mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-07 18:30:55 +03:00
Removed methods from Poly_Triangulation/Poly_PolygonOnTriangulation giving access to internal arrays of 2d and 3d nodes, triangles and normals.
510 lines
15 KiB
C++
510 lines
15 KiB
C++
// Copyright (c) 1999-2017 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <Adaptor3d_Curve.hxx>
|
|
#include <Adaptor3d_Surface.hxx>
|
|
#include <GeomAdaptor_Curve.hxx>
|
|
#include <BRepBndLib.hxx>
|
|
#include <GProp_GProps.hxx>
|
|
#include <TopoDS_Shape.hxx>
|
|
#include <BRep_Tool.hxx>
|
|
#include <TopoDS.hxx>
|
|
#include <Bnd_OBB.hxx>
|
|
#include <BRepGProp.hxx>
|
|
#include <TopExp_Explorer.hxx>
|
|
#include <GProp_PrincipalProps.hxx>
|
|
#include <gp_Ax3.hxx>
|
|
#include <BRepBuilderAPI_Transform.hxx>
|
|
#include <Bnd_Box.hxx>
|
|
#include <NCollection_List.hxx>
|
|
#include <TColgp_Array1OfPnt.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
#include <Geom_Plane.hxx>
|
|
#include <Geom_Line.hxx>
|
|
#include <TColStd_Array1OfInteger.hxx>
|
|
#include <BRepAdaptor_Curve.hxx>
|
|
#include <BRepAdaptor_Surface.hxx>
|
|
|
|
#include <Geom_OffsetCurve.hxx>
|
|
#include <Geom_BSplineCurve.hxx>
|
|
#include <Geom_BezierCurve.hxx>
|
|
#include <Geom_BSplineSurface.hxx>
|
|
#include <Geom_BezierSurface.hxx>
|
|
|
|
//=======================================================================
|
|
// Function : IsLinear
|
|
// purpose : Returns TRUE if theC is line-like.
|
|
//=======================================================================
|
|
static Standard_Boolean IsLinear(const Adaptor3d_Curve& theC)
|
|
{
|
|
const GeomAbs_CurveType aCT = theC.GetType();
|
|
if(aCT == GeomAbs_OffsetCurve)
|
|
{
|
|
return IsLinear(GeomAdaptor_Curve(theC.OffsetCurve()->BasisCurve()));
|
|
}
|
|
|
|
if((aCT == GeomAbs_BSplineCurve) || (aCT == GeomAbs_BezierCurve))
|
|
{
|
|
// Indeed, curves with C0-continuity and degree==1, may be
|
|
// represented with set of points. It will be possible made
|
|
// in the future.
|
|
|
|
return ((theC.Degree() == 1) &&
|
|
(theC.Continuity() != GeomAbs_C0));
|
|
}
|
|
|
|
if(aCT == GeomAbs_Line)
|
|
{
|
|
return Standard_True;
|
|
}
|
|
|
|
return Standard_False;
|
|
}
|
|
|
|
//=======================================================================
|
|
// Function : IsPlanar
|
|
// purpose : Returns TRUE if theS is plane-like.
|
|
//=======================================================================
|
|
static Standard_Boolean IsPlanar(const Adaptor3d_Surface& theS)
|
|
{
|
|
const GeomAbs_SurfaceType aST = theS.GetType();
|
|
if(aST == GeomAbs_OffsetSurface)
|
|
{
|
|
return IsPlanar (*theS.BasisSurface());
|
|
}
|
|
|
|
if(aST == GeomAbs_SurfaceOfExtrusion)
|
|
{
|
|
return IsLinear (*theS.BasisCurve());
|
|
}
|
|
|
|
if((aST == GeomAbs_BSplineSurface) || (aST == GeomAbs_BezierSurface))
|
|
{
|
|
if((theS.UDegree() != 1) || (theS.VDegree() != 1))
|
|
return Standard_False;
|
|
|
|
// Indeed, surfaces with C0-continuity and degree==1, may be
|
|
// represented with set of points. It will be possible made
|
|
// in the future.
|
|
|
|
return ((theS.UContinuity() != GeomAbs_C0) && (theS.VContinuity() != GeomAbs_C0));
|
|
}
|
|
|
|
if(aST == GeomAbs_Plane)
|
|
{
|
|
return Standard_True;
|
|
}
|
|
|
|
return Standard_False;
|
|
}
|
|
|
|
//=======================================================================
|
|
// Function : PointsForOBB
|
|
// purpose : Returns number of points for array.
