1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-07-10 12:25:50 +03:00
occt/src/BRepGProp/BRepGProp_Vinert.cxx
dln 424cd6bb64 0024774: Convertation of the generic classes to the non-generic. Part 8
Generic classes:

 "GProp_CGProps",
 "GProp_SGProps",
 "GProp_VGProps",
 "GProp_VGPropsGK",
 "GProp_TFunction" (internal),
 "GProp_UFunction" (internal)

from "GProp" package converted to the non-generic classes and moved to the "BRepGProp" package. Names of several classes were changed to:

 "BRepGProp_Cinert",
 "BRepGProp_Sinert",
 "BRepGProp_Vinert",
 "BRepGProp_VinertGK".

Also all instantiations of the "internal" classes of this classes were moved to the "Geom2dHatch.cdl". For new "BRepGProp_TFunction" and "BRepGProp_UFunction" internal classes two new "*.cdl" files were created.
2014-04-04 12:57:35 +04:00

966 lines
38 KiB
C++

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <BRepGProp_Vinert.ixx>
#include <math.hxx>
#include <TColStd_Array1OfReal.hxx>
class HMath_Vector{
math_Vector *pvec;
void operator=(const math_Vector&){}
public:
HMath_Vector(){ pvec = 0;}
HMath_Vector(math_Vector* pv){ pvec = pv;}
~HMath_Vector(){ if(pvec != 0) delete pvec;}
void operator=(math_Vector* pv){ if(pvec != pv && pvec != 0) delete pvec; pvec = pv;}
Standard_Real& operator()(Standard_Integer i){ return (*pvec).operator()(i);}
const Standard_Real& operator()(Standard_Integer i) const{ return (*pvec).operator()(i);}
const math_Vector* operator->() const{ return pvec;}
math_Vector* operator->(){ return pvec;}
math_Vector* Init(Standard_Real v, Standard_Integer i = 0, Standard_Integer iEnd = 0){
if(pvec == 0) return pvec;
if(iEnd - i == 0) pvec->Init(v);
else for(; i <= iEnd; i++) pvec->operator()(i) = v;
return pvec;
}
};
//Minimal value of interval's range for computation | minimal value of "dim" | ...
static Standard_Real EPS_PARAM = Precision::Angular(), EPS_DIM = 1.E-30, ERROR_ALGEBR_RATIO = 2.0/3.0;
//Maximum of GaussPoints on a subinterval and maximum of subintervals
static Standard_Integer GPM = math::GaussPointsMax(), SUBS_POWER = 32, SM = SUBS_POWER*GPM + 1;
static Standard_Boolean IS_MIN_DIM = 1; // if the value equal 0 error of algorithm calculted by static moments
static math_Vector LGaussP0(1,GPM), LGaussW0(1,GPM),
LGaussP1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM))), LGaussW1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM)));
static HMath_Vector L1 = new math_Vector(1,SM), L2 = new math_Vector(1,SM),
DimL = new math_Vector(1,SM), ErrL = new math_Vector(1,SM), ErrUL = new math_Vector(1,SM,0.0),
IxL = new math_Vector(1,SM), IyL = new math_Vector(1,SM), IzL = new math_Vector(1,SM),
IxxL = new math_Vector(1,SM), IyyL = new math_Vector(1,SM), IzzL = new math_Vector(1,SM),
IxyL = new math_Vector(1,SM), IxzL = new math_Vector(1,SM), IyzL = new math_Vector(1,SM);
static math_Vector* LGaussP[] = {&LGaussP0,&LGaussP1};
static math_Vector* LGaussW[] = {&LGaussW0,&LGaussW1};
static math_Vector UGaussP0(1,GPM), UGaussW0(1,GPM),
UGaussP1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM))), UGaussW1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM)));
static HMath_Vector U1 = new math_Vector(1,SM), U2 = new math_Vector(1,SM),
DimU = new math_Vector(1,SM), ErrU = new math_Vector(1,SM,0.0),
IxU = new math_Vector(1,SM), IyU = new math_Vector(1,SM), IzU = new math_Vector(1,SM),
IxxU = new math_Vector(1,SM), IyyU = new math_Vector(1,SM), IzzU = new math_Vector(1,SM),
IxyU = new math_Vector(1,SM), IxzU = new math_Vector(1,SM), IyzU = new math_Vector(1,SM);
static math_Vector* UGaussP[] = {&UGaussP0,&UGaussP1};
static math_Vector* UGaussW[] = {&UGaussW0,&UGaussW1};
static Standard_Integer FillIntervalBounds(Standard_Real A, Standard_Real B, const TColStd_Array1OfReal& Knots,
HMath_Vector& VA, HMath_Vector& VB)
{
Standard_Integer i = 1, iEnd = Knots.Upper(), j = 1, k = 1;
VA(j++) = A;
for(; i <= iEnd; i++){
Standard_Real kn = Knots(i);
if(A < kn)
