = NULL;
const Standard_Real aPrevSqDist = closestPoints(aPrevFirstUV, aPrevLastUV,
aCurrFirstUV, aCurrLastUV,
aPrevUV, aCurrPrevUV);
gp_Pnt2d *aNextUV = NULL, *aCurrNextUV = NULL;
if (thePrevDEdge == theNextDEdge)
{
// Wire consists of two edges. Connect both ends.
aNextUV = (aPrevUV == &aPrevFirstUV) ? &aPrevLastUV : &aPrevFirstUV;
aCurrNextUV = (aCurrPrevUV == &aCurrFirstUV) ? &aCurrLastUV : &aCurrFirstUV;
*aNextUV = *aCurrNextUV;
*aPrevUV = *aCurrPrevUV;
return Standard_True;
}
gp_Pnt2d& aNextFirstUV = theNextDEdge->GetPoint(0);
gp_Pnt2d& aNextLastUV = theNextDEdge->GetPoint(theNextDEdge->ParametersNb() - 1);
const Standard_Real aNextSqDist = closestPoints(aNextFirstUV, aNextLastUV,
aCurrFirstUV, aCurrLastUV,
aNextUV, aCurrNextUV);
#ifdef DEBUG_HEALER
std::cout << "PrevSqDist = " << aPrevSqDist << std::endl;
std::cout << "NextSqDist = " << aNextSqDist << std::endl;
#endif
// Connect closest points first. This can help to identify
// which ends should be connected in case of gap.
if (aPrevSqDist - aNextSqDist > gp::Resolution())
{
adjustSamePoints(aCurrNextUV, aNextUV, aCurrPrevUV, aPrevUV, aCurrFirstUV, aCurrLastUV, aPrevFirstUV, aPrevLastUV);
}
else
{
adjustSamePoints(aCurrPrevUV, aPrevUV, aCurrNextUV, aNextUV, aCurrFirstUV, aCurrLastUV, aNextFirstUV, aNextLastUV);
}
return Standard_True;
}