mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-07-10 12:25:50 +03:00
Generic classes: "GProp_CGProps", "GProp_SGProps", "GProp_VGProps", "GProp_VGPropsGK", "GProp_TFunction" (internal), "GProp_UFunction" (internal) from "GProp" package converted to the non-generic classes and moved to the "BRepGProp" package. Names of several classes were changed to: "BRepGProp_Cinert", "BRepGProp_Sinert", "BRepGProp_Vinert", "BRepGProp_VinertGK". Also all instantiations of the "internal" classes of this classes were moved to the "Geom2dHatch.cdl". For new "BRepGProp_TFunction" and "BRepGProp_UFunction" internal classes two new "*.cdl" files were created.
966 lines
38 KiB
C++
966 lines
38 KiB
C++
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <BRepGProp_Vinert.ixx>
|
|
|
|
#include <math.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
|
|
class HMath_Vector{
|
|
math_Vector *pvec;
|
|
void operator=(const math_Vector&){}
|
|
public:
|
|
HMath_Vector(){ pvec = 0;}
|
|
HMath_Vector(math_Vector* pv){ pvec = pv;}
|
|
~HMath_Vector(){ if(pvec != 0) delete pvec;}
|
|
void operator=(math_Vector* pv){ if(pvec != pv && pvec != 0) delete pvec; pvec = pv;}
|
|
Standard_Real& operator()(Standard_Integer i){ return (*pvec).operator()(i);}
|
|
const Standard_Real& operator()(Standard_Integer i) const{ return (*pvec).operator()(i);}
|
|
const math_Vector* operator->() const{ return pvec;}
|
|
math_Vector* operator->(){ return pvec;}
|
|
math_Vector* Init(Standard_Real v, Standard_Integer i = 0, Standard_Integer iEnd = 0){
|
|
if(pvec == 0) return pvec;
|
|
if(iEnd - i == 0) pvec->Init(v);
|
|
else for(; i <= iEnd; i++) pvec->operator()(i) = v;
|
|
return pvec;
|
|
}
|
|
};
|
|
|
|
//Minimal value of interval's range for computation | minimal value of "dim" | ...
|
|
static Standard_Real EPS_PARAM = Precision::Angular(), EPS_DIM = 1.E-30, ERROR_ALGEBR_RATIO = 2.0/3.0;
|
|
//Maximum of GaussPoints on a subinterval and maximum of subintervals
|
|
static Standard_Integer GPM = math::GaussPointsMax(), SUBS_POWER = 32, SM = SUBS_POWER*GPM + 1;
|
|
static Standard_Boolean IS_MIN_DIM = 1; // if the value equal 0 error of algorithm calculted by static moments
|
|
|
|
static math_Vector LGaussP0(1,GPM), LGaussW0(1,GPM),
|
|
LGaussP1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM))), LGaussW1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM)));
|
|
static HMath_Vector L1 = new math_Vector(1,SM), L2 = new math_Vector(1,SM),
|
|
DimL = new math_Vector(1,SM), ErrL = new math_Vector(1,SM), ErrUL = new math_Vector(1,SM,0.0),
|
|
IxL = new math_Vector(1,SM), IyL = new math_Vector(1,SM), IzL = new math_Vector(1,SM),
|
|
IxxL = new math_Vector(1,SM), IyyL = new math_Vector(1,SM), IzzL = new math_Vector(1,SM),
|
|
IxyL = new math_Vector(1,SM), IxzL = new math_Vector(1,SM), IyzL = new math_Vector(1,SM);
|
|
|
|
static math_Vector* LGaussP[] = {&LGaussP0,&LGaussP1};
|
|
static math_Vector* LGaussW[] = {&LGaussW0,&LGaussW1};
|
|
|
|
static math_Vector UGaussP0(1,GPM), UGaussW0(1,GPM),
|
|
UGaussP1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM))), UGaussW1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM)));
|
|
static HMath_Vector U1 = new math_Vector(1,SM), U2 = new math_Vector(1,SM),
|
|
DimU = new math_Vector(1,SM), ErrU = new math_Vector(1,SM,0.0),
|
|
IxU = new math_Vector(1,SM), IyU = new math_Vector(1,SM), IzU = new math_Vector(1,SM),
|
|
IxxU = new math_Vector(1,SM), IyyU = new math_Vector(1,SM), IzzU = new math_Vector(1,SM),
|
|
IxyU = new math_Vector(1,SM), IxzU = new math_Vector(1,SM), IyzU = new math_Vector(1,SM);
|
|
|
|
static math_Vector* UGaussP[] = {&UGaussP0,&UGaussP1};
|
|
static math_Vector* UGaussW[] = {&UGaussW0,&UGaussW1};
|
|
|
|
static Standard_Integer FillIntervalBounds(Standard_Real A, Standard_Real B, const TColStd_Array1OfReal& Knots,
|
|
HMath_Vector& VA, HMath_Vector& VB)
|
|
{
|
|
Standard_Integer i = 1, iEnd = Knots.Upper(), j = 1, k = 1;
|
|
VA(j++) = A;
|
|
for(; i <= iEnd; i++){
|
|
Standard_Real kn = Knots(i);
|
|
if(A < kn)
|
|
{
|
|
if(kn < B)
|
|
{
|
|
VA(j++) = VB(k++) = kn;
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
VB(k) = B;
|
|
return k;
|
|
}
|
|
|
|
static inline Standard_Integer MaxSubs(Standard_Integer n, Standard_Integer coeff = SUBS_POWER){
|
|
return n = IntegerLast()/coeff < n? IntegerLast(): n*coeff + 1;
|
|
}
|
|
|
|