{
if(kn < B)
{
VA(j++) = VB(k++) = kn;
}
else
{
break;
}
}
}
VB(k) = B;
return k;
}
static inline Standard_Integer MaxSubs(Standard_Integer n, Standard_Integer coeff = SUBS_POWER){
return n = IntegerLast()/coeff < n? IntegerLast(): n*coeff + 1;
}
static Standard_Integer LFillIntervalBounds(Standard_Real A, Standard_Real B, const TColStd_Array1OfReal& Knots,
const Standard_Integer NumSubs)
{
Standard_Integer iEnd = Knots.Upper(), jEnd = L1->Upper();
// Modified by Sergey KHROMOV - Wed Mar 26 11:22:50 2003
iEnd = Max(iEnd, MaxSubs(iEnd-1,NumSubs));
if(iEnd - 1 > jEnd){
// iEnd = MaxSubs(iEnd-1,NumSubs);
// Modified by Sergey KHROMOV - Wed Mar 26 11:22:51 2003
L1 = new math_Vector(1,iEnd); L2 = new math_Vector(1,iEnd);
DimL = new math_Vector(1,iEnd); ErrL = new math_Vector(1,iEnd,0.0); ErrUL = new math_Vector(1,iEnd,0.0);
IxL = new math_Vector(1,iEnd); IyL = new math_Vector(1,iEnd); IzL = new math_Vector(1,iEnd);
IxxL = new math_Vector(1,iEnd); IyyL = new math_Vector(1,iEnd); IzzL = new math_Vector(1,iEnd);
IxyL = new math_Vector(1,iEnd); IxzL = new math_Vector(1,iEnd); IyzL = new math_Vector(1,iEnd);
}
return FillIntervalBounds(A, B, Knots, L1, L2);
}
static Standard_Integer UFillIntervalBounds(Standard_Real A, Standard_Real B, const TColStd_Array1OfReal& Knots,
const Standard_Integer NumSubs)
{
Standard_Integer iEnd = Knots.Upper(), jEnd = U1->Upper();
// Modified by Sergey KHROMOV - Wed Mar 26 11:22:50 2003
iEnd = Max(iEnd, MaxSubs(iEnd-1,NumSubs));
if(iEnd - 1 > jEnd){
// iEnd = MaxSubs(iEnd-1,NumSubs);
// Modified by Sergey KHROMOV - Wed Mar 26 11:22:51 2003
U1 = new math_Vector(1,iEnd); U2 = new math_Vector(1,iEnd);
DimU = new math_Vector(1,iEnd); ErrU = new math_Vector(1,iEnd,0.0);
IxU = new math_Vector(1,iEnd); IyU = new math_Vector(1,iEnd); IzU = new math_Vector(1,iEnd);
IxxU = new math_Vector(1,iEnd); IyyU = new math_Vector(1,iEnd); IzzU = new math_Vector(1,iEnd);
IxyU = new math_Vector(1,iEnd); IxzU = new math_Vector(1,iEnd); IyzU = new math_Vector(1,iEnd);
}
return FillIntervalBounds(A, B, Knots, U1, U2);
}
static Standard_Real CCompute(BRepGProp_Face& S, BRepGProp_Domain& D, const Standard_Boolean ByPoint, const Standard_Real Coeff[],
const gp_Pnt& loc, Standard_Real& Dim, gp_Pnt& g, gp_Mat& inertia,
const Standard_Real EpsDim,
const Standard_Boolean isErrorCalculation, const Standard_Boolean isVerifyComputation)
{
Standard_Boolean isNaturalRestriction = S.NaturalRestriction();
Standard_Integer NumSubs = SUBS_POWER;
Standard_Boolean isMinDim = IS_MIN_DIM;
Standard_Real Ix, Iy, Iz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz;
Dim = Ix = Iy = Iz = Ixx = Iyy = Izz = Ixy = Ixz = Iyz = 0.0;
//boundary curve parametrization
Standard_Real l1, l2, lm, lr, l;
//BRepGProp_Face parametrization in U and V direction
Standard_Real BV1, BV2, v;
Standard_Real BU1, BU2, u1, u2, um, ur, u;
S.Bounds (BU1, BU2, BV1, BV2); u1 = BU1;
//location point used to compute the inertia
Standard_Real xloc, yloc, zloc;
loc.Coord (xloc, yloc, zloc);
//location point used to compute the inertiard (xloc, yloc, zloc);
//Jacobien (x, y, z) -> (u, v) = ||n||
Standard_Real xn, yn, zn, s, ds, dDim;
Standard_Real x, y, z, xi, px, py, pz, yi, zi, d1, d2, d3;
//On the BRepGProp_Face
gp_Pnt Ps;
gp_Vec VNor;
//On the boundary curve u-v
gp_Pnt2d Puv;
gp_Vec2d Vuv;
Standard_Real Dul; // Dul = Du / Dl
Standard_Real CDim[2], CIx, CIy, CIz, CIxx[2], CIyy[2], CIzz[2], CIxy, CIxz, CIyz;
Standard_Real LocDim[2], LocIx[2], LocIy[2], LocIz[2], LocIxx[2], LocIyy[2], LocIzz[2], LocIxy[2], LocIxz[2], LocIyz[2];
Standard_Integer iD = 0, NbLSubs, iLS, iLSubEnd, iGL, iGLEnd, NbLGaussP[2], LRange[2], iL, kL, kLEnd, IL, JL;
Standard_Integer i, NbUSubs, iUS, iUSubEnd, iGU, iGUEnd, NbUGaussP[2], URange[2], iU, kU, kUEnd, IU, JU;
Standard_Integer UMaxSubs, LMaxSubs;
Standard_Real ErrorU, ErrorL, ErrorLMax = 0.0, Eps=0.0, EpsL=0.0, EpsU=0.0;
iGLEnd = isErrorCalculation? 2: 1;
for(i = 0; i < 2; i++) {
