mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-21 10:13:43 +03:00
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast Wrong license statements corrected in several files. Copyright and license statements added in XSD and GLSL files. Copyright year updated in some files. Obsolete documentation files removed from DrawResources.
324 lines
9.0 KiB
C++
324 lines
9.0 KiB
C++
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
//JCV 16/10/91
|
|
|
|
#include <Convert_SphereToBSplineSurface.ixx>
|
|
|
|
#include <gp.hxx>
|
|
#include <gp_Trsf.hxx>
|
|
|
|
static const Standard_Integer TheUDegree = 2;
|
|
static const Standard_Integer TheVDegree = 2;
|
|
static const Standard_Integer MaxNbUKnots = 4;
|
|
static const Standard_Integer MaxNbVKnots = 3;
|
|
static const Standard_Integer MaxNbUPoles = 7;
|
|
static const Standard_Integer MaxNbVPoles = 5;
|
|
|
|
|
|
static void ComputePoles ( const Standard_Real R,
|
|
const Standard_Real U1,
|
|
const Standard_Real U2,
|
|
const Standard_Real V1,
|
|
const Standard_Real V2,
|
|
TColgp_Array2OfPnt& Poles)
|
|
{
|
|
Standard_Real deltaU = U2 - U1;
|
|
Standard_Real deltaV = V2 - V1;
|
|
|
|
Standard_Integer i, j;
|
|
|
|
// Number of spans : maximum opening = 150 degrees ( = PI / 1.2 rds)
|
|
Standard_Integer
|
|
nbUSpans = (Standard_Integer)IntegerPart( 1.2 * deltaU / M_PI) + 1;
|
|
Standard_Integer
|
|
nbVSpans = (Standard_Integer)IntegerPart( 1.2 * deltaV / M_PI) + 1;
|
|
Standard_Real AlfaU = deltaU / ( nbUSpans * 2);
|
|
Standard_Real AlfaV = deltaV / ( nbVSpans * 2);
|
|
|
|
Standard_Integer nbVP = 2 * nbVSpans + 1;
|
|
|
|
Standard_Real x[MaxNbVPoles];
|
|
Standard_Real z[MaxNbVPoles];
|
|
|
|
x[0] = R * Cos( V1);
|
|
z[0] = R * Sin( V1);
|
|
|
|
Standard_Real VStart = V1;
|
|
for ( i = 1; i <= nbVSpans; i++) {
|
|
x[2*i-1] = R * Cos( VStart + AlfaV) / Cos( AlfaV);
|
|
z[2*i-1] = R * Sin( VStart + AlfaV) / Cos( AlfaV);
|
|
x[2*i] = R * Cos( VStart + 2 * AlfaV);
|
|
z[2*i] = R * Sin( VStart + 2 * AlfaV);
|
|
VStart += 2*AlfaV;
|
|
}
|
|
|
|
Standard_Real UStart = U1;
|
|
for ( j = 0; j <= nbVP-1; j++) {
|
|
Poles( 1, j+1) = gp_Pnt(x[j]*Cos(UStart),x[j]*Sin(UStart),z[j]);
|
|
}
|
|
|
|
for ( i = 1; i <= nbUSpans; i++) {
|
|
for ( j = 0; j<= nbVP-1; j++) {
|
|
Poles( 2*i, j+1) = gp_Pnt( x[j] * Cos(UStart+AlfaU) / Cos(AlfaU),
|
|
x[j] * Sin(UStart+AlfaU) / Cos(AlfaU),
|
|
z[j] );
|
|
Poles(2*i+1,j+1) = gp_Pnt( x[j] * Cos(UStart+2*AlfaU),
|
|
x[j] * Sin(UStart+2*AlfaU),
|
|
z[j] );
|
|
}
|
|
UStart += 2*AlfaU;
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Convert_SphereToBSplineSurface
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Convert_SphereToBSplineSurface::Convert_SphereToBSplineSurface
|
|
(const gp_Sphere& Sph,
|
|
const Standard_Real U1 ,
|
|
const Standard_Real U2 ,
|
|
const Standard_Real V1 ,
|
|
const Standard_Real V2 )
|
|
: Convert_ElementarySurfaceToBSplineSurface (MaxNbUPoles, MaxNbVPoles,
|
|
MaxNbUKnots, MaxNbVKnots,
|
|
TheUDegree , TheVDegree)
|
|
{
|
|
Standard_Real deltaU = U2 - U1;
|
|
Standard_Real deltaV = V2 - V1;
|
|
Standard_DomainError_Raise_if( (deltaU>2*M_PI) || (deltaU<0.) ||
|
|
(V1 < -M_PI/2.0) || (V2 > M_PI/2),
|
|
"Convert_SphereToBSplineSurface");
|
|
|
|
isuperiodic = Standard_False;
|
|
isvperiodic = Standard_False;
|
|
|
|
Standard_Integer i,j;
|
|
// construction of the sphere in the reference mark xOy.
