mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-05-31 11:15:31 +03:00
The copying permission statements at the beginning of source files updated to refer to LGPL. Copyright dates extended till 2014 in advance.
311 lines
11 KiB
Plaintext
311 lines
11 KiB
Plaintext
// Created on: 1995-07-18
|
|
// Created by: Modelistation
|
|
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and / or modify it
|
|
// under the terms of the GNU Lesser General Public version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <StdFail_NotDone.hxx>
|
|
#include <math_FunctionSetRoot.hxx>
|
|
#include <math_NewtonFunctionSetRoot.hxx>
|
|
#include <TColStd_Array2OfInteger.hxx>
|
|
#include <TColStd_Array2OfReal.hxx>
|
|
#include <Standard_NullObject.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <Precision.hxx>
|
|
|
|
Extrema_GenExtCC::Extrema_GenExtCC () : myDone (Standard_False)
|
|
{
|
|
}
|
|
|
|
Extrema_GenExtCC::Extrema_GenExtCC (const Curve1& C1,
|
|
const Curve2& C2,
|
|
const Standard_Integer NbU,
|
|
const Standard_Integer NbV,
|
|
const Standard_Real TolU,
|
|
const Standard_Real TolV) : myF (C1,C2, Min(TolU, TolV)), myDone (Standard_False)
|
|
{
|
|
SetCurveCache (1, new Cache (C1, C1.FirstParameter(), C1.LastParameter(), NbU, Standard_True));
|
|
SetCurveCache (2, new Cache (C2, C2.FirstParameter(), C2.LastParameter(), NbV, Standard_True));
|
|
Perform();
|
|
}
|
|
|
|
|
|
Extrema_GenExtCC::Extrema_GenExtCC (const Curve1& C1,
|
|
const Curve2& C2,
|
|
const Standard_Real Uinf,
|
|
const Standard_Real Usup,
|
|
const Standard_Real Vinf,
|
|
const Standard_Real Vsup,
|
|
const Standard_Integer NbU,
|
|
const Standard_Integer NbV,
|
|
const Standard_Real /*TolU*/,
|
|
const Standard_Real /*TolV*/) : myF (C1,C2), myDone (Standard_False)
|
|
{
|
|
SetCurveCache (1, new Cache (C1, Uinf, Usup, NbU, Standard_True));
|
|
SetCurveCache (2, new Cache (C2, Vinf, Vsup, NbV, Standard_True));
|
|
Perform();
|
|
}
|
|
|
|
void Extrema_GenExtCC::SetCurveCache (const Standard_Integer theRank,
|
|
const Handle(Cache)& theCache)
|
|
{
|
|
Standard_OutOfRange_Raise_if (theRank < 1 || theRank > 2, "Extrema_GenExtCC::SetCurveCache()")
|
|
myF.SetCurve (theRank, *(Curve1*)theCache->CurvePtr());
|
|
Standard_Integer anInd = theRank - 1;
|
|
myCache[anInd] = theCache;
|
|
}
|
|
|
|
void Extrema_GenExtCC::SetTolerance (const Standard_Real Tol)
|
|
{
|
|
myF.SetTolerance (Tol);
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
void Extrema_GenExtCC::Perform ()
|
|
/*-----------------------------------------------------------------------------
|
|
Fonction:
|
|
Recherche de toutes les distances extremales entre les courbes C1 et C2.
|
|
a partir de 2 echantillonnages (NbU,NbV).
|
|
|
|
Methode:
|
|
L'algorithme part de l'hypothese que les echantillonnages sont suffisamment
|
|
fins pour que, s'il existe N distances extremales entre les 2 courbes,
|
|
alors il existe aussi N extrema entre les 2 ensembles de points.
|
|
Ainsi, l'algorithme consiste a partir des extrema des echantillons
|
|
pour trouver les extrema des courbes.
|
|
Les extrema sont calcules par l'algorithme math_FunctionSetRoot avec les
|
|
arguments suivants:
|
|
- myF: Extrema_FuncExtCC cree a partir de C1 et C2,
|
|
- UV: math_Vector dont les composantes sont les parametres des points de
|
|
l'extremum sur les ensembles de points,
|
|
- Tol: Min(TolU,TolV), (Prov.:math_FunctionSetRoot n'autorise pas un vecteur)
|
|
- UVinf: math_Vector dont les composantes sont les bornes inferieures de u et
|
|
v,
|
|
- UVsup: math_Vector dont les composantes sont les bornes superieures de u et
|
|
v.
|
|
|
|
Traitement:
|
|
a- Constitution du tableau des square distances (TbDist2(0,NbU+1,0,NbV+1)):
|
|
Le tableau est volontairement etendu; les lignes 0 et NbU+1 et les
|
|
colonnes 0 et NbV+1 seront initialisees a RealFirst() ou RealLast()
|
|
pour simplifier les tests effectues dans l'etape b
|
|
(on n'a pas besoin de tester si le point est sur une extremite).
|
|
b- Calcul des extrema:
|
|
On recherche d'abord les minima et ensuite les maxima. Ces 2 traitements
|
|
se passent de facon similaire:
|
|
b.a- Initialisations:
|
|
- des 'bords' du tableau TbDist2 (a RealLast() dans le cas des minima
|
|
et a RealLast() dans le cas des maxima),
|
|
- du tableau TbSel(0,NbU+1,0,NbV+1) de selection des points pour un
|
|
calcul d'extremum local (a 0). Lorsqu'un couple de points sera
|
|
selectionne, il ne sera plus selectionnable, ainsi que les couples
|
|
adjacents (8 au maximum).
|
|
Les adresses correspondantes seront mises a 1.