|
|
//
|
|
// Attention!!!
|
|
// 1. Start index for thePts must be 0 strictly.
|
|
// 2. Currently, infinite edges/faces (e.g. half-space) are not
|
|
// processed correctly because computation of UV-bounds is a costly operation.
|
|
//=======================================================================
|
|
static Standard_Integer PointsForOBB(const TopoDS_Shape& theS,
|
|
const Standard_Boolean theIsTriangulationUsed,
|
|
TColgp_Array1OfPnt* thePts = 0,
|
|
TColStd_Array1OfReal* theArrOfToler = 0)
|
|
{
|
|
Standard_Integer aRetVal = 0;
|
|
TopExp_Explorer anExpF, anExpE;
|
|
|
|
// get all vertices from the shape
|
|
for(anExpF.Init(theS, TopAbs_VERTEX); anExpF.More(); anExpF.Next())
|
|
{
|
|
const TopoDS_Vertex &aVert = TopoDS::Vertex(anExpF.Current());
|
|
if(thePts)
|
|
{
|
|
const gp_Pnt aP = BRep_Tool::Pnt(aVert);
|
|
(*thePts)(aRetVal) = aP;
|
|
}
|
|
|
|
if(theArrOfToler)
|
|
{
|
|
(*theArrOfToler) (aRetVal) = BRep_Tool::Tolerance(aVert);
|
|
}
|
|
|
|
++aRetVal;
|
|
}
|
|
|
|
if(aRetVal == 0)
|
|
return 0;
|
|
|
|
// analyze the faces of the shape on planarity and existence of triangulation
|
|
TopLoc_Location aLoc;
|
|
for(anExpF.Init(theS, TopAbs_FACE); anExpF.More(); anExpF.Next())
|
|
{
|
|
const TopoDS_Face &aF = TopoDS::Face(anExpF.Current());
|
|
const BRepAdaptor_Surface anAS(aF, Standard_False);
|
|
|
|
if (!IsPlanar(anAS.Surface()))
|
|
{
|
|
if (!theIsTriangulationUsed)
|
|
// not planar and triangulation usage disabled
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
// planar face
|
|
for(anExpE.Init(aF, TopAbs_EDGE); anExpE.More(); anExpE.Next())
|
|
{
|
|
const TopoDS_Edge &anE = TopoDS::Edge(anExpE.Current());
|
|
if (BRep_Tool::IsGeometric (anE))
|
|
{
|
|
const BRepAdaptor_Curve anAC(anE);
|
|
if (!IsLinear(anAC))
|
|
{
|
|
if (!theIsTriangulationUsed)
|
|
// not linear and triangulation usage disabled
|
|
return 0;
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!anExpE.More())
|
|
// skip planar face with linear edges as its vertices have already been added
|
|
continue;
|
|
}
|
|
|
|
// Use triangulation of the face
|
|
const Handle(Poly_Triangulation)& aTrng = BRep_Tool::Triangulation (aF, aLoc);
|
|
if (aTrng.IsNull())
|
|
{
|
|
// no triangulation on the face
|
|
return 0;
|
|
}
|
|
|
|
const Standard_Integer aCNode = aTrng->NbNodes();
|
|
const gp_Trsf aTrsf = aLoc;
|
|
for (Standard_Integer i = 1; i <= aCNode; i++)
|
|
{
|
|
if (thePts != NULL)
|
|
{
|
|
const gp_Pnt aP = aTrsf.Form() == gp_Identity
|
|
? aTrng->Node (i)
|
|
: aTrng->Node (i).Transformed (aTrsf);
|
|
(*thePts)(aRetVal) = aP;
|
|
}
|
|
|
|
if (theArrOfToler != NULL)
|
|
{
|
|
(*theArrOfToler) (aRetVal) = aTrng->Deflection();
|
|
}
|
|
|
|
++aRetVal;
|
|
}
|
|
}
|
|
|
|
// Consider edges without faces
|
|
|
|
for(anExpE.Init(theS, TopAbs_EDGE, TopAbs_FACE); anExpE.More(); anExpE.Next())
|
|
{
|
|
const TopoDS_Edge &anE = TopoDS::Edge(anExpE.Current());
|
|
if (BRep_Tool::IsGeometric (anE))
|
|
{
|
|
const BRepAdaptor_Curve anAC(anE);
|
|
if (IsLinear(anAC))
|
|
{
|
|
// skip linear edge as its vertices have already been added
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!theIsTriangulationUsed)
|
|
// not linear and triangulation usage disabled
|
|
return 0;
|
|
|
|