static Standard_Integer LFillIntervalBounds(Standard_Real A, Standard_Real B, const TColStd_Array1OfReal& Knots,
|
|
const Standard_Integer NumSubs)
|
|
{
|
|
Standard_Integer iEnd = Knots.Upper(), jEnd = L1->Upper();
|
|
|
|
// Modified by Sergey KHROMOV - Wed Mar 26 11:22:50 2003
|
|
iEnd = Max(iEnd, MaxSubs(iEnd-1,NumSubs));
|
|
if(iEnd - 1 > jEnd){
|
|
// iEnd = MaxSubs(iEnd-1,NumSubs);
|
|
// Modified by Sergey KHROMOV - Wed Mar 26 11:22:51 2003
|
|
L1 = new math_Vector(1,iEnd); L2 = new math_Vector(1,iEnd);
|
|
DimL = new math_Vector(1,iEnd); ErrL = new math_Vector(1,iEnd,0.0); ErrUL = new math_Vector(1,iEnd,0.0);
|
|
IxL = new math_Vector(1,iEnd); IyL = new math_Vector(1,iEnd); IzL = new math_Vector(1,iEnd);
|
|
IxxL = new math_Vector(1,iEnd); IyyL = new math_Vector(1,iEnd); IzzL = new math_Vector(1,iEnd);
|
|
IxyL = new math_Vector(1,iEnd); IxzL = new math_Vector(1,iEnd); IyzL = new math_Vector(1,iEnd);
|
|
}
|
|
return FillIntervalBounds(A, B, Knots, L1, L2);
|
|
}
|
|
|
|
static Standard_Integer UFillIntervalBounds(Standard_Real A, Standard_Real B, const TColStd_Array1OfReal& Knots,
|
|
const Standard_Integer NumSubs)
|
|
{
|
|
Standard_Integer iEnd = Knots.Upper(), jEnd = U1->Upper();
|
|
|
|
// Modified by Sergey KHROMOV - Wed Mar 26 11:22:50 2003
|
|
iEnd = Max(iEnd, MaxSubs(iEnd-1,NumSubs));
|
|
if(iEnd - 1 > jEnd){
|
|
// iEnd = MaxSubs(iEnd-1,NumSubs);
|
|
// Modified by Sergey KHROMOV - Wed Mar 26 11:22:51 2003
|
|
U1 = new math_Vector(1,iEnd); U2 = new math_Vector(1,iEnd);
|
|
DimU = new math_Vector(1,iEnd); ErrU = new math_Vector(1,iEnd,0.0);
|
|
IxU = new math_Vector(1,iEnd); IyU = new math_Vector(1,iEnd); IzU = new math_Vector(1,iEnd);
|
|
IxxU = new math_Vector(1,iEnd); IyyU = new math_Vector(1,iEnd); IzzU = new math_Vector(1,iEnd);
|
|
IxyU = new math_Vector(1,iEnd); IxzU = new math_Vector(1,iEnd); IyzU = new math_Vector(1,iEnd);
|
|
}
|
|
return FillIntervalBounds(A, B, Knots, U1, U2);
|
|
}
|
|
|
|
static Standard_Real CCompute(BRepGProp_Face& S, BRepGProp_Domain& D, const Standard_Boolean ByPoint, const Standard_Real Coeff[],
|
|
const gp_Pnt& loc, Standard_Real& Dim, gp_Pnt& g, gp_Mat& inertia,
|
|
const Standard_Real EpsDim,
|
|
const Standard_Boolean isErrorCalculation, const Standard_Boolean isVerifyComputation)
|
|
{
|
|
Standard_Boolean isNaturalRestriction = S.NaturalRestriction();
|
|
|
|
Standard_Integer NumSubs = SUBS_POWER;
|
|
Standard_Boolean isMinDim = IS_MIN_DIM;
|
|
|
|
Standard_Real Ix, Iy, Iz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz;
|
|
Dim = Ix = Iy = Iz = Ixx = Iyy = Izz = Ixy = Ixz = Iyz = 0.0;
|
|
//boundary curve parametrization
|
|
Standard_Real l1, l2, lm, lr, l;
|
|
//BRepGProp_Face parametrization in U and V direction
|
|
Standard_Real BV1, BV2, v;
|
|
Standard_Real BU1, BU2, u1, u2, um, ur, u;
|
|
S.Bounds (BU1, BU2, BV1, BV2); u1 = BU1;
|
|
//location point used to compute the inertia
|
|
Standard_Real xloc, yloc, zloc;
|
|
loc.Coord (xloc, yloc, zloc);
|
|
//location point used to compute the inertiard (xloc, yloc, zloc);
|
|
//Jacobien (x, y, z) -> (u, v) = ||n||
|
|
Standard_Real xn, yn, zn, s, ds, dDim;
|
|
Standard_Real x, y, z, xi, px, py, pz, yi, zi, d1, d2, d3;
|
|
//On the BRepGProp_Face
|
|
gp_Pnt Ps;
|
|
gp_Vec VNor;
|
|
//On the boundary curve u-v
|
|
gp_Pnt2d Puv;
|
|
gp_Vec2d Vuv;
|
|
Standard_Real Dul; // Dul = Du / Dl
|
|
Standard_Real CDim[2], CIx, CIy, CIz, CIxx[2], CIyy[2], CIzz[2], CIxy, CIxz, CIyz;
|
|
Standard_Real LocDim[2], LocIx[2], LocIy[2], LocIz[2], LocIxx[2], LocIyy[2], LocIzz[2], LocIxy[2], LocIxz[2], LocIyz[2];
|
|
|
|
Standard_Integer iD = 0, NbLSubs, iLS, iLSubEnd, iGL, iGLEnd, NbLGaussP[2], LRange[2], iL, kL, kLEnd, IL, JL;
|
|
Standard_Integer i, NbUSubs, iUS, iUSubEnd, iGU, iGUEnd, NbUGaussP[2], URange[2], iU, kU, kUEnd, IU, JU;
|
|
Standard_Integer UMaxSubs, LMaxSubs;
|
|
|
|
Standard_Real ErrorU, ErrorL, ErrorLMax = 0.0, Eps=0.0, EpsL=0.0, EpsU=0.0;
|
|
iGLEnd = isErrorCalculation? 2: 1;
|
|
|
|
for(i = 0; i < 2; i++) {
|
|
LocDim[i] = 0.0;
|
|
LocIx[i] = 0.0;
|
|
LocIy[i] = 0.0;
|
|
LocIz[i] = 0.0;
|
|
LocIxx[i] = 0.0;
|
|
LocIyy[i] = 0.0;
|
|
LocIzz[i] = 0.0;
|
|
LocIxy[i] = 0.0;
|
|
LocIyz[i] = 0.0;
|
|
LocIxz[i] = 0.0;
|
|
}
|
|
|
|
NbUGaussP[0] = S.SIntOrder(EpsDim);
|
|
NbUGaussP[1] = RealToInt(Ceiling(ERROR_ALGEBR_RATIO*NbUGaussP[0]));
|
|
math::GaussPoints(NbUGaussP[0],UGaussP0); math::GaussWeights(NbUGaussP[0],UGaussW0);