LocDim[i] = 0.0;
LocIx[i] = 0.0;
LocIy[i] = 0.0;
LocIz[i] = 0.0;
LocIxx[i] = 0.0;
LocIyy[i] = 0.0;
LocIzz[i] = 0.0;
LocIxy[i] = 0.0;
LocIyz[i] = 0.0;
LocIxz[i] = 0.0;
}
NbUGaussP[0] = S.SIntOrder(EpsDim);
NbUGaussP[1] = RealToInt(Ceiling(ERROR_ALGEBR_RATIO*NbUGaussP[0]));
math::GaussPoints(NbUGaussP[0],UGaussP0); math::GaussWeights(NbUGaussP[0],UGaussW0);
math::GaussPoints(NbUGaussP[1],UGaussP1); math::GaussWeights(NbUGaussP[1],UGaussW1);
NbUSubs = S.SUIntSubs();
TColStd_Array1OfReal UKnots(1,NbUSubs+1);
S.UKnots(UKnots);
while (isNaturalRestriction || D.More()) {
if(isNaturalRestriction){
NbLGaussP[0] = Min(2*NbUGaussP[0],math::GaussPointsMax());
}else{
S.Load(D.Value()); ++iD;
NbLGaussP[0] = S.LIntOrder(EpsDim);
}
NbLGaussP[1] = RealToInt(Ceiling(ERROR_ALGEBR_RATIO*NbLGaussP[0]));
math::GaussPoints(NbLGaussP[0],LGaussP0); math::GaussWeights(NbLGaussP[0],LGaussW0);
math::GaussPoints(NbLGaussP[1],LGaussP1); math::GaussWeights(NbLGaussP[1],LGaussW1);
NbLSubs = isNaturalRestriction? S.SVIntSubs(): S.LIntSubs();
TColStd_Array1OfReal LKnots(1,NbLSubs+1);
if(isNaturalRestriction){
S.VKnots(LKnots);
l1 = BV1; l2 = BV2;
}else{
S.LKnots(LKnots);
l1 = S.FirstParameter(); l2 = S.LastParameter();
}
ErrorL = 0.0;
kLEnd = 1; JL = 0;
//OCC503(apo): if(Abs(l2-l1) < EPS_PARAM) continue;
if(Abs(l2-l1) > EPS_PARAM) {
iLSubEnd = LFillIntervalBounds(l1, l2, LKnots, NumSubs);
LMaxSubs = MaxSubs(iLSubEnd);
//-- exception avoiding
if(LMaxSubs > SM) LMaxSubs = SM;
DimL.Init(0.0,1,LMaxSubs); ErrL.Init(0.0,1,LMaxSubs); ErrUL.Init(0.0,1,LMaxSubs);
do{// while: L
if(++JL > iLSubEnd){
LRange[0] = IL = ErrL->Max(); LRange[1] = JL;
L1(JL) = (L1(IL) + L2(IL))/2.0; L2(JL) = L2(IL); L2(IL) = L1(JL);
}else LRange[0] = IL = JL;
if(JL == LMaxSubs || Abs(L2(JL) - L1(JL)) < EPS_PARAM)
if(kLEnd == 1){
DimL(JL) = ErrL(JL) = IxL(JL) = IyL(JL) = IzL(JL) =
IxxL(JL) = IyyL(JL) = IzzL(JL) = IxyL(JL) = IxzL(JL) = IyzL(JL) = 0.0;
}else{
JL--;
EpsL = ErrorL; Eps = EpsL/0.9;
break;
}
else
for(kL=0; kL < kLEnd; kL++){
iLS = LRange[kL];
lm = 0.5*(L2(iLS) + L1(iLS));
lr = 0.5*(L2(iLS) - L1(iLS));
CIx = CIy = CIz = CIxy = CIxz = CIyz = 0.0;
for(iGL=0; iGL < iGLEnd; iGL++){//
CDim[iGL] = CIxx[iGL] = CIyy[iGL] = CIzz[iGL] = 0.0;
for(iL=1; iL<=NbLGaussP[iGL]; iL++){
l = lm + lr*(*LGaussP[iGL])(iL);
if(isNaturalRestriction){
v = l; u2 = BU2; Dul = (*LGaussW[iGL])(iL);
}else{
S.D12d (l, Puv, Vuv);
Dul = Vuv.Y()*(*LGaussW[iGL])(iL); // Dul = Du / Dl
if(Abs(Dul) < EPS_PARAM) continue;
v = Puv.Y(); u2 = Puv.X();
//Check on cause out off bounds of value current parameter
if(v < BV1) v = BV1; else if(v > BV2) v = BV2;
if(u2 < BU1) u2 = BU1; else if(u2 > BU2) u2 = BU2;
}
ErrUL(iLS) = 0.0;
kUEnd = 1; JU = 0;
if(Abs(u2-u1) < EPS_PARAM) continue;
iUSubEnd = UFillIntervalBounds(u1, u2, UKnots, NumSubs);
UMaxSubs = MaxSubs(iUSubEnd);
//-- exception avoiding
if(UMaxSubs > SM) UMaxSubs = SM;
DimU.Init(0.0,1,UMaxSubs); ErrU.Init(0.0,1,UMaxSubs); ErrorU = 0.0;
do{//while: U
if(++JU > iUSubEnd){
URange[0] = IU = ErrU->Max(); URange[1] = JU;
U1(JU) = (U1(IU)+U2(IU))/2.0; U2(JU) = U2(IU); U2(IU) = U1(JU);
}else URange[0] = IU = JU;
if(JU == UMaxSubs || Abs(U2(JU) - U1(JU)) < EPS_PARAM)
if(kUEnd == 1){
DimU(JU) = ErrU(JU) = IxU(JU) = IyU(JU) = IzU(JU) =
IxxU(JU) = IyyU(JU) = IzzU(JU) = IxyU(JU) = IxzU(JU) = IyzU(JU) = 0.0;
}else{
JU--;
EpsU = ErrorU; Eps = EpsU*Abs((u2-u1)*Dul)/0.1; EpsL = 0.9*Eps;
break;
}
else
for(kU=0; kU < kUEnd; kU++){
iUS = URange[kU];
um = 0.5*(U2(iUS) + U1(iUS));
ur = 0.5*(U2(iUS) - U1(iUS));
iGUEnd = iGLEnd - iGL;
for(iGU=0; iGU < iGUEnd; iGU++){//
LocDim[iGU] =
LocIxx[iGU] = LocIyy[iGU] = LocIzz[iGU] =
LocIx[iGU] = LocIy[iGU] = LocIz[iGU] =
LocIxy[iGU] = LocIxz[iGU] = LocIyz[iGU] = 0.0;
for(iU=1; iU<=NbUGaussP[iGU]; iU++){
u = um + ur*(*UGaussP[iGU])(iU);
S.Normal(u, v, Ps, VNor);
VNor.Coord(xn, yn, zn);
Ps.Coord(x, y, z);
x -= xloc; y -= yloc; z -= zloc;
xn *= (*UGaussW[iGU])(iU);
yn *= (*UGaussW[iGU])(iU);