const Handle(Poly_Polygon3D) &aPolygon = BRep_Tool::Polygon3D(anE, aLoc);
|
|
if (aPolygon.IsNull())
|
|
return 0;
|
|
|
|
const Standard_Integer aCNode = aPolygon->NbNodes();
|
|
const TColgp_Array1OfPnt& aNodesArr = aPolygon->Nodes();
|
|
for (Standard_Integer i = 1; i <= aCNode; i++)
|
|
{
|
|
if (thePts)
|
|
{
|
|
const gp_Pnt aP = aLoc.IsIdentity() ? aNodesArr[i] :
|
|
aNodesArr[i].Transformed(aLoc);
|
|
(*thePts)(aRetVal) = aP;
|
|
}
|
|
|
|
if (theArrOfToler)
|
|
{
|
|
(*theArrOfToler) (aRetVal) = aPolygon->Deflection();
|
|
}
|
|
|
|
++aRetVal;
|
|
}
|
|
}
|
|
|
|
return aRetVal;
|
|
}
|
|
|
|
//=======================================================================
|
|
// Function : IsWCS
|
|
// purpose : Returns 0 if the theDir does not match any axis of WCS.
|
|
// Otherwise, returns the index of correspond axis.
|
|
//=======================================================================
|
|
static Standard_Integer IsWCS(const gp_Dir& theDir)
|
|
{
|
|
const Standard_Real aToler = Precision::Angular()*Precision::Angular();
|
|
|
|
const Standard_Real aX = theDir.X(),
|
|
aY = theDir.Y(),
|
|
aZ = theDir.Z();
|
|
|
|
const Standard_Real aVx = aY*aY + aZ*aZ,
|
|
aVy = aX*aX + aZ*aZ,
|
|
aVz = aX*aX + aY*aY;
|
|
|
|
if(aVz < aToler)
|
|
return 3; // Z-axis
|
|
|
|
if(aVy < aToler)
|
|
return 2; // Y-axis
|
|
|
|
if(aVx < aToler)
|
|
return 1; // X-axis
|
|
|
|
return 0;
|
|
}
|
|
|
|
//=======================================================================
|
|
// Function : CheckPoints
|
|
// purpose : Collects points for DiTO algorithm for OBB construction on
|
|
// linear/planar shapes and shapes having triangulation
|
|
// (http://www.idt.mdh.se/~tla/publ/FastOBBs.pdf).
|
|
//=======================================================================
|
|
static Standard_Boolean CheckPoints(const TopoDS_Shape& theS,
|
|
const Standard_Boolean theIsTriangulationUsed,
|
|
const Standard_Boolean theIsOptimal,
|
|
const Standard_Boolean theIsShapeToleranceUsed,
|
|
Bnd_OBB& theOBB)
|
|
{
|
|
const Standard_Integer aNbPnts = PointsForOBB(theS, theIsTriangulationUsed);
|
|
|
|
if(aNbPnts < 1)
|
|
return Standard_False;
|
|
|
|
TColgp_Array1OfPnt anArrPnts(0, theOBB.IsVoid() ? aNbPnts - 1 : aNbPnts + 7);
|
|
TColStd_Array1OfReal anArrOfTolerances;
|
|
if(theIsShapeToleranceUsed)
|
|
{
|
|
anArrOfTolerances.Resize(anArrPnts.Lower(), anArrPnts.Upper(), Standard_False);
|
|
anArrOfTolerances.Init(0.0);
|
|
}
|
|
|
|
TColStd_Array1OfReal *aPtrArrTol = theIsShapeToleranceUsed ? &anArrOfTolerances : 0;
|
|
|
|
PointsForOBB(theS, theIsTriangulationUsed, &anArrPnts, aPtrArrTol);
|
|
|
|
if(!theOBB.IsVoid())
|
|
{
|
|
// All points of old OBB have zero-tolerance
|
|
theOBB.GetVertex(&anArrPnts(aNbPnts));
|
|
}
|
|
|
|
#if 0
|
|
for(Standard_Integer i = anArrPnts.Lower(); i <= anArrPnts.Upper(); i++)
|
|
{
|
|
const gp_Pnt &aP = anArrPnts(i);
|
|
std::cout << "point p" << i << " " << aP.X() << ", " <<
|
|
aP.Y() << ", " <<
|
|
aP.Z() << ", "<< std::endl;
|
|
}
|
|
#endif
|
|
|
|
theOBB.ReBuild(anArrPnts, aPtrArrTol, theIsOptimal);
|
|
|
|
return (!theOBB.IsVoid());
|
|
}
|
|
|
|
//=======================================================================
|
|
// Function : ComputeProperties
|
|
// purpose : Computes properties of theS.