|
|
|
|
// Number of spans : maximum opening = 150 degrees ( = PI / 1.2 rds)
|
|
Standard_Integer
|
|
nbUSpans = (Standard_Integer)IntegerPart( 1.2 * deltaU / M_PI) + 1;
|
|
Standard_Integer
|
|
nbVSpans = (Standard_Integer)IntegerPart( 1.2 * deltaV / M_PI) + 1;
|
|
Standard_Real AlfaU = deltaU / ( nbUSpans * 2);
|
|
Standard_Real AlfaV = deltaV / ( nbVSpans * 2);
|
|
|
|
nbUPoles = 2 * nbUSpans + 1;
|
|
nbVPoles = 2 * nbVSpans + 1;
|
|
nbUKnots = nbUSpans + 1;
|
|
nbVKnots = nbVSpans + 1;
|
|
|
|
Standard_Real R = Sph.Radius();
|
|
|
|
ComputePoles( R, U1, U2, V1, V2, poles);
|
|
|
|
for ( i = 1; i<= nbUKnots; i++) {
|
|
uknots(i) = U1 + (i-1) * 2 * AlfaU;
|
|
umults(i) = 2;
|
|
}
|
|
umults(1)++; umults(nbUKnots)++;
|
|
for ( i = 1; i<= nbVKnots; i++) {
|
|
vknots(i) = V1 + (i-1) * 2 * AlfaV;
|
|
vmults(i) = 2;
|
|
}
|
|
vmults(1)++; vmults(nbVKnots)++;
|
|
|
|
|
|
// Replace the bspline in the reference of the sphere.
|
|
// and calculate the weight of the bspline.
|
|
Standard_Real W1, W2;
|
|
gp_Trsf Trsf;
|
|
Trsf.SetTransformation( Sph.Position(), gp::XOY());
|
|
|
|
for ( i = 1; i <= nbUPoles; i++) {
|
|
if ( i % 2 == 0) W1 = Cos(AlfaU);
|
|
else W1 = 1.;
|
|
|
|
for ( j = 1; j <= nbVPoles; j++) {
|
|
if ( j % 2 == 0) W2 = Cos(AlfaV);
|
|
else W2 = 1.;
|
|
|
|
weights( i, j) = W1 * W2;
|
|
poles( i, j).Transform( Trsf);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : Convert_SphereToBSplineSurface
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Convert_SphereToBSplineSurface::Convert_SphereToBSplineSurface
|
|
(const gp_Sphere& Sph ,
|
|
const Standard_Real Param1,
|
|
const Standard_Real Param2,
|
|
const Standard_Boolean UTrim )
|
|
: Convert_ElementarySurfaceToBSplineSurface (MaxNbUPoles, MaxNbVPoles,
|
|
MaxNbUKnots, MaxNbVKnots,
|
|
TheUDegree , TheVDegree)
|
|
{
|
|
#ifndef No_Exception
|
|
Standard_Real delta = Param2 - Param1;
|
|
#endif
|
|
Standard_DomainError_Raise_if( (delta>2*M_PI) || (delta<0.),
|
|
"Convert_SphereToBSplineSurface");
|
|
|
|
Standard_Integer i, j;
|
|
Standard_Real deltaU, deltaV;
|
|
|
|
isuperiodic = !UTrim;
|
|
isvperiodic = Standard_False;
|
|
|
|
Standard_Real R = Sph.Radius();
|
|
|
|
Standard_Real W1, W2, CosU, CosV;
|
|
|
|
if ( isuperiodic) {
|
|
ComputePoles(R, 0., 2.*M_PI, Param1, Param2, poles);
|
|
|
|
nbUPoles = 6;
|
|
nbUKnots = 4;
|
|
|
|
deltaV = Param2 - Param1;
|
|
Standard_Integer
|
|
nbVSpans = (Standard_Integer)IntegerPart( 1.2 * deltaV / M_PI) + 1;
|
|
Standard_Real AlfaV = deltaV / ( nbVSpans * 2);
|
|
nbVPoles = 2 * nbVSpans + 1;
|
|
nbVKnots = nbVSpans + 1;
|
|
|
|
for ( i = 1; i <= nbUKnots; i++) {
|
|
uknots(i) = ( i-1) * 2. * M_PI /3.;
|
|
umults(i) = 2;
|
|
}
|
|
for ( i = 1; i <= nbVKnots; i++) {
|
|
vknots(i) = Param1 + (i-1) * 2 * AlfaV;