zn *= (*UGaussW[iGU])(iU);
if(ByPoint){
//volume of elementary cone
dDim = (x*xn+y*yn+z*zn)/3.0;
//coordinates of cone's center mass
px = 0.75*x; py = 0.75*y; pz = 0.75*z;
LocDim[iGU] += dDim;
//if(iGU > 0) continue;
LocIx[iGU] += px*dDim;
LocIy[iGU] += py*dDim;
LocIz[iGU] += pz*dDim;
x -= Coeff[0]; y -= Coeff[1]; z -= Coeff[2];
dDim *= 3.0/5.0;
LocIxy[iGU] -= x*y*dDim;
LocIyz[iGU] -= y*z*dDim;
LocIxz[iGU] -= x*z*dDim;
xi = x*x; yi = y*y; zi = z*z;
LocIxx[iGU] += (yi+zi)*dDim;
LocIyy[iGU] += (xi+zi)*dDim;
LocIzz[iGU] += (xi+yi)*dDim;
}else{ // by plane
s = xn*Coeff[0] + yn*Coeff[1] + zn*Coeff[2];
d1 = Coeff[0]*x + Coeff[1]*y + Coeff[2]*z - Coeff[3];
d2 = d1*d1;
d3 = d1*d2/3.0;
ds = s*d1;
LocDim[iGU] += ds;
//if(iGU > 0) continue;
LocIx[iGU] += (x - Coeff[0]*d1/2.0) * ds;
LocIy[iGU] += (y - Coeff[1]*d1/2.0) * ds;
LocIz[iGU] += (z - Coeff[2]*d1/2.0) * ds;
px = x-Coeff[0]*d1; py = y-Coeff[1]*d1; pz = z-Coeff[2]*d1;
xi = px*px*d1 + px*Coeff[0]*d2 + Coeff[0]*Coeff[0]*d3;
yi = py*py*d1 + py*Coeff[1]*d2 + Coeff[1]*Coeff[1]*d3;
zi = pz*pz*d1 + pz*Coeff[2]*d2 + Coeff[2]*Coeff[2]*d3;
LocIxx[iGU] += (yi+zi)*s;
LocIyy[iGU] += (xi+zi)*s;
LocIzz[iGU] += (xi+yi)*s;
d2 /= 2.0;
xi = py*pz*d1 + py*Coeff[2]*d2 + pz*Coeff[1]*d2 + Coeff[1]*Coeff[2]*d3;
yi = px*pz*d1 + pz*Coeff[0]*d2 + px*Coeff[2]*d2 + Coeff[0]*Coeff[2]*d3;
zi = px*py*d1 + px*Coeff[1]*d2 + py*Coeff[0]*d2 + Coeff[0]*Coeff[1]*d3;
LocIxy[iGU] -= zi*s; LocIyz[iGU] -= xi*s; LocIxz[iGU] -= yi*s;
}
}//for: iU
}//for: iGU
DimU(iUS) = LocDim[0]*ur;
IxxU(iUS) = LocIxx[0]*ur; IyyU(iUS) = LocIyy[0]*ur; IzzU(iUS) = LocIzz[0]*ur;
if(iGL > 0) continue;
LocDim[1] = Abs(LocDim[1]-LocDim[0]);
LocIxx[1] = Abs(LocIxx[1]-LocIxx[0]);
LocIyy[1] = Abs(LocIyy[1]-LocIyy[0]);
LocIzz[1] = Abs(LocIzz[1]-LocIzz[0]);
ErrU(iUS) = isMinDim? LocDim[1]*ur: (LocIxx[1] + LocIyy[1] + LocIzz[1])*ur;
IxU(iUS) = LocIx[0]*ur; IyU(iUS) = LocIy[0]*ur; IzU(iUS) = LocIz[0]*ur;
IxyU(iUS) = LocIxy[0]*ur; IxzU(iUS) = LocIxz[0]*ur; IyzU(iUS) = LocIyz[0]*ur;
}//for: kU (iUS)
if(JU == iUSubEnd) kUEnd = 2;
if(kUEnd == 2) {
Standard_Integer imax = ErrU->Max();
if(imax > 0) ErrorU = ErrU(imax);
else ErrorU = 0.0;
}
}while((ErrorU - EpsU > 0.0 && EpsU != 0.0) || kUEnd == 1);
for(i=1; i<=JU; i++) {
CDim[iGL] += DimU(i)*Dul;
CIxx[iGL] += IxxU(i)*Dul; CIyy[iGL] += IyyU(i)*Dul; CIzz[iGL] += IzzU(i)*Dul;
}
if(iGL > 0) continue;
ErrUL(iLS) = ErrorU*Abs((u2-u1)*Dul);
for(i=1; i<=JU; i++){
CIx += IxU(i)*Dul; CIy += IyU(i)*Dul; CIz += IzU(i)*Dul;
//CIxx += IxxU(i)*Dul; CIyy += IyyU(i)*Dul; CIzz += IzzU(i)*Dul;
CIxy += IxyU(i)*Dul; CIxz += IxzU(i)*Dul; CIyz += IyzU(i)*Dul;
}
}//for: iL
}//for: iGL
DimL(iLS) = CDim[0]*lr;
IxxL(iLS) = CIxx[0]*lr; IyyL(iLS) = CIyy[0]*lr; IzzL(iLS) = CIzz[0]*lr;
if(iGLEnd == 2) {
//ErrL(iLS) = Abs(CDim[1]-CDim[0])*lr + ErrUL(iLS);
CDim[1] = Abs(CDim[1]-CDim[0]);
CIxx[1] = Abs(CIxx[1]-CIxx[0]); CIyy[1] = Abs(CIyy[1]-CIyy[0]); CIzz[1] = Abs(CIzz[1]-CIzz[0]);
ErrorU = ErrUL(iLS);
ErrL(iLS) = (isMinDim? CDim[1]: (CIxx[1] + CIyy[1] + CIzz[1]))*lr + ErrorU;
}
IxL(iLS) = CIx*lr; IyL(iLS) = CIy*lr; IzL(iLS) = CIz*lr;
//IxxL(iLS) = CIxx*lr; IyyL(iLS) = CIyy*lr; IzzL(iLS) = CIzz*lr;
IxyL(iLS) = CIxy*lr; IxzL(iLS) = CIxz*lr; IyzL(iLS) = CIyz*lr;
}//for: (kL)iLS
// Calculate/correct epsilon of computation by current value of Dim
//That is need for not spend time for
if(JL == iLSubEnd){
kLEnd = 2;
Standard_Real DDim = 0.0, DIxx = 0.0, DIyy = 0.0, DIzz = 0.0;
for(i=1; i<=JL; i++) {
DDim += DimL(i);
DIxx += IxxL(i); DIyy += IyyL(i); DIzz += IzzL(i);
}
DDim = isMinDim? Abs(DDim): Abs(DIxx) + Abs(DIyy) + Abs(DIzz);
DDim = Abs(DDim*EpsDim);
if(DDim > Eps) {
Eps = DDim; EpsL = 0.9*Eps;
}
}
if(kLEnd == 2) {
Standard_Integer imax = ErrL->Max();
if(imax > 0) ErrorL = ErrL(imax);
else ErrorL = 0.0;
}
}while((ErrorL - EpsL > 0.0 && isVerifyComputation) || kLEnd == 1);
for(i=1; i<=JL; i++){
Dim += DimL(i);
Ix += IxL(i); Iy += IyL(i); Iz += IzL(i);
