1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-05-21 10:55:33 +03:00
occt/src/GccAna/GccAna_CircPnt2dBisec.cxx
abv d5f74e42d6 0024624: Lost word in license statement in source files
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast
Wrong license statements corrected in several files.
Copyright and license statements added in XSD and GLSL files.
Copyright year updated in some files.
Obsolete documentation files removed from DrawResources.
2014-02-20 16:15:17 +04:00

184 lines
6.2 KiB
C++

// Created on: 1991-10-11
// Created by: Remi GILET
// Copyright (c) 1991-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
//=========================================================================
// CREATION of the BISSECTICE between a CIRCLE and a POINT. +
//=========================================================================
#include <GccAna_CircPnt2dBisec.ixx>
#include <gp_XY.hxx>
#include <gp_Dir2d.hxx>
#include <gp_Ax2d.hxx>
#include <GccInt_BHyper.hxx>
#include <GccInt_BCirc.hxx>
#include <GccInt_BElips.hxx>
#include <GccInt_BLine.hxx>
#include <Standard_ConstructionError.hxx>
#include <Standard_OutOfRange.hxx>
#include <StdFail_NotDone.hxx>
#include <gp.hxx>
//=========================================================================
GccAna_CircPnt2dBisec::
GccAna_CircPnt2dBisec (const gp_Circ2d& Circle ,
const gp_Pnt2d& Point )
{
circle = Circle;
point = Point;
myTolerance = 1.e-10;
DefineSolutions();
}
GccAna_CircPnt2dBisec::
GccAna_CircPnt2dBisec (const gp_Circ2d& Circle ,
const gp_Pnt2d& Point,
const Standard_Real Tolerance)
{
circle = Circle;
point = Point;
myTolerance = 1.e-10;
if (myTolerance < Tolerance)
myTolerance = Tolerance;
DefineSolutions();
}
void GccAna_CircPnt2dBisec::DefineSolutions()
{
Standard_Real dist = circle.Radius() - point.Distance(circle.Location());
if (Abs(dist) < myTolerance)
{
theposition = 0;
NbrSol = 1;
}
else if (dist > 0.0)
{
theposition = -1;
NbrSol = 1;
}
else {
theposition = 1;
NbrSol = 2;
}
WellDone = Standard_True;
}
//=========================================================================
// Processing. +
// Return the coordinates of origins of the straight line (xloc,yloc) and+
// of the circle (xcencirc, ycencirc). +
// Also return the coordinates of the direction of the straight line (xdir, +
// ydir) and the radius of circle R1. +
// Check at which side of the straight line is found the center of circle +
// to orientate the parabola (sign). +
// Create axis of each parabola (axeparab1, axeparb2), then +
// two parabolas (biscirPnt1, biscirPnt1). +
//=========================================================================
Handle(GccInt_Bisec) GccAna_CircPnt2dBisec::
ThisSolution (const Standard_Integer Index) const
{
if (!WellDone)
StdFail_NotDone::Raise();
if ((Index <=0) || (Index > NbrSol))
Standard_OutOfRange::Raise();
Handle(GccInt_Bisec) bissol;
Standard_Real xpoint = point.X();
Standard_Real ypoint = point.Y();
Standard_Real xcencir = circle.Location().X();
Standard_Real ycencir = circle.Location().Y();
Standard_Real R1 = circle.Radius();
Standard_Real dist = point.Distance(circle.Location());
if (dist < myTolerance)
{
gp_Circ2d biscirpnt1(gp_Ax2d(point,gp_Dir2d(1.0,0.0)),R1/2.);
bissol = new GccInt_BCirc(biscirpnt1);
// ==========================================================
}
else {
gp_Pnt2d center((xpoint+xcencir)/2.,(ypoint+ycencir)/2.);
gp_Ax2d majax(center,gp_Dir2d(xpoint-xcencir,ypoint-ycencir));
//=========================================================================
// The point is inside the circle. +
//=========================================================================
if (theposition == -1) {
gp_Elips2d biscirpnt(majax,R1/2.,Sqrt(R1*R1-dist*dist)/2.);
bissol = new GccInt_BElips(biscirpnt);
// ===========================================================
}
//=========================================================================
// The point is on the circle. +
// There is only one solution : straight line passing through point and the center +
// of the circle. +
//=========================================================================
else if (theposition == 0) {
gp_Dir2d dirsol;
if (circle.IsDirect())
dirsol=gp_Dir2d(xcencir-xpoint,ycencir-ypoint);
else dirsol = gp_Dir2d(xpoint-xcencir,ypoint-ycencir);
gp_Lin2d biscirpnt(point,dirsol);
bissol = new GccInt_BLine(biscirpnt);
// =========================================================
}
//=========================================================================
// The point is outside of the circle. +
// There are two solutions : two main branches of the hyperbola.+
//=========================================================================
else {
// Standard_Real d1 = sqrt(dist*R1-R1*R1);
Standard_Real d1 = sqrt(dist*dist-R1*R1)/2.0;
Standard_Real d2 = R1/2.;
if (Index == 1) {
gp_Hypr2d biscirpnt1(majax,d2,d1);
bissol = new GccInt_BHyper(biscirpnt1);
// =========================================
}
else {
gp_Hypr2d biscirpnt1(majax,d2,d1);
gp_Hypr2d biscirpnt2 = biscirpnt1.OtherBranch();
bissol = new GccInt_BHyper(biscirpnt2);
// =========================================
}
}
}
return bissol;
}
//=========================================================================
Standard_Boolean GccAna_CircPnt2dBisec::
IsDone () const { return WellDone; }
Standard_Integer GccAna_CircPnt2dBisec::
NbSolutions () const { return NbrSol; }