|
|
math::GaussPoints(NbUGaussP[1],UGaussP1); math::GaussWeights(NbUGaussP[1],UGaussW1);
|
|
|
|
NbUSubs = S.SUIntSubs();
|
|
TColStd_Array1OfReal UKnots(1,NbUSubs+1);
|
|
S.UKnots(UKnots);
|
|
|
|
while (isNaturalRestriction || D.More()) {
|
|
if(isNaturalRestriction){
|
|
NbLGaussP[0] = Min(2*NbUGaussP[0],math::GaussPointsMax());
|
|
}else{
|
|
S.Load(D.Value()); ++iD;
|
|
NbLGaussP[0] = S.LIntOrder(EpsDim);
|
|
}
|
|
NbLGaussP[1] = RealToInt(Ceiling(ERROR_ALGEBR_RATIO*NbLGaussP[0]));
|
|
math::GaussPoints(NbLGaussP[0],LGaussP0); math::GaussWeights(NbLGaussP[0],LGaussW0);
|
|
math::GaussPoints(NbLGaussP[1],LGaussP1); math::GaussWeights(NbLGaussP[1],LGaussW1);
|
|
|
|
NbLSubs = isNaturalRestriction? S.SVIntSubs(): S.LIntSubs();
|
|
TColStd_Array1OfReal LKnots(1,NbLSubs+1);
|
|
if(isNaturalRestriction){
|
|
S.VKnots(LKnots);
|
|
l1 = BV1; l2 = BV2;
|
|
}else{
|
|
S.LKnots(LKnots);
|
|
l1 = S.FirstParameter(); l2 = S.LastParameter();
|
|
}
|
|
ErrorL = 0.0;
|
|
kLEnd = 1; JL = 0;
|
|
//OCC503(apo): if(Abs(l2-l1) < EPS_PARAM) continue;
|
|
if(Abs(l2-l1) > EPS_PARAM) {
|
|
iLSubEnd = LFillIntervalBounds(l1, l2, LKnots, NumSubs);
|
|
LMaxSubs = MaxSubs(iLSubEnd);
|
|
//-- exception avoiding
|
|
if(LMaxSubs > SM) LMaxSubs = SM;
|
|
DimL.Init(0.0,1,LMaxSubs); ErrL.Init(0.0,1,LMaxSubs); ErrUL.Init(0.0,1,LMaxSubs);
|
|
do{// while: L
|
|
if(++JL > iLSubEnd){
|
|
LRange[0] = IL = ErrL->Max(); LRange[1] = JL;
|
|
L1(JL) = (L1(IL) + L2(IL))/2.0; L2(JL) = L2(IL); L2(IL) = L1(JL);
|
|
}else LRange[0] = IL = JL;
|
|
if(JL == LMaxSubs || Abs(L2(JL) - L1(JL)) < EPS_PARAM)
|
|
if(kLEnd == 1){
|
|
DimL(JL) = ErrL(JL) = IxL(JL) = IyL(JL) = IzL(JL) =
|
|
IxxL(JL) = IyyL(JL) = IzzL(JL) = IxyL(JL) = IxzL(JL) = IyzL(JL) = 0.0;
|
|
}else{
|
|
JL--;
|
|
EpsL = ErrorL; Eps = EpsL/0.9;
|
|
break;
|
|
}
|
|
else
|
|
for(kL=0; kL < kLEnd; kL++){
|
|
iLS = LRange[kL];
|
|
lm = 0.5*(L2(iLS) + L1(iLS));
|
|
lr = 0.5*(L2(iLS) - L1(iLS));
|
|
CIx = CIy = CIz = CIxy = CIxz = CIyz = 0.0;
|
|
for(iGL=0; iGL < iGLEnd; iGL++){//
|
|
CDim[iGL] = CIxx[iGL] = CIyy[iGL] = CIzz[iGL] = 0.0;
|
|
for(iL=1; iL<=NbLGaussP[iGL]; iL++){
|
|
l = lm + lr*(*LGaussP[iGL])(iL);
|
|
if(isNaturalRestriction){
|
|
v = l; u2 = BU2; Dul = (*LGaussW[iGL])(iL);
|
|
}else{
|
|
S.D12d (l, Puv, Vuv);
|
|
Dul = Vuv.Y()*(*LGaussW[iGL])(iL); // Dul = Du / Dl
|
|
if(Abs(Dul) < EPS_PARAM) continue;
|
|
v = Puv.Y(); u2 = Puv.X();
|
|
//Check on cause out off bounds of value current parameter
|
|
if(v < BV1) v = BV1; else if(v > BV2) v = BV2;
|
|
if(u2 < BU1) u2 = BU1; else if(u2 > BU2) u2 = BU2;
|
|
}
|
|
ErrUL(iLS) = 0.0;
|
|
kUEnd = 1; JU = 0;
|
|
if(Abs(u2-u1) < EPS_PARAM) continue;
|
|
iUSubEnd = UFillIntervalBounds(u1, u2, UKnots, NumSubs);
|
|
UMaxSubs = MaxSubs(iUSubEnd);
|
|
//-- exception avoiding
|
|
if(UMaxSubs > SM) UMaxSubs = SM;
|
|
DimU.Init(0.0,1,UMaxSubs); ErrU.Init(0.0,1,UMaxSubs); ErrorU = 0.0;
|
|
do{//while: U
|
|
if(++JU > iUSubEnd){
|
|
URange[0] = IU = ErrU->Max(); URange[1] = JU;
|
|
U1(JU) = (U1(IU)+U2(IU))/2.0; U2(JU) = U2(IU); U2(IU) = U1(JU);
|
|
}else URange[0] = IU = JU;
|
|
if(JU == UMaxSubs || Abs(U2(JU) - U1(JU)) < EPS_PARAM)
|
|
if(kUEnd == 1){
|
|
DimU(JU) = ErrU(JU) = IxU(JU) = IyU(JU) = IzU(JU) =
|
|
IxxU(JU) = IyyU(JU) = IzzU(JU) = IxyU(JU) = IxzU(JU) = IyzU(JU) = 0.0;
|
|
}else{
|
|
JU--;
|
|
EpsU = ErrorU; Eps = EpsU*Abs((u2-u1)*Dul)/0.1; EpsL = 0.9*Eps;
|
|
break;
|
|
}
|
|
else
|
|
for(kU=0; kU < kUEnd; kU++){
|
|
iUS = URange[kU];
|
|
um = 0.5*(U2(iUS) + U1(iUS));
|
|
ur = 0.5*(U2(iUS) - U1(iUS));
|
|
iGUEnd = iGLEnd - iGL;
|
|
for(iGU=0; iGU < iGUEnd; iGU++){//
|
|
LocDim[iGU] =
|
|
LocIxx[iGU] = LocIyy[iGU] = LocIzz[iGU] =
|
|
LocIx[iGU] = LocIy[iGU] = LocIz[iGU] =
|
|
LocIxy[iGU] = LocIxz[iGU] = LocIyz[iGU] = 0.0;
|
|
for(iU=1; iU<=NbUGaussP[iGU]; iU++){
|
|
u = um + ur*(*UGaussP[iGU])(iU);
|
|
S.Normal(u, v, Ps, VNor);
|
|
VNor.Coord(xn, yn, zn);
|
|
Ps.Coord(x, y, z);
|
|
x -= xloc; y -= yloc; z -= zloc;
|
|
xn *= (*UGaussW[iGU])(iU);
|
|
yn *= (*UGaussW[iGU])(iU);
|
|
zn *= (*UGaussW[iGU])(iU);
|
|
if(ByPoint){
|
|
//volume of elementary cone
|
|
dDim = (x*xn+y*yn+z*zn)/3.0;
|
|
//coordinates of cone's center mass
|
|
px = 0.75*x; py = 0.75*y; pz = 0.75*z;
|
|
LocDim[iGU] += dDim;
|
|
//if(iGU > 0) continue;
|
|
LocIx[iGU] += px*dDim;
|
|
LocIy[iGU] += py*dDim;
|
|
LocIz[iGU] += pz*dDim;
|
|
x -= Coeff[0]; y -= Coeff[1]; z -= Coeff[2];