Ixx += IxxL(i); Iyy += IyyL(i); Izz += IzzL(i);
Ixy += IxyL(i); Ixz += IxzL(i); Iyz += IyzL(i);
}
ErrorLMax = Max(ErrorLMax, ErrorL);
}
if(isNaturalRestriction) break;
D.Next();
}
if(Abs(Dim) >= EPS_DIM){
if(ByPoint){
Ix = Coeff[0] + Ix/Dim;
Iy = Coeff[1] + Iy/Dim;
Iz = Coeff[2] + Iz/Dim;
}else{
Ix /= Dim;
Iy /= Dim;
Iz /= Dim;
}
g.SetCoord (Ix, Iy, Iz);
}else{
Dim =0.;
g.SetCoord(0.,0.,0.);
}
inertia.SetCols (gp_XYZ (Ixx, Ixy, Ixz),
gp_XYZ (Ixy, Iyy, Iyz),
gp_XYZ (Ixz, Iyz, Izz));
if(iGLEnd == 2)
Eps = Dim != 0.0? ErrorLMax/(isMinDim? Abs(Dim): (Abs(Ixx) + Abs(Iyy) + Abs(Izz))): 0.0;
else Eps = EpsDim;
return Eps;
}
static Standard_Real Compute(BRepGProp_Face& S, const Standard_Boolean ByPoint, const Standard_Real Coeff[],
const gp_Pnt& loc, Standard_Real& Dim, gp_Pnt& g, gp_Mat& inertia, Standard_Real EpsDim)
{
Standard_Boolean isErrorCalculation = 0.0 > EpsDim || EpsDim < 0.001? 1: 0;
Standard_Boolean isVerifyComputation = 0.0 < EpsDim && EpsDim < 0.001? 1: 0;
EpsDim = Abs(EpsDim);
BRepGProp_Domain D;
return CCompute(S,D,ByPoint,Coeff,loc,Dim,g,inertia,EpsDim,isErrorCalculation,isVerifyComputation);
}
static Standard_Real Compute(BRepGProp_Face& S, BRepGProp_Domain& D, const Standard_Boolean ByPoint, const Standard_Real Coeff[],
const gp_Pnt& loc, Standard_Real& Dim, gp_Pnt& g, gp_Mat& inertia, Standard_Real EpsDim)
{
Standard_Boolean isErrorCalculation = 0.0 > EpsDim || EpsDim < 0.001? 1: 0;
Standard_Boolean isVerifyComputation = 0.0 < EpsDim && EpsDim < 0.001? 1: 0;
EpsDim = Abs(EpsDim);
return CCompute(S,D,ByPoint,Coeff,loc,Dim,g,inertia,EpsDim,isErrorCalculation,isVerifyComputation);
}
static void Compute(const BRepGProp_Face& S,
const Standard_Boolean ByPoint,
const Standard_Real Coeff[],
const gp_Pnt& Loc,
Standard_Real& Volu,
gp_Pnt& G,
gp_Mat& Inertia)
{
gp_Pnt P;
gp_Vec VNor;
Standard_Real dvi, dv;
Standard_Real ur, um, u, vr, vm, v;
Standard_Real x, y, z, xn, yn, zn, xi, yi, zi;
// Standard_Real x, y, z, xn, yn, zn, xi, yi, zi, xyz;
Standard_Real px,py,pz,s,d1,d2,d3;
Standard_Real Ixi, Iyi, Izi, Ixxi, Iyyi, Izzi, Ixyi, Ixzi, Iyzi;
Standard_Real xloc, yloc, zloc;
Standard_Real Ix, Iy, Iz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz;
Volu = Ix = Iy = Iz = Ixx = Iyy = Izz = Ixy = Ixz = Iyz = 0.0;
Loc.Coord (xloc, yloc, zloc);
Standard_Real LowerU, UpperU, LowerV, UpperV;
S.Bounds ( LowerU, UpperU, LowerV, UpperV);
Standard_Integer UOrder = Min(S.UIntegrationOrder (),
math::GaussPointsMax());
Standard_Integer VOrder = Min(S.VIntegrationOrder (),
math::GaussPointsMax());
Standard_Integer i, j;
math_Vector GaussPU (1, UOrder); //gauss points and weights
math_Vector GaussWU (1, UOrder);
math_Vector GaussPV (1, VOrder);
math_Vector GaussWV (1, VOrder);
math::GaussPoints (UOrder,GaussPU);
math::GaussWeights (UOrder,GaussWU);
math::GaussPoints (VOrder,GaussPV);
math::GaussWeights (VOrder,GaussWV);
um = 0.5 * (UpperU + LowerU);
vm = 0.5 * (UpperV + LowerV);
ur = 0.5 * (UpperU - LowerU);
vr = 0.5 * (UpperV - LowerV);
for (j = 1; j <= VOrder; j++) {
v = vm + vr * GaussPV (j);
dvi = Ixi = Iyi = Izi = Ixxi = Iyyi = Izzi = Ixyi = Ixzi = Iyzi = 0.0;
for (i = 1; i <= UOrder; i++) {
u = um + ur * GaussPU (i);
S.Normal (u, v, P, VNor);
VNor.Coord (xn, yn, zn);
P.Coord (x, y, z);
x -= xloc; y -= yloc; z -= zloc;
xn *= GaussWU (i); yn *= GaussWU (i); zn *= GaussWU (i);
if (ByPoint) {
///////////////////// ///////////////////////
// OFV code // // Initial code //
///////////////////// ///////////////////////
// modified by APO
dv = (x*xn+y*yn+z*zn)/3.0; //xyz = x * y * z;
dvi += dv; //Ixyi += zn * xyz;
Ixi += 0.75*x*dv; //Iyzi += xn * xyz;
Iyi += 0.75*y*dv; //Ixzi += yn * xyz;
Izi += 0.75*z*dv; //xi = x * x * x * xn / 3.0;
x -= Coeff[0]; //yi = y * y * y * yn / 3.0;
y -= Coeff[1]; //zi = z * z * z * zn / 3.0;
z -= Coeff[2]; //Ixxi += (yi + zi);
dv *= 3.0/5.0; //Iyyi += (xi + zi);
Ixyi -= x*y*dv; //Izzi += (xi + yi);
Iyzi -= y*z*dv; //x -= Coeff[0];