|
|
vmults(i) = 2;
|
|
}
|
|
vmults(1)++; vmults(nbVKnots)++;
|
|
|
|
CosU = 0.5; // = Cos(pi /3)
|
|
CosV = Cos(AlfaV);
|
|
}
|
|
else {
|
|
ComputePoles(R, Param1, Param2, -M_PI/2., M_PI/2., poles);
|
|
|
|
nbVPoles = 5;
|
|
nbVKnots = 3;
|
|
|
|
deltaU = Param2 - Param1;
|
|
Standard_Integer
|
|
nbUSpans = (Standard_Integer)IntegerPart( 1.2 * deltaU / M_PI) + 1;
|
|
Standard_Real AlfaU = deltaU / ( nbUSpans * 2);
|
|
nbUPoles = 2 * nbUSpans + 1;
|
|
nbUKnots = nbUSpans + 1;
|
|
|
|
vknots(1) = -M_PI/2.; vmults(1) = 3;
|
|
vknots(2) = 0.; vmults(2) = 2;
|
|
vknots(3) = M_PI/2.; vmults(3) = 3;
|
|
for ( i = 1; i <= nbUKnots; i++) {
|
|
uknots(i) = Param1 + (i-1) * 2 * AlfaU;
|
|
umults(i) = 2;
|
|
}
|
|
umults(1)++; umults(nbUKnots)++;
|
|
|
|
CosV = 0.5; // = Cos(pi /3)
|
|
CosU = Cos(AlfaU);
|
|
}
|
|
|
|
// Replace the bspline in the mark of the sphere.
|
|
// and calculate the weight of bspline.
|
|
gp_Trsf Trsf;
|
|
Trsf.SetTransformation( Sph.Position(), gp::XOY());
|
|
|
|
for ( i = 1; i <= nbUPoles; i++) {
|
|
if ( i % 2 == 0) W1 = CosU;
|
|
else W1 = 1.;
|
|
|
|
for ( j = 1; j <= nbVPoles; j++) {
|
|
if ( j % 2 == 0) W2 = CosV;
|
|
else W2 = 1.;
|
|
|
|
weights( i, j) = W1 * W2;
|
|
poles( i, j).Transform( Trsf);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : Convert_SphereToBSplineSurface
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
Convert_SphereToBSplineSurface::Convert_SphereToBSplineSurface
|
|
(const gp_Sphere& Sph)
|
|
: Convert_ElementarySurfaceToBSplineSurface (MaxNbUPoles, MaxNbVPoles,
|
|
MaxNbUKnots, MaxNbVKnots,
|
|
TheUDegree , TheVDegree)
|
|
{
|
|
isuperiodic = Standard_True;
|
|
isvperiodic = Standard_False;
|
|
|
|
Standard_Real W1, W2;
|
|
Standard_Integer i, j;
|
|
|
|
nbUPoles = 6;
|
|
nbVPoles = 5;
|
|
nbUKnots = 4;
|
|
nbVKnots = 3;
|
|
|
|
// Construction of the sphere in the reference mark xOy.
|
|
|
|
Standard_Real R = Sph.Radius();
|
|
|
|
ComputePoles( R, 0., 2.*M_PI, -M_PI/2., M_PI/2., poles);
|
|
|
|
uknots( 1) = 0.;
|
|
uknots( 2) = 2. * M_PI / 3.;
|
|
uknots( 3) = 4. * M_PI / 3.;
|
|
uknots( 4) = 2. * M_PI;
|
|
vknots( 1) = -M_PI/2.;
|
|
vknots( 2) = 0.;
|
|
vknots( 3) = M_PI/2.;
|
|
for ( i = 1; i <= 4; i++) {
|
|
umults( i) = 2;
|
|
}
|
|
vmults(1) = vmults(3) = 3;
|
|
vmults(2) = 2;
|
|
|
|
// Replace the bspline in the mark of the sphere.
|
|
// and calculate the weight of the bspline.
|
|
gp_Trsf Trsf;
|
|
Trsf.SetTransformation( Sph.Position(), gp::XOY());
|
|
|
|
for ( i = 1; i <= nbUPoles; i++) {
|
|
if ( i % 2 == 0) W1 = 0.5;
|
|
else W1 = 1.;
|
|
|
|
for ( j = 1; j <= nbVPoles; j++) {
|
|
if ( j % 2 == 0) W2 = Sqrt(2.) /2.;
|
|
else W2 = 1.;
|
|
|
|
weights( i, j) = W1 * W2;
|
|
poles( i, j).Transform( Trsf);
|
|
}
|
|
}
|
|
}
|
|
|