|
|
dDim *= 3.0/5.0;
|
|
LocIxy[iGU] -= x*y*dDim;
|
|
LocIyz[iGU] -= y*z*dDim;
|
|
LocIxz[iGU] -= x*z*dDim;
|
|
xi = x*x; yi = y*y; zi = z*z;
|
|
LocIxx[iGU] += (yi+zi)*dDim;
|
|
LocIyy[iGU] += (xi+zi)*dDim;
|
|
LocIzz[iGU] += (xi+yi)*dDim;
|
|
}else{ // by plane
|
|
s = xn*Coeff[0] + yn*Coeff[1] + zn*Coeff[2];
|
|
d1 = Coeff[0]*x + Coeff[1]*y + Coeff[2]*z - Coeff[3];
|
|
d2 = d1*d1;
|
|
d3 = d1*d2/3.0;
|
|
ds = s*d1;
|
|
LocDim[iGU] += ds;
|
|
//if(iGU > 0) continue;
|
|
LocIx[iGU] += (x - Coeff[0]*d1/2.0) * ds;
|
|
LocIy[iGU] += (y - Coeff[1]*d1/2.0) * ds;
|
|
LocIz[iGU] += (z - Coeff[2]*d1/2.0) * ds;
|
|
px = x-Coeff[0]*d1; py = y-Coeff[1]*d1; pz = z-Coeff[2]*d1;
|
|
xi = px*px*d1 + px*Coeff[0]*d2 + Coeff[0]*Coeff[0]*d3;
|
|
yi = py*py*d1 + py*Coeff[1]*d2 + Coeff[1]*Coeff[1]*d3;
|
|
zi = pz*pz*d1 + pz*Coeff[2]*d2 + Coeff[2]*Coeff[2]*d3;
|
|
LocIxx[iGU] += (yi+zi)*s;
|
|
LocIyy[iGU] += (xi+zi)*s;
|
|
LocIzz[iGU] += (xi+yi)*s;
|
|
d2 /= 2.0;
|
|
xi = py*pz*d1 + py*Coeff[2]*d2 + pz*Coeff[1]*d2 + Coeff[1]*Coeff[2]*d3;
|
|
yi = px*pz*d1 + pz*Coeff[0]*d2 + px*Coeff[2]*d2 + Coeff[0]*Coeff[2]*d3;
|
|
zi = px*py*d1 + px*Coeff[1]*d2 + py*Coeff[0]*d2 + Coeff[0]*Coeff[1]*d3;
|
|
LocIxy[iGU] -= zi*s; LocIyz[iGU] -= xi*s; LocIxz[iGU] -= yi*s;
|
|
}
|
|
}//for: iU
|
|
}//for: iGU
|
|
DimU(iUS) = LocDim[0]*ur;
|
|
IxxU(iUS) = LocIxx[0]*ur; IyyU(iUS) = LocIyy[0]*ur; IzzU(iUS) = LocIzz[0]*ur;
|
|
if(iGL > 0) continue;
|
|
LocDim[1] = Abs(LocDim[1]-LocDim[0]);
|
|
LocIxx[1] = Abs(LocIxx[1]-LocIxx[0]);
|
|
LocIyy[1] = Abs(LocIyy[1]-LocIyy[0]);
|
|
LocIzz[1] = Abs(LocIzz[1]-LocIzz[0]);
|
|
ErrU(iUS) = isMinDim? LocDim[1]*ur: (LocIxx[1] + LocIyy[1] + LocIzz[1])*ur;
|
|
IxU(iUS) = LocIx[0]*ur; IyU(iUS) = LocIy[0]*ur; IzU(iUS) = LocIz[0]*ur;
|
|
IxyU(iUS) = LocIxy[0]*ur; IxzU(iUS) = LocIxz[0]*ur; IyzU(iUS) = LocIyz[0]*ur;
|
|
}//for: kU (iUS)
|
|
if(JU == iUSubEnd) kUEnd = 2;
|
|
if(kUEnd == 2) {
|
|
Standard_Integer imax = ErrU->Max();
|
|
if(imax > 0) ErrorU = ErrU(imax);
|
|
else ErrorU = 0.0;
|
|
}
|
|
}while((ErrorU - EpsU > 0.0 && EpsU != 0.0) || kUEnd == 1);
|
|
for(i=1; i<=JU; i++) {
|
|
CDim[iGL] += DimU(i)*Dul;
|
|
CIxx[iGL] += IxxU(i)*Dul; CIyy[iGL] += IyyU(i)*Dul; CIzz[iGL] += IzzU(i)*Dul;
|
|
}
|
|
if(iGL > 0) continue;
|
|
ErrUL(iLS) = ErrorU*Abs((u2-u1)*Dul);
|
|
for(i=1; i<=JU; i++){
|
|
CIx += IxU(i)*Dul; CIy += IyU(i)*Dul; CIz += IzU(i)*Dul;
|
|
//CIxx += IxxU(i)*Dul; CIyy += IyyU(i)*Dul; CIzz += IzzU(i)*Dul;
|
|
CIxy += IxyU(i)*Dul; CIxz += IxzU(i)*Dul; CIyz += IyzU(i)*Dul;
|
|
}
|
|
}//for: iL
|
|
}//for: iGL
|
|
DimL(iLS) = CDim[0]*lr;
|
|
IxxL(iLS) = CIxx[0]*lr; IyyL(iLS) = CIyy[0]*lr; IzzL(iLS) = CIzz[0]*lr;
|
|
if(iGLEnd == 2) {
|
|
//ErrL(iLS) = Abs(CDim[1]-CDim[0])*lr + ErrUL(iLS);
|
|
CDim[1] = Abs(CDim[1]-CDim[0]);
|
|
CIxx[1] = Abs(CIxx[1]-CIxx[0]); CIyy[1] = Abs(CIyy[1]-CIyy[0]); CIzz[1] = Abs(CIzz[1]-CIzz[0]);
|
|
ErrorU = ErrUL(iLS);
|
|
ErrL(iLS) = (isMinDim? CDim[1]: (CIxx[1] + CIyy[1] + CIzz[1]))*lr + ErrorU;
|
|
}
|
|
IxL(iLS) = CIx*lr; IyL(iLS) = CIy*lr; IzL(iLS) = CIz*lr;
|
|
//IxxL(iLS) = CIxx*lr; IyyL(iLS) = CIyy*lr; IzzL(iLS) = CIzz*lr;
|
|
IxyL(iLS) = CIxy*lr; IxzL(iLS) = CIxz*lr; IyzL(iLS) = CIyz*lr;
|
|
}//for: (kL)iLS
|
|
// Calculate/correct epsilon of computation by current value of Dim
|
|
//That is need for not spend time for
|
|
if(JL == iLSubEnd){
|
|
kLEnd = 2;
|
|
Standard_Real DDim = 0.0, DIxx = 0.0, DIyy = 0.0, DIzz = 0.0;
|
|
for(i=1; i<=JL; i++) {
|
|
DDim += DimL(i);
|
|
DIxx += IxxL(i); DIyy += IyyL(i); DIzz += IzzL(i);
|
|
}
|
|
DDim = isMinDim? Abs(DDim): Abs(DIxx) + Abs(DIyy) + Abs(DIzz);
|
|
DDim = Abs(DDim*EpsDim);
|
|
if(DDim > Eps) {
|
|
Eps = DDim; EpsL = 0.9*Eps;
|
|
}
|
|
}
|
|
if(kLEnd == 2) {
|
|
Standard_Integer imax = ErrL->Max();
|
|
if(imax > 0) ErrorL = ErrL(imax);
|
|
else ErrorL = 0.0;
|
|
}
|
|
}while((ErrorL - EpsL > 0.0 && isVerifyComputation) || kLEnd == 1);
|
|
for(i=1; i<=JL; i++){
|
|
Dim += DimL(i);
|
|
Ix += IxL(i); Iy += IyL(i); Iz += IzL(i);
|
|
Ixx += IxxL(i); Iyy += IyyL(i); Izz += IzzL(i);
|
|
Ixy += IxyL(i); Ixz += IxzL(i); Iyz += IyzL(i);
|
|
}
|
|
ErrorLMax = Max(ErrorLMax, ErrorL);
|
|
}
|
|
if(isNaturalRestriction) break;
|
|
D.Next();
|
|
}
|
|
if(Abs(Dim) >= EPS_DIM){
|
|
if(ByPoint){
|
|
Ix = Coeff[0] + Ix/Dim;
|
|
Iy = Coeff[1] + Iy/Dim;
|
|
Iz = Coeff[2] + Iz/Dim;
|
|
}else{
|
|
Ix /= Dim;
|
|
Iy /= Dim;