|
|
//=======================================================================
|
|
static void ComputeProperties(const TopoDS_Shape& theS,
|
|
GProp_GProps& theGCommon)
|
|
{
|
|
TopExp_Explorer anExp;
|
|
for(anExp.Init(theS, TopAbs_SOLID); anExp.More(); anExp.Next())
|
|
{
|
|
GProp_GProps aG;
|
|
BRepGProp::VolumeProperties(anExp.Current(), aG, Standard_True);
|
|
theGCommon.Add(aG);
|
|
}
|
|
|
|
for(anExp.Init(theS, TopAbs_FACE, TopAbs_SOLID); anExp.More(); anExp.Next())
|
|
{
|
|
GProp_GProps aG;
|
|
BRepGProp::SurfaceProperties(anExp.Current(), aG, Standard_True);
|
|
theGCommon.Add(aG);
|
|
}
|
|
|
|
for(anExp.Init(theS, TopAbs_EDGE, TopAbs_FACE); anExp.More(); anExp.Next())
|
|
{
|
|
GProp_GProps aG;
|
|
BRepGProp::LinearProperties(anExp.Current(), aG, Standard_True);
|
|
theGCommon.Add(aG);
|
|
}
|
|
|
|
for(anExp.Init(theS, TopAbs_VERTEX, TopAbs_EDGE); anExp.More(); anExp.Next())
|
|
{
|
|
GProp_GProps aG(BRep_Tool::Pnt(TopoDS::Vertex(anExp.Current())));
|
|
theGCommon.Add(aG);
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
// Function : ComputePCA
|
|
// purpose : Creates OBB with axes of inertia.
|
|
//=======================================================================
|
|
static void ComputePCA(const TopoDS_Shape& theS,
|
|
Bnd_OBB& theOBB,
|
|
const Standard_Boolean theIsTriangulationUsed,
|
|
const Standard_Boolean theIsOptimal,
|
|
const Standard_Boolean theIsShapeToleranceUsed)
|
|
{
|
|
// Compute the transformation matrix to obtain more tight bounding box
|
|
GProp_GProps aGCommon;
|
|
ComputeProperties(theS, aGCommon);
|
|
|
|
// Transform the shape to the local coordinate system
|
|
gp_Trsf aTrsf;
|
|
|
|
const Standard_Integer anIdx1 =
|
|
IsWCS(aGCommon.PrincipalProperties().FirstAxisOfInertia());
|
|
const Standard_Integer anIdx2 =
|
|
IsWCS(aGCommon.PrincipalProperties().SecondAxisOfInertia());
|
|
|
|
if((anIdx1 == 0) || (anIdx2 == 0))
|
|
{
|
|
// Coordinate system in which the shape will have the optimal bounding box
|
|
gp_Ax3 aLocCoordSys(aGCommon.CentreOfMass(),
|
|
aGCommon.PrincipalProperties().ThirdAxisOfInertia(),
|
|
aGCommon.PrincipalProperties().FirstAxisOfInertia());
|
|
aTrsf.SetTransformation(aLocCoordSys);
|
|
}
|
|
|
|
const TopoDS_Shape aST = (aTrsf.Form() == gp_Identity) ? theS :
|
|
theS.Moved(TopLoc_Location(aTrsf));
|
|
|
|
// Initial axis-aligned BndBox
|
|
Bnd_Box aShapeBox;
|
|
if(theIsOptimal)
|
|
{
|
|
BRepBndLib::AddOptimal(aST, aShapeBox, theIsTriangulationUsed, theIsShapeToleranceUsed);
|
|
}
|
|
else
|
|
{
|
|
BRepBndLib::Add(aST, aShapeBox);
|
|
}
|
|
if (aShapeBox.IsVoid())
|
|
{
|
|
return;
|
|
}
|
|
|
|
gp_Pnt aPMin = aShapeBox.CornerMin();
|
|
gp_Pnt aPMax = aShapeBox.CornerMax();
|
|
|
|
gp_XYZ aXDir(1, 0, 0);
|
|
gp_XYZ aYDir(0, 1, 0);
|
|
gp_XYZ aZDir(0, 0, 1);
|
|
|
|
// Compute the center of the box
|
|
gp_XYZ aCenter = (aPMin.XYZ() + aPMax.XYZ()) / 2.;
|
|
|
|
// Compute the half diagonal size of the box.