Ixzi -= x*z*dv; //y -= Coeff[1];
xi = x*x; //z -= Coeff[2];
yi = y*y; //dv = x * xn + y * yn + z * zn;
zi = z*z; //dvi += dv;
Ixxi += (yi + zi)*dv; //Ixi += x * dv;
Iyyi += (xi + zi)*dv; //Iyi += y * dv;
Izzi += (xi + yi)*dv; //Izi += z * dv;
}
else { // by plane
s = xn * Coeff[0] + yn * Coeff[1] + zn * Coeff[2];
d1 = Coeff[0] * x + Coeff[1] * y + Coeff[2] * z - Coeff[3];
d2 = d1 * d1;
d3 = d1 * d2 / 3.0;
dv = s * d1;
dvi += dv;
Ixi += (x - (Coeff[0] * d1 / 2.0)) * dv;
Iyi += (y - (Coeff[1] * d1 / 2.0)) * dv;
Izi += (z - (Coeff[2] * d1 / 2.0)) * dv;
px = x - Coeff[0] * d1;
py = y - Coeff[1] * d1;
pz = z - Coeff[2] * d1;
xi = px * px * d1 + px * Coeff[0]* d2 + Coeff[0] * Coeff[0] * d3;
yi = py * py * d1 + py * Coeff[1] * d2 + Coeff[1] * Coeff[1] * d3;
zi = pz * pz * d1 + pz * Coeff[2] * d2 + Coeff[2] * Coeff[2] * d3;
Ixxi += (yi + zi) * s;
Iyyi += (xi + zi) * s;
Izzi += (xi + yi) * s;
d2 /= 2.0;
xi = (py * pz * d1) + (py * Coeff[2] * d2) + (pz * Coeff[1] * d2) + (Coeff[1] * Coeff[2] * d3);
yi = (px * pz * d1) + (pz * Coeff[0] * d2) + (px * Coeff[2] * d2) + (Coeff[0] * Coeff[2] * d3);
zi = (px * py * d1) + (px * Coeff[1] * d2) + (py * Coeff[0] * d2) + (Coeff[0] * Coeff[1] * d3);
Ixyi -= zi * s;
Iyzi -= xi * s;
Ixzi -= yi * s;
}
}
Volu += dvi * GaussWV (j);
Ix += Ixi * GaussWV (j);
Iy += Iyi * GaussWV (j);
Iz += Izi * GaussWV (j);
Ixx += Ixxi * GaussWV (j);
Iyy += Iyyi * GaussWV (j);
Izz += Izzi * GaussWV (j);
Ixy += Ixyi * GaussWV (j);
Ixz += Ixzi * GaussWV (j);
Iyz += Iyzi * GaussWV (j);
}
vr *= ur;
Ixx *= vr;
Iyy *= vr;
Izz *= vr;
Ixy *= vr;
Ixz *= vr;
Iyz *= vr;
if (Abs(Volu) >= EPS_DIM ) {
if (ByPoint) {
Ix = Coeff[0] + Ix/Volu;
Iy = Coeff[1] + Iy/Volu;
Iz = Coeff[2] + Iz/Volu;
Volu *= vr;
}
else { //by plane
Ix /= Volu;
Iy /= Volu;
Iz /= Volu;
Volu *= vr;
}
G.SetCoord (Ix, Iy, Iz);
}
else {
G.SetCoord(0.,0.,0.);
Volu =0.;
}
Inertia.SetCols (gp_XYZ (Ixx, Ixy, Ixz),
gp_XYZ (Ixy, Iyy, Iyz),
gp_XYZ (Ixz, Iyz, Izz));
}
// Last modified by OFV 5.2001:
// 1). surface and edge integration order is equal now
// 2). "by point" works now rathre correctly (it looks so...)
static void Compute(BRepGProp_Face& S, BRepGProp_Domain& D, const Standard_Boolean ByPoint, const Standard_Real Coeff[],
const gp_Pnt& Loc, Standard_Real& Volu, gp_Pnt& G, gp_Mat& Inertia)
{
Standard_Real x, y, z, xi, yi, zi, l1, l2, lm, lr, l, v1, v2, v, u1, u2, um, ur, u, ds, Dul, xloc, yloc, zloc;
Standard_Real LocVolu, LocIx, LocIy, LocIz, LocIxx, LocIyy, LocIzz, LocIxy, LocIxz, LocIyz;
Standard_Real CVolu, CIx, CIy, CIz, CIxx, CIyy, CIzz, CIxy, CIxz, CIyz, Ix, Iy, Iz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz;
Standard_Real xn, yn, zn, px, py, pz, s, d1, d2, d3, dSigma;
Standard_Integer i, j, vio, sio, max, NbGaussgp_Pnts;
gp_Pnt Ps;
gp_Vec VNor;
gp_Pnt2d Puv;
gp_Vec2d Vuv;
Loc.Coord (xloc, yloc, zloc);
Volu = Ix = Iy = Iz = Ixx = Iyy = Izz = Ixy = Ixz = Iyz = 0.0;
S.Bounds (u1, u2, v1, v2);
Standard_Real _u2 = u2; //OCC104
vio = S.VIntegrationOrder ();
while (D.More())
{
S.Load(D.Value());
sio = S.IntegrationOrder ();
max = Max(vio,sio);
NbGaussgp_Pnts = Min(max,math::GaussPointsMax());
math_Vector GaussP (1, NbGaussgp_Pnts);
math_Vector GaussW (1, NbGaussgp_Pnts);
math::GaussPoints (NbGaussgp_Pnts,GaussP);
math::GaussWeights (NbGaussgp_Pnts,GaussW);
CVolu = CIx = CIy = CIz = CIxx = CIyy = CIzz = CIxy = CIxz = CIyz = 0.0;
l1 = S.FirstParameter();
l2 = S.LastParameter();
lm = 0.5 * (l2 + l1);
lr = 0.5 * (l2 - l1);
for (i=1; i<=NbGaussgp_Pnts; i++)
{
l = lm + lr * GaussP(i);
S.D12d (l, Puv, Vuv);
v = Puv.Y();
u2 = Puv.X();
//OCC104
v = v < v1? v1: v;
v = v > v2? v2: v;
u2 = u2 < u1? u1: u2;
u2 = u2 > _u2? _u2: u2;
Dul = Vuv.Y() * GaussW(i);
um = 0.5 * (u2 + u1);
ur = 0.5 * (u2 - u1);
LocVolu = LocIx = LocIy = LocIz = LocIxx = LocIyy = LocIzz = LocIxy = LocIxz = LocIyz = 0.0;
for (j=1; j<=NbGaussgp_Pnts; j++)
{
u = um + ur * GaussP(j);
S.Normal (u, v, Ps, VNor);
VNor.Coord (xn, yn, zn);