|
|
Iz /= Dim;
|
|
}
|
|
g.SetCoord (Ix, Iy, Iz);
|
|
}else{
|
|
Dim =0.;
|
|
g.SetCoord(0.,0.,0.);
|
|
}
|
|
inertia.SetCols (gp_XYZ (Ixx, Ixy, Ixz),
|
|
gp_XYZ (Ixy, Iyy, Iyz),
|
|
gp_XYZ (Ixz, Iyz, Izz));
|
|
if(iGLEnd == 2)
|
|
Eps = Dim != 0.0? ErrorLMax/(isMinDim? Abs(Dim): (Abs(Ixx) + Abs(Iyy) + Abs(Izz))): 0.0;
|
|
else Eps = EpsDim;
|
|
return Eps;
|
|
}
|
|
|
|
static Standard_Real Compute(BRepGProp_Face& S, const Standard_Boolean ByPoint, const Standard_Real Coeff[],
|
|
const gp_Pnt& loc, Standard_Real& Dim, gp_Pnt& g, gp_Mat& inertia, Standard_Real EpsDim)
|
|
{
|
|
Standard_Boolean isErrorCalculation = 0.0 > EpsDim || EpsDim < 0.001? 1: 0;
|
|
Standard_Boolean isVerifyComputation = 0.0 < EpsDim && EpsDim < 0.001? 1: 0;
|
|
EpsDim = Abs(EpsDim);
|
|
BRepGProp_Domain D;
|
|
return CCompute(S,D,ByPoint,Coeff,loc,Dim,g,inertia,EpsDim,isErrorCalculation,isVerifyComputation);
|
|
}
|
|
|
|
static Standard_Real Compute(BRepGProp_Face& S, BRepGProp_Domain& D, const Standard_Boolean ByPoint, const Standard_Real Coeff[],
|
|
const gp_Pnt& loc, Standard_Real& Dim, gp_Pnt& g, gp_Mat& inertia, Standard_Real EpsDim)
|
|
{
|
|
Standard_Boolean isErrorCalculation = 0.0 > EpsDim || EpsDim < 0.001? 1: 0;
|
|
Standard_Boolean isVerifyComputation = 0.0 < EpsDim && EpsDim < 0.001? 1: 0;
|
|
EpsDim = Abs(EpsDim);
|
|
return CCompute(S,D,ByPoint,Coeff,loc,Dim,g,inertia,EpsDim,isErrorCalculation,isVerifyComputation);
|
|
}
|
|
|
|
static void Compute(const BRepGProp_Face& S,
|
|
const Standard_Boolean ByPoint,
|
|
const Standard_Real Coeff[],
|
|
const gp_Pnt& Loc,
|
|
Standard_Real& Volu,
|
|
gp_Pnt& G,
|
|
gp_Mat& Inertia)
|
|
{
|
|
|
|
gp_Pnt P;
|
|
gp_Vec VNor;
|
|
Standard_Real dvi, dv;
|
|
Standard_Real ur, um, u, vr, vm, v;
|
|
Standard_Real x, y, z, xn, yn, zn, xi, yi, zi;
|
|
// Standard_Real x, y, z, xn, yn, zn, xi, yi, zi, xyz;
|
|
Standard_Real px,py,pz,s,d1,d2,d3;
|
|
Standard_Real Ixi, Iyi, Izi, Ixxi, Iyyi, Izzi, Ixyi, Ixzi, Iyzi;
|
|
Standard_Real xloc, yloc, zloc;
|
|
Standard_Real Ix, Iy, Iz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz;
|
|
|
|
Volu = Ix = Iy = Iz = Ixx = Iyy = Izz = Ixy = Ixz = Iyz = 0.0;
|
|
Loc.Coord (xloc, yloc, zloc);
|
|
|
|
Standard_Real LowerU, UpperU, LowerV, UpperV;
|
|
S.Bounds ( LowerU, UpperU, LowerV, UpperV);
|
|
Standard_Integer UOrder = Min(S.UIntegrationOrder (),
|
|
math::GaussPointsMax());
|
|
Standard_Integer VOrder = Min(S.VIntegrationOrder (),
|
|
math::GaussPointsMax());
|
|
|
|
Standard_Integer i, j;
|
|
math_Vector GaussPU (1, UOrder); //gauss points and weights
|
|
math_Vector GaussWU (1, UOrder);
|
|
math_Vector GaussPV (1, VOrder);
|
|
math_Vector GaussWV (1, VOrder);
|
|
|
|
math::GaussPoints (UOrder,GaussPU);
|
|
math::GaussWeights (UOrder,GaussWU);
|
|
math::GaussPoints (VOrder,GaussPV);
|
|
math::GaussWeights (VOrder,GaussWV);
|
|
|
|
um = 0.5 * (UpperU + LowerU);
|
|
vm = 0.5 * (UpperV + LowerV);
|
|
ur = 0.5 * (UpperU - LowerU);
|
|
vr = 0.5 * (UpperV - LowerV);
|
|
|
|
for (j = 1; j <= VOrder; j++) {
|
|
v = vm + vr * GaussPV (j);
|
|
dvi = Ixi = Iyi = Izi = Ixxi = Iyyi = Izzi = Ixyi = Ixzi = Iyzi = 0.0;
|
|
|
|
for (i = 1; i <= UOrder; i++) {
|
|
u = um + ur * GaussPU (i);
|
|
S.Normal (u, v, P, VNor);
|
|
VNor.Coord (xn, yn, zn);
|
|
P.Coord (x, y, z);
|
|
x -= xloc; y -= yloc; z -= zloc;
|
|
xn *= GaussWU (i); yn *= GaussWU (i); zn *= GaussWU (i);
|
|
if (ByPoint) {
|
|
///////////////////// ///////////////////////
|
|
// OFV code // // Initial code //
|
|
///////////////////// ///////////////////////
|
|
// modified by APO
|
|
dv = (x*xn+y*yn+z*zn)/3.0; //xyz = x * y * z;
|
|
dvi += dv; //Ixyi += zn * xyz;
|
|
Ixi += 0.75*x*dv; //Iyzi += xn * xyz;
|
|
Iyi += 0.75*y*dv; //Ixzi += yn * xyz;
|
|
Izi += 0.75*z*dv; //xi = x * x * x * xn / 3.0;
|
|
x -= Coeff[0]; //yi = y * y * y * yn / 3.0;
|
|
y -= Coeff[1]; //zi = z * z * z * zn / 3.0;
|
|
z -= Coeff[2]; //Ixxi += (yi + zi);
|
|
dv *= 3.0/5.0; //Iyyi += (xi + zi);
|
|
Ixyi -= x*y*dv; //Izzi += (xi + yi);
|
|
Iyzi -= y*z*dv; //x -= Coeff[0];
|
|
Ixzi -= x*z*dv; //y -= Coeff[1];
|
|
xi = x*x; //z -= Coeff[2];
|
|
yi = y*y; //dv = x * xn + y * yn + z * zn;
|
|
zi = z*z; //dvi += dv;
|
|
Ixxi += (yi + zi)*dv; //Ixi += x * dv;
|
|
Iyyi += (xi + zi)*dv; //Iyi += y * dv;
|
|
Izzi += (xi + yi)*dv; //Izi += z * dv;
|
|
}
|
|
else { // by plane
|
|
s = xn * Coeff[0] + yn * Coeff[1] + zn * Coeff[2];