|
|
// It takes into account the gap.
|
|
gp_XYZ anOBBHSize = (aPMax.XYZ() - aPMin.XYZ()) / 2.;
|
|
|
|
// Apply transformation if necessary
|
|
if(aTrsf.Form() != gp_Identity)
|
|
{
|
|
aTrsf.Invert();
|
|
aTrsf.Transforms(aCenter);
|
|
|
|
// Make transformation
|
|
const Standard_Real * aMat = &aTrsf.HVectorialPart().Value(1, 1);
|
|
// Compute axes directions of the box
|
|
aXDir = gp_XYZ(aMat[0], aMat[3], aMat[6]);
|
|
aYDir = gp_XYZ(aMat[1], aMat[4], aMat[7]);
|
|
aZDir = gp_XYZ(aMat[2], aMat[5], aMat[8]);
|
|
}
|
|
|
|
if(theOBB.IsVoid())
|
|
{
|
|
// Create the OBB box
|
|
|
|
// Set parameters to the OBB
|
|
theOBB.SetCenter(aCenter);
|
|
|
|
theOBB.SetXComponent(aXDir, anOBBHSize.X());
|
|
theOBB.SetYComponent(aYDir, anOBBHSize.Y());
|
|
theOBB.SetZComponent(aZDir, anOBBHSize.Z());
|
|
theOBB.SetAABox(aTrsf.Form() == gp_Identity);
|
|
}
|
|
else
|
|
{
|
|
// Recreate the OBB box
|
|
|
|
TColgp_Array1OfPnt aListOfPnts(0, 15);
|
|
theOBB.GetVertex(&aListOfPnts(0));
|
|
|
|
const Standard_Real aX = anOBBHSize.X();
|
|
const Standard_Real aY = anOBBHSize.Y();
|
|
const Standard_Real aZ = anOBBHSize.Z();
|
|
|
|
const gp_XYZ aXext = aX*aXDir,
|
|
aYext = aY*aYDir,
|
|
aZext = aZ*aZDir;
|
|
|
|
Standard_Integer aPntIdx = 8;
|
|
aListOfPnts(aPntIdx++) = aCenter - aXext - aYext - aZext;
|
|
aListOfPnts(aPntIdx++) = aCenter + aXext - aYext - aZext;
|
|
aListOfPnts(aPntIdx++) = aCenter - aXext + aYext - aZext;
|
|
aListOfPnts(aPntIdx++) = aCenter + aXext + aYext - aZext;
|
|
aListOfPnts(aPntIdx++) = aCenter - aXext - aYext + aZext;
|
|
aListOfPnts(aPntIdx++) = aCenter + aXext - aYext + aZext;
|
|
aListOfPnts(aPntIdx++) = aCenter - aXext + aYext + aZext;
|
|
aListOfPnts(aPntIdx++) = aCenter + aXext + aYext + aZext;
|
|
|
|
theOBB.ReBuild(aListOfPnts);
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
// Function : AddOBB
|
|
// purpose :
|
|
//=======================================================================
|
|
void BRepBndLib::AddOBB(const TopoDS_Shape& theS,
|
|
Bnd_OBB& theOBB,
|
|
const Standard_Boolean theIsTriangulationUsed,
|
|
const Standard_Boolean theIsOptimal,
|
|
const Standard_Boolean theIsShapeToleranceUsed)
|
|
{
|
|
if (CheckPoints(theS, theIsTriangulationUsed, theIsOptimal, theIsShapeToleranceUsed, theOBB))
|
|
return;
|
|
|
|
ComputePCA(theS, theOBB, theIsTriangulationUsed, theIsOptimal, theIsShapeToleranceUsed);
|
|
}
|