Ps.Coord (x, y, z);
x -= xloc;
y -= yloc;
z -= zloc;
xn = xn * Dul * GaussW(j);
yn = yn * Dul * GaussW(j);
zn = zn * Dul * GaussW(j);
if(ByPoint)
{
dSigma = (x*xn+y*yn+z*zn)/3.0;
LocVolu += dSigma;
LocIx += 0.75*x*dSigma;
LocIy += 0.75*y*dSigma;
LocIz += 0.75*z*dSigma;
x -= Coeff[0];
y -= Coeff[1];
z -= Coeff[2];
dSigma *= 3.0/5.0;
LocIxy -= x*y*dSigma;
LocIyz -= y*z*dSigma;
LocIxz -= x*z*dSigma;
xi = x*x;
yi = y*y;
zi = z*z;
LocIxx += (yi + zi)*dSigma;
LocIyy += (xi + zi)*dSigma;
LocIzz += (xi + yi)*dSigma;
}
else
{
s = xn * Coeff[0] + yn * Coeff[1] + zn * Coeff[2];
d1 = Coeff[0] * x + Coeff[1] * y + Coeff[2] * z;
d2 = d1 * d1;
d3 = d1 * d2 / 3.0;
ds = s * d1;
LocVolu += ds;
LocIx += (x - Coeff[0] * d1 / 2.0) * ds;
LocIy += (y - Coeff[1] * d1 / 2.0) * ds;
LocIz += (z - Coeff[2] * d1 / 2.0) * ds;
px = x - Coeff[0] * d1;
py = y - Coeff[1] * d1;
pz = z - Coeff[2] * d1;
xi = (px * px * d1) + (px * Coeff[0]* d2) + (Coeff[0] * Coeff[0] * d3);
yi = (py * py * d1) + (py * Coeff[1] * d2) + (Coeff[1] * Coeff[1] * d3);
zi = pz * pz * d1 + pz * Coeff[2] * d2 + (Coeff[2] * Coeff[2] * d3);
LocIxx += (yi + zi) * s;
LocIyy += (xi + zi) * s;
LocIzz += (xi + yi) * s;
d2 /= 2.0;
xi = (py * pz * d1) + (py * Coeff[2] * d2) + (pz * Coeff[1] * d2) + (Coeff[1] * Coeff[2] * d3);
yi = (px * pz * d1) + (pz * Coeff[0] * d2) + (px * Coeff[2] * d2) + (Coeff[0] * Coeff[2] * d3);
zi = (px * py * d1) + (px * Coeff[1] * d2) + (py * Coeff[0] * d2) + (Coeff[0] * Coeff[1] * d3);
LocIxy -= zi * s;
LocIyz -= xi * s;
LocIxz -= yi * s;
}
}
CVolu += LocVolu * ur;
CIx += LocIx * ur;
CIy += LocIy * ur;
CIz += LocIz * ur;
CIxx += LocIxx * ur;
CIyy += LocIyy * ur;
CIzz += LocIzz * ur;
CIxy += LocIxy * ur;
CIxz += LocIxz * ur;
CIyz += LocIyz * ur;
}
Volu += CVolu * lr;
Ix += CIx * lr;
Iy += CIy * lr;
Iz += CIz * lr;
Ixx += CIxx * lr;
Iyy += CIyy * lr;
Izz += CIzz * lr;
Ixy += CIxy * lr;
Ixz += CIxz * lr;
Iyz += CIyz * lr;
D.Next();
}
if(Abs(Volu) >= EPS_DIM)
{
if(ByPoint)
{
Ix = Coeff[0] + Ix/Volu;
Iy = Coeff[1] + Iy/Volu;
Iz = Coeff[2] + Iz/Volu;
}
else
{
Ix /= Volu;
Iy /= Volu;
Iz /= Volu;
}
G.SetCoord (Ix, Iy, Iz);
}
else
{
Volu =0.;
G.SetCoord(0.,0.,0.);
}
Inertia.SetCols (gp_XYZ (Ixx, Ixy, Ixz),
gp_XYZ (Ixy, Iyy, Iyz),
gp_XYZ (Ixz, Iyz, Izz));
}
BRepGProp_Vinert::BRepGProp_Vinert(){}
BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, const gp_Pnt& VLocation, const Standard_Real Eps){
SetLocation(VLocation);
Perform(S,Eps);
}
BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& VLocation, const Standard_Real Eps){
SetLocation(VLocation);
Perform(S,D,Eps);
}
BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& VLocation){
SetLocation(VLocation);
Perform(S,D);
}
BRepGProp_Vinert::BRepGProp_Vinert(const BRepGProp_Face& S, const gp_Pnt& VLocation){
SetLocation(VLocation);
Perform(S);
}
BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, const gp_Pnt& O, const gp_Pnt& VLocation, const Standard_Real Eps){
SetLocation(VLocation);
Perform(S,O,Eps);
}
BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& O, const gp_Pnt& VLocation, const Standard_Real Eps){
SetLocation(VLocation);
Perform(S,D,O,Eps);
}
BRepGProp_Vinert::BRepGProp_Vinert(const BRepGProp_Face& S, const gp_Pnt& O, const gp_Pnt& VLocation){
SetLocation(VLocation);
Perform(S,O);
}
BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& O, const gp_Pnt& VLocation){
SetLocation(VLocation);
Perform(S,D,O);
}
BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, const gp_Pln& Pl, const gp_Pnt& VLocation, const Standard_Real Eps){
SetLocation(VLocation);
Perform(S,Pl,Eps);
}
BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pln& Pl, const gp_Pnt& VLocation, const Standard_Real Eps){
SetLocation(VLocation);
Perform(S,D,Pl,Eps);
}
BRepGProp_Vinert::BRepGProp_Vinert(const BRepGProp_Face& S, const gp_Pln& Pl, const gp_Pnt& VLocation){
SetLocation(VLocation);
Perform(S,Pl);
}
BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pln& Pl, const gp_Pnt& VLocation){