|
|
d1 = Coeff[0] * x + Coeff[1] * y + Coeff[2] * z - Coeff[3];
|
|
d2 = d1 * d1;
|
|
d3 = d1 * d2 / 3.0;
|
|
dv = s * d1;
|
|
dvi += dv;
|
|
Ixi += (x - (Coeff[0] * d1 / 2.0)) * dv;
|
|
Iyi += (y - (Coeff[1] * d1 / 2.0)) * dv;
|
|
Izi += (z - (Coeff[2] * d1 / 2.0)) * dv;
|
|
px = x - Coeff[0] * d1;
|
|
py = y - Coeff[1] * d1;
|
|
pz = z - Coeff[2] * d1;
|
|
xi = px * px * d1 + px * Coeff[0]* d2 + Coeff[0] * Coeff[0] * d3;
|
|
yi = py * py * d1 + py * Coeff[1] * d2 + Coeff[1] * Coeff[1] * d3;
|
|
zi = pz * pz * d1 + pz * Coeff[2] * d2 + Coeff[2] * Coeff[2] * d3;
|
|
Ixxi += (yi + zi) * s;
|
|
Iyyi += (xi + zi) * s;
|
|
Izzi += (xi + yi) * s;
|
|
d2 /= 2.0;
|
|
xi = (py * pz * d1) + (py * Coeff[2] * d2) + (pz * Coeff[1] * d2) + (Coeff[1] * Coeff[2] * d3);
|
|
yi = (px * pz * d1) + (pz * Coeff[0] * d2) + (px * Coeff[2] * d2) + (Coeff[0] * Coeff[2] * d3);
|
|
zi = (px * py * d1) + (px * Coeff[1] * d2) + (py * Coeff[0] * d2) + (Coeff[0] * Coeff[1] * d3);
|
|
Ixyi -= zi * s;
|
|
Iyzi -= xi * s;
|
|
Ixzi -= yi * s;
|
|
}
|
|
}
|
|
Volu += dvi * GaussWV (j);
|
|
Ix += Ixi * GaussWV (j);
|
|
Iy += Iyi * GaussWV (j);
|
|
Iz += Izi * GaussWV (j);
|
|
Ixx += Ixxi * GaussWV (j);
|
|
Iyy += Iyyi * GaussWV (j);
|
|
Izz += Izzi * GaussWV (j);
|
|
Ixy += Ixyi * GaussWV (j);
|
|
Ixz += Ixzi * GaussWV (j);
|
|
Iyz += Iyzi * GaussWV (j);
|
|
}
|
|
vr *= ur;
|
|
Ixx *= vr;
|
|
Iyy *= vr;
|
|
Izz *= vr;
|
|
Ixy *= vr;
|
|
Ixz *= vr;
|
|
Iyz *= vr;
|
|
if (Abs(Volu) >= EPS_DIM ) {
|
|
if (ByPoint) {
|
|
Ix = Coeff[0] + Ix/Volu;
|
|
Iy = Coeff[1] + Iy/Volu;
|
|
Iz = Coeff[2] + Iz/Volu;
|
|
Volu *= vr;
|
|
}
|
|
else { //by plane
|
|
Ix /= Volu;
|
|
Iy /= Volu;
|
|
Iz /= Volu;
|
|
Volu *= vr;
|
|
}
|
|
G.SetCoord (Ix, Iy, Iz);
|
|
}
|
|
else {
|
|
G.SetCoord(0.,0.,0.);
|
|
Volu =0.;
|
|
}
|
|
Inertia.SetCols (gp_XYZ (Ixx, Ixy, Ixz),
|
|
gp_XYZ (Ixy, Iyy, Iyz),
|
|
gp_XYZ (Ixz, Iyz, Izz));
|
|
|
|
}
|
|
|
|
// Last modified by OFV 5.2001:
|
|
// 1). surface and edge integration order is equal now
|
|
// 2). "by point" works now rathre correctly (it looks so...)
|
|
static void Compute(BRepGProp_Face& S, BRepGProp_Domain& D, const Standard_Boolean ByPoint, const Standard_Real Coeff[],
|
|
const gp_Pnt& Loc, Standard_Real& Volu, gp_Pnt& G, gp_Mat& Inertia)
|
|
|
|
{
|
|
Standard_Real x, y, z, xi, yi, zi, l1, l2, lm, lr, l, v1, v2, v, u1, u2, um, ur, u, ds, Dul, xloc, yloc, zloc;
|
|
Standard_Real LocVolu, LocIx, LocIy, LocIz, LocIxx, LocIyy, LocIzz, LocIxy, LocIxz, LocIyz;
|
|
Standard_Real CVolu, CIx, CIy, CIz, CIxx, CIyy, CIzz, CIxy, CIxz, CIyz, Ix, Iy, Iz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz;
|
|
Standard_Real xn, yn, zn, px, py, pz, s, d1, d2, d3, dSigma;
|
|
Standard_Integer i, j, vio, sio, max, NbGaussgp_Pnts;
|
|
|
|
gp_Pnt Ps;
|
|
gp_Vec VNor;
|
|
gp_Pnt2d Puv;
|
|
gp_Vec2d Vuv;
|
|
|
|
Loc.Coord (xloc, yloc, zloc);
|
|
Volu = Ix = Iy = Iz = Ixx = Iyy = Izz = Ixy = Ixz = Iyz = 0.0;
|
|
S.Bounds (u1, u2, v1, v2);
|
|
Standard_Real _u2 = u2; //OCC104
|
|
vio = S.VIntegrationOrder ();
|
|
|
|
while (D.More())
|
|
{
|
|
S.Load(D.Value());
|
|
sio = S.IntegrationOrder ();
|
|
max = Max(vio,sio);
|
|
NbGaussgp_Pnts = Min(max,math::GaussPointsMax());
|
|
|
|
math_Vector GaussP (1, NbGaussgp_Pnts);
|
|
math_Vector GaussW (1, NbGaussgp_Pnts);
|
|
math::GaussPoints (NbGaussgp_Pnts,GaussP);
|
|
math::GaussWeights (NbGaussgp_Pnts,GaussW);
|
|
|
|
CVolu = CIx = CIy = CIz = CIxx = CIyy = CIzz = CIxy = CIxz = CIyz = 0.0;
|
|
l1 = S.FirstParameter();
|
|
l2 = S.LastParameter();
|
|
lm = 0.5 * (l2 + l1);
|
|
lr = 0.5 * (l2 - l1);
|
|
|
|
for (i=1; i<=NbGaussgp_Pnts; i++)
|
|
{
|
|
l = lm + lr * GaussP(i);
|
|
S.D12d (l, Puv, Vuv);
|
|
v = Puv.Y();
|
|
u2 = Puv.X();
|
|
|
|
//OCC104
|
|
v = v < v1? v1: v;
|
|
v = v > v2? v2: v;
|
|
u2 = u2 < u1? u1: u2;
|
|
u2 = u2 > _u2? _u2: u2;
|
|
|
|
Dul = Vuv.Y() * GaussW(i);
|
|
um = 0.5 * (u2 + u1);
|
|
ur = 0.5 * (u2 - u1);
|
|
LocVolu = LocIx = LocIy = LocIz = LocIxx = LocIyy = LocIzz = LocIxy = LocIxz = LocIyz = 0.0;
|
|
|
|
for (j=1; j<=NbGaussgp_Pnts; j++)
|
|
{
|
|
u = um + ur * GaussP(j);
|
|
S.Normal (u, v, Ps, VNor);
|
|
VNor.Coord (xn, yn, zn);
|
|
Ps.Coord (x, y, z);
|
|
x -= xloc;
|
|
y -= yloc;
|
|
z -= zloc;
|
|
xn = xn * Dul * GaussW(j);
|
|
yn = yn * Dul * GaussW(j);
|
|
zn = zn * Dul * GaussW(j);
|
|
if(ByPoint)
|
|
{
|
|
dSigma = (x*xn+y*yn+z*zn)/3.0;
|
|
LocVolu += dSigma;
|
|
LocIx += 0.75*x*dSigma;
|
|
LocIy += 0.75*y*dSigma;
|
|
LocIz += 0.75*z*dSigma;
|
|
x -= Coeff[0];
|
|
y -= Coeff[1];
|
|
z -= Coeff[2];
|
|
dSigma *= 3.0/5.0;
|
|
LocIxy -= x*y*dSigma;
|
|
LocIyz -= y*z*dSigma;
|
|
LocIxz -= x*z*dSigma;
|
|
xi = x*x;
|
|
yi = y*y;
|
|
zi = z*z;
|
|
LocIxx += (yi + zi)*dSigma;
|
|
LocIyy += (xi + zi)*dSigma;
|
|
LocIzz += (xi + yi)*dSigma;
|
|
}
|
|
else
|
|
{
|
|
s = xn * Coeff[0] + yn * Coeff[1] + zn * Coeff[2];
|
|
d1 = Coeff[0] * x + Coeff[1] * y + Coeff[2] * z;
|
|
d2 = d1 * d1;
|
|
d3 = d1 * d2 / 3.0;
|
|
ds = s * d1;
|
|
LocVolu += ds;
|
|
LocIx += (x - Coeff[0] * d1 / 2.0) * ds;
|
|
LocIy += (y - Coeff[1] * d1 / 2.0) * ds;
|
|
LocIz += (z - Coeff[2] * d1 / 2.0) * ds;
|
|
px = x - Coeff[0] * d1;
|
|
py = y - Coeff[1] * d1;
|
|
pz = z - Coeff[2] * d1;
|
|
xi = (px * px * d1) + (px * Coeff[0]* d2) + (Coeff[0] * Coeff[0] * d3);
|
|
yi = (py * py * d1) + (py * Coeff[1] * d2) + (Coeff[1] * Coeff[1] * d3);
|
|
zi = pz * pz * d1 + pz * Coeff[2] * d2 + (Coeff[2] * Coeff[2] * d3);
|
|
LocIxx += (yi + zi) * s;
|
|
LocIyy += (xi + zi) * s;
|
|
LocIzz += (xi + yi) * s;
|
|
d2 /= 2.0;
|
|
xi = (py * pz * d1) + (py * Coeff[2] * d2) + (pz * Coeff[1] * d2) + (Coeff[1] * Coeff[2] * d3);
|
|
yi = (px * pz * d1) + (pz * Coeff[0] * d2) + (px * Coeff[2] * d2) + (Coeff[0] * Coeff[2] * d3);
|
|
zi = (px * py * d1) + (px * Coeff[1] * d2) + (py * Coeff[0] * d2) + (Coeff[0] * Coeff[1] * d3);
|
|
LocIxy -= zi * s;
|
|
LocIyz -= xi * s;
|
|
LocIxz -= yi * s;
|
|
}
|
|
}
|
|
CVolu += LocVolu * ur;
|
|
CIx += LocIx * ur;
|
|
CIy += LocIy * ur;
|
|
CIz += LocIz * ur;
|
|
CIxx += LocIxx * ur;
|
|
CIyy += LocIyy * ur;
|
|
CIzz += LocIzz * ur;
|
|
CIxy += LocIxy * ur;
|
|
CIxz += LocIxz * ur;
|
|
CIyz += LocIyz * ur;
|
|
}
|
|
Volu += CVolu * lr;
|
|
Ix += CIx * lr;
|
|
Iy += CIy * lr;
|
|
Iz += CIz * lr;
|
|
Ixx += CIxx * lr;
|
|
Iyy += CIyy * lr;
|
|
Izz += CIzz * lr;
|
|
Ixy += CIxy * lr;
|
|
Ixz += CIxz * lr;
|
|
Iyz += CIyz * lr;
|
|
D.Next();
|
|
}
|
|
|
|
if(Abs(Volu) >= EPS_DIM)
|
|
{
|
|
if(ByPoint)
|
|
{
|
|
Ix = Coeff[0] + Ix/Volu;
|
|
Iy = Coeff[1] + Iy/Volu;
|
|
Iz = Coeff[2] + Iz/Volu;
|
|
}
|
|
else
|
|
{
|
|
Ix /= Volu;
|
|
Iy /= Volu;
|
|
Iz /= Volu;
|
|
}
|
|
G.SetCoord (Ix, Iy, Iz);
|
|
}
|
|
else
|
|
{
|
|
Volu =0.;
|
|
G.SetCoord(0.,0.,0.);
|
|
}
|
|
|
|
Inertia.SetCols (gp_XYZ (Ixx, Ixy, Ixz),
|
|
gp_XYZ (Ixy, Iyy, Iyz),
|
|
gp_XYZ (Ixz, Iyz, Izz));
|
|
|
|
}
|
|
|
|
BRepGProp_Vinert::BRepGProp_Vinert(){}
|
|
|
|
BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, const gp_Pnt& VLocation, const Standard_Real Eps){
|
|
SetLocation(VLocation);
|
|
Perform(S,Eps);
|
|
}
|
|
|
|
BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& VLocation, const Standard_Real Eps){
|
|
SetLocation(VLocation);
|
|
Perform(S,D,Eps);
|
|
}
|
|
|
|
BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& VLocation){
|
|
SetLocation(VLocation);
|
|
Perform(S,D);
|
|
}
|
|
|
|
BRepGProp_Vinert::BRepGProp_Vinert(const BRepGProp_Face& S, const gp_Pnt& VLocation){
|
|
SetLocation(VLocation);
|
|
Perform(S);
|
|
}
|
|
|
|
BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, const gp_Pnt& O, const gp_Pnt& VLocation, const Standard_Real Eps){
|
|
SetLocation(VLocation);
|
|
Perform(S,O,Eps);
|
|
}
|
|
|
|
BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& O, const gp_Pnt& VLocation, const Standard_Real Eps){
|
|
SetLocation(VLocation);
|
|
Perform(S,D,O,Eps);
|
|
}
|
|
|
|
BRepGProp_Vinert::BRepGProp_Vinert(const BRepGProp_Face& S, const gp_Pnt& O, const gp_Pnt& VLocation){
|
|
SetLocation(VLocation);
|
|
Perform(S,O);
|
|
}
|
|
|
|
BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& O, const gp_Pnt& VLocation){
|
|
SetLocation(VLocation);
|
|
Perform(S,D,O);
|
|
}
|
|
|
|
BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, const gp_Pln& Pl, const gp_Pnt& VLocation, const Standard_Real Eps){
|
|
SetLocation(VLocation);
|
|
Perform(S,Pl,Eps);
|
|
}
|
|
|
|
BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pln& Pl, const gp_Pnt& VLocation, const Standard_Real Eps){
|
|
SetLocation(VLocation);
|
|
Perform(S,D,Pl,Eps);
|
|
}
|
|
|
|
BRepGProp_Vinert::BRepGProp_Vinert(const BRepGProp_Face& S, const gp_Pln& Pl, const gp_Pnt& VLocation){
|
|
SetLocation(VLocation);
|
|
Perform(S,Pl);
|
|
}
|
|
|
|
BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pln& Pl, const gp_Pnt& VLocation){