SetLocation(VLocation);
Perform(S,D,Pl);
}
void BRepGProp_Vinert::SetLocation(const gp_Pnt& VLocation){
loc = VLocation;
}
Standard_Real BRepGProp_Vinert::Perform(BRepGProp_Face& S, const Standard_Real Eps){
Standard_Real Coeff[] = {0., 0., 0.};
return myEpsilon = Compute(S,Standard_True,Coeff,loc,dim,g,inertia,Eps);
}
Standard_Real BRepGProp_Vinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D, const Standard_Real Eps){
Standard_Real Coeff[] = {0., 0., 0.};
return myEpsilon = Compute(S,D,Standard_True,Coeff,loc,dim,g,inertia,Eps);
}
void BRepGProp_Vinert::Perform(const BRepGProp_Face& S){
Standard_Real Coeff[] = {0., 0., 0.};
Compute(S,Standard_True,Coeff,loc,dim,g,inertia);
myEpsilon = 1.0;
return;
}
void BRepGProp_Vinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D){
Standard_Real Coeff[] = {0., 0., 0.};
Compute(S,D,Standard_True,Coeff,loc,dim,g,inertia);
myEpsilon = 1.0;
return;
}
Standard_Real BRepGProp_Vinert::Perform(BRepGProp_Face& S, const gp_Pnt& O, const Standard_Real Eps){
Standard_Real xloc, yloc, zloc;
loc.Coord(xloc, yloc, zloc);
Standard_Real Coeff[3];
O.Coord (Coeff[0], Coeff[1], Coeff[2]);
Coeff[0] -= xloc; Coeff[1] -= yloc; Coeff[2] -= zloc;
return myEpsilon = Compute(S,Standard_True,Coeff,loc,dim,g,inertia,Eps);
}
Standard_Real BRepGProp_Vinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& O, const Standard_Real Eps){
Standard_Real xloc, yloc, zloc;
loc.Coord(xloc, yloc, zloc);
Standard_Real Coeff[3];
O.Coord (Coeff[0], Coeff[1], Coeff[2]);
Coeff[0] -= xloc; Coeff[1] -= yloc; Coeff[2] -= zloc;
return myEpsilon = Compute(S,D,Standard_True,Coeff,loc,dim,g,inertia,Eps);
}
void BRepGProp_Vinert::Perform(const BRepGProp_Face& S, const gp_Pnt& O){
Standard_Real xloc, yloc, zloc;
loc.Coord(xloc, yloc, zloc);
Standard_Real Coeff[3];
O.Coord (Coeff[0], Coeff[1], Coeff[2]);
Coeff[0] -= xloc; Coeff[1] -= yloc; Coeff[2] -= zloc;
Compute(S,Standard_True,Coeff,loc,dim,g,inertia);
myEpsilon = 1.0;
return;
}
void BRepGProp_Vinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& O){
Standard_Real xloc, yloc, zloc;
loc.Coord(xloc, yloc, zloc);
Standard_Real Coeff[3];
O.Coord (Coeff[0], Coeff[1], Coeff[2]);
Coeff[0] -= xloc; Coeff[1] -= yloc; Coeff[2] -= zloc;
Compute(S,D,Standard_True,Coeff,loc,dim,g,inertia);
myEpsilon = 1.0;
return;
}
Standard_Real BRepGProp_Vinert::Perform(BRepGProp_Face& S, const gp_Pln& Pl, const Standard_Real Eps){
Standard_Real xloc, yloc, zloc;
loc.Coord (xloc, yloc, zloc);
Standard_Real Coeff[4];
Pl.Coefficients (Coeff[0], Coeff[1],Coeff[2],Coeff[3]);
Coeff[3] = Coeff[3] - Coeff[0]*xloc - Coeff[1]*yloc - Coeff[2]*zloc;
return myEpsilon = Compute(S,Standard_False,Coeff,loc,dim,g,inertia,Eps);
}
Standard_Real BRepGProp_Vinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pln& Pl, const Standard_Real Eps){
Standard_Real xloc, yloc, zloc;
loc.Coord (xloc, yloc, zloc);
Standard_Real Coeff[4];
Pl.Coefficients (Coeff[0], Coeff[1],Coeff[2],Coeff[3]);
Coeff[3] = Coeff[3] - Coeff[0]*xloc - Coeff[1]*yloc - Coeff[2]*zloc;
return myEpsilon = Compute(S,D,Standard_False,Coeff,loc,dim,g,inertia,Eps);
}
void BRepGProp_Vinert::Perform(const BRepGProp_Face& S, const gp_Pln& Pl){
Standard_Real xloc, yloc, zloc;
loc.Coord (xloc, yloc, zloc);
Standard_Real Coeff[4];
Pl.Coefficients (Coeff[0], Coeff[1],Coeff[2],Coeff[3]);
Coeff[3] = Coeff[3] - Coeff[0]*xloc - Coeff[1]*yloc - Coeff[2]*zloc;
Compute(S,Standard_False,Coeff,loc,dim,g,inertia);
myEpsilon = 1.0;
return;
}
void BRepGProp_Vinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pln& Pl){
Standard_Real xloc, yloc, zloc;
loc.Coord (xloc, yloc, zloc);
Standard_Real Coeff[4];
Pl.Coefficients (Coeff[0], Coeff[1],Coeff[2],Coeff[3]);
Coeff[3] = Coeff[3] - Coeff[0]*xloc - Coeff[1]*yloc - Coeff[2]*zloc;
Compute(S,D,Standard_False,Coeff,loc,dim,g,inertia);
myEpsilon = 1.0;
return;
}
Standard_Real BRepGProp_Vinert::GetEpsilon(){
return myEpsilon;
}