|
|
SetLocation(VLocation);
|
|
Perform(S,D,Pl);
|
|
}
|
|
|
|
void BRepGProp_Vinert::SetLocation(const gp_Pnt& VLocation){
|
|
loc = VLocation;
|
|
}
|
|
|
|
Standard_Real BRepGProp_Vinert::Perform(BRepGProp_Face& S, const Standard_Real Eps){
|
|
Standard_Real Coeff[] = {0., 0., 0.};
|
|
return myEpsilon = Compute(S,Standard_True,Coeff,loc,dim,g,inertia,Eps);
|
|
}
|
|
|
|
Standard_Real BRepGProp_Vinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D, const Standard_Real Eps){
|
|
Standard_Real Coeff[] = {0., 0., 0.};
|
|
return myEpsilon = Compute(S,D,Standard_True,Coeff,loc,dim,g,inertia,Eps);
|
|
}
|
|
|
|
void BRepGProp_Vinert::Perform(const BRepGProp_Face& S){
|
|
Standard_Real Coeff[] = {0., 0., 0.};
|
|
Compute(S,Standard_True,Coeff,loc,dim,g,inertia);
|
|
myEpsilon = 1.0;
|
|
return;
|
|
}
|
|
|
|
void BRepGProp_Vinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D){
|
|
Standard_Real Coeff[] = {0., 0., 0.};
|
|
Compute(S,D,Standard_True,Coeff,loc,dim,g,inertia);
|
|
myEpsilon = 1.0;
|
|
return;
|
|
}
|
|
|
|
Standard_Real BRepGProp_Vinert::Perform(BRepGProp_Face& S, const gp_Pnt& O, const Standard_Real Eps){
|
|
Standard_Real xloc, yloc, zloc;
|
|
loc.Coord(xloc, yloc, zloc);
|
|
Standard_Real Coeff[3];
|
|
O.Coord (Coeff[0], Coeff[1], Coeff[2]);
|
|
Coeff[0] -= xloc; Coeff[1] -= yloc; Coeff[2] -= zloc;
|
|
return myEpsilon = Compute(S,Standard_True,Coeff,loc,dim,g,inertia,Eps);
|
|
}
|
|
|
|
Standard_Real BRepGProp_Vinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& O, const Standard_Real Eps){
|
|
Standard_Real xloc, yloc, zloc;
|
|
loc.Coord(xloc, yloc, zloc);
|
|
Standard_Real Coeff[3];
|
|
O.Coord (Coeff[0], Coeff[1], Coeff[2]);
|
|
Coeff[0] -= xloc; Coeff[1] -= yloc; Coeff[2] -= zloc;
|
|
return myEpsilon = Compute(S,D,Standard_True,Coeff,loc,dim,g,inertia,Eps);
|
|
}
|
|
|
|
void BRepGProp_Vinert::Perform(const BRepGProp_Face& S, const gp_Pnt& O){
|
|
Standard_Real xloc, yloc, zloc;
|
|
loc.Coord(xloc, yloc, zloc);
|
|
Standard_Real Coeff[3];
|
|
O.Coord (Coeff[0], Coeff[1], Coeff[2]);
|
|
Coeff[0] -= xloc; Coeff[1] -= yloc; Coeff[2] -= zloc;
|
|
Compute(S,Standard_True,Coeff,loc,dim,g,inertia);
|
|
myEpsilon = 1.0;
|
|
return;
|
|
}
|
|
|
|
void BRepGProp_Vinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& O){
|
|
Standard_Real xloc, yloc, zloc;
|
|
loc.Coord(xloc, yloc, zloc);
|
|
Standard_Real Coeff[3];
|
|
O.Coord (Coeff[0], Coeff[1], Coeff[2]);
|
|
Coeff[0] -= xloc; Coeff[1] -= yloc; Coeff[2] -= zloc;
|
|
Compute(S,D,Standard_True,Coeff,loc,dim,g,inertia);
|
|
myEpsilon = 1.0;
|
|
return;
|
|
}
|
|
|
|
Standard_Real BRepGProp_Vinert::Perform(BRepGProp_Face& S, const gp_Pln& Pl, const Standard_Real Eps){
|
|
Standard_Real xloc, yloc, zloc;
|
|
loc.Coord (xloc, yloc, zloc);
|
|
Standard_Real Coeff[4];
|
|
Pl.Coefficients (Coeff[0], Coeff[1],Coeff[2],Coeff[3]);
|
|
Coeff[3] = Coeff[3] - Coeff[0]*xloc - Coeff[1]*yloc - Coeff[2]*zloc;
|
|
return myEpsilon = Compute(S,Standard_False,Coeff,loc,dim,g,inertia,Eps);
|
|
}
|
|
|
|
Standard_Real BRepGProp_Vinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pln& Pl, const Standard_Real Eps){
|
|
Standard_Real xloc, yloc, zloc;
|
|
loc.Coord (xloc, yloc, zloc);
|
|
Standard_Real Coeff[4];
|
|
Pl.Coefficients (Coeff[0], Coeff[1],Coeff[2],Coeff[3]);
|
|
Coeff[3] = Coeff[3] - Coeff[0]*xloc - Coeff[1]*yloc - Coeff[2]*zloc;
|
|
return myEpsilon = Compute(S,D,Standard_False,Coeff,loc,dim,g,inertia,Eps);
|
|
}
|
|
|
|
void BRepGProp_Vinert::Perform(const BRepGProp_Face& S, const gp_Pln& Pl){
|
|
Standard_Real xloc, yloc, zloc;
|
|
loc.Coord (xloc, yloc, zloc);
|
|
Standard_Real Coeff[4];
|
|
Pl.Coefficients (Coeff[0], Coeff[1],Coeff[2],Coeff[3]);
|
|
Coeff[3] = Coeff[3] - Coeff[0]*xloc - Coeff[1]*yloc - Coeff[2]*zloc;
|
|
Compute(S,Standard_False,Coeff,loc,dim,g,inertia);
|
|
myEpsilon = 1.0;
|
|
return;
|
|
}
|
|
|
|
void BRepGProp_Vinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pln& Pl){
|
|
Standard_Real xloc, yloc, zloc;
|
|
loc.Coord (xloc, yloc, zloc);
|
|
Standard_Real Coeff[4];
|
|
Pl.Coefficients (Coeff[0], Coeff[1],Coeff[2],Coeff[3]);
|
|
Coeff[3] = Coeff[3] - Coeff[0]*xloc - Coeff[1]*yloc - Coeff[2]*zloc;
|
|
Compute(S,D,Standard_False,Coeff,loc,dim,g,inertia);
|
|
myEpsilon = 1.0;
|
|
return;
|
|
}
|
|
|
|
Standard_Real BRepGProp_Vinert::GetEpsilon(){
|
|
return myEpsilon;
|
|
}
|