|
|
b.b- Calcul des minima (ou maxima):
|
|
On boucle sur toutes les square distances du tableau TbDist2:
|
|
- recherche d'un minimum (ou maximum) sur les echantillons,
|
|
- calcul de l'extremum sur les courbes,
|
|
- mise a jour du tableau TbSel.
|
|
-----------------------------------------------------------------------------*/
|
|
{
|
|
myDone = Standard_False;
|
|
|
|
const Handle(Cache)& aCache1 = myCache[0];
|
|
const Handle(Cache)& aCache2 = myCache[1];
|
|
Standard_NullObject_Raise_if ((aCache1.IsNull() || aCache2.IsNull()),
|
|
"Extrema_GenExtCC::Perform()")
|
|
|
|
Standard_Integer aNbU = aCache1->NbSamples(), aNbV = aCache2->NbSamples();
|
|
Standard_OutOfRange_Raise_if ((aNbU < 2 ||aNbV < 2), "Extrema_GenExtCC::Perform()")
|
|
|
|
/*
|
|
a- Constitution du tableau des distances (TbDist2(0,NbU+1,0,NbV+1)):
|
|
---------------------------------------------------------------
|
|
*/
|
|
|
|
//ensure that caches have been calculated
|
|
if (!aCache1->IsValid())
|
|
aCache1->CalculatePoints();
|
|
if (!aCache2->IsValid())
|
|
aCache2->CalculatePoints();
|
|
|
|
// Calcul des distances
|
|
const Handle(ArrayOfPnt)& aPntArray1 = aCache1->Points();
|
|
const Handle(ArrayOfPnt)& aPntArray2 = aCache2->Points();
|
|
Standard_Integer NoU, NoV;
|
|
TColStd_Array2OfReal TbDist2(0, aNbU + 1, 0, aNbV + 1);
|
|
for (NoU = 1; NoU <= aNbU; NoU++) {
|
|
const Pnt& P1 = aPntArray1->Value (NoU);
|
|
for (NoV = 1; NoV <= aNbV; NoV++) {
|
|
const Pnt& P2 = aPntArray2->Value (NoV);
|
|
TbDist2(NoU,NoV) = P1.SquareDistance(P2);
|
|
}
|
|
}
|
|
|
|
/*
|
|
b- Calcul des minima:
|
|
-----------------
|
|
b.a) Initialisations:
|
|
*/
|
|
// - generales
|
|
math_Vector Tol(1, 2);
|
|
Tol(1) = myF.Tolerance();
|
|
Tol(2) = myF.Tolerance();
|
|
math_Vector UV(1,2), UVinf(1,2), UVsup(1,2);
|
|
UVinf(1) = aCache1->TrimFirstParameter();
|
|
UVinf(2) = aCache2->TrimFirstParameter();
|
|
UVsup(1) = aCache1->TrimLastParameter();
|
|
UVsup(2) = aCache2->TrimLastParameter();
|
|
|
|
myF.SubIntervalInitialize(UVinf,UVsup);
|
|
|
|
// - des 'bords' du tableau TbDist2
|
|
for (NoV = 0; NoV <= aNbV+1; NoV++) {
|
|
TbDist2(0,NoV) = RealLast();
|
|
TbDist2(aNbU+1,NoV) = RealLast();
|
|
}
|
|
for (NoU = 1; NoU <= aNbU; NoU++) {
|
|
TbDist2(NoU,0) = RealLast();
|
|
TbDist2(NoU,aNbV+1) = RealLast();
|
|
}
|
|
|
|
// - du tableau TbSel(0,aNbU+1,0,aNbV+1) de selection des points
|
|
TColStd_Array2OfInteger TbSel(0,aNbU+1,0,aNbV+1);
|
|
TbSel.Init(0);
|
|
|
|
/*
|
|
b.b) Calcul des minima:
|
|
*/
|
|
// - recherche d un minimum sur la grille
|
|
Standard_Integer Nu, Nv;
|
|
Standard_Real Dist2;
|
|
const Handle(TColStd_HArray1OfReal)& aParamArray1 = aCache1->Parameters();
|
|
const Handle(TColStd_HArray1OfReal)& aParamArray2 = aCache2->Parameters();
|
|
for (NoU = 1; NoU <= aNbU; NoU++) {
|
|
for (NoV = 1; NoV <= aNbV; NoV++) {
|
|
if (TbSel(NoU,NoV) == 0) {
|
|
Dist2 = TbDist2(NoU,NoV);
|
|
if ((TbDist2(NoU-1,NoV-1) >= Dist2) &&
|
|
(TbDist2(NoU-1,NoV ) >= Dist2) &&
|
|
(TbDist2(NoU-1,NoV+1) >= Dist2) &&
|
|
(TbDist2(NoU ,NoV-1) >= Dist2) &&
|
|
(TbDist2(NoU ,NoV+1) >= Dist2) &&
|
|
(TbDist2(NoU+1,NoV-1) >= Dist2) &&
|
|
(TbDist2(NoU+1,NoV ) >= Dist2) &&
|
|
(TbDist2(NoU+1,NoV+1) >= Dist2)) {
|
|
|
|
// - calcul de l extremum sur la surface:
|
|
|
|
UV(1) = aParamArray1->Value(NoU);
|
|
UV(2) = aParamArray2->Value(NoV);
|
|
|
|
math_FunctionSetRoot S (myF,UV,Tol,UVinf,UVsup);
|
|
|
|
|
|
// - mise a jour du tableau TbSel
|
|
for (Nu = NoU-1; Nu <= NoU+1; Nu++) {
|
|
for (Nv = NoV-1; Nv <= NoV+1; Nv++) {
|
|
TbSel(Nu,Nv) = 1;
|
|
}
|
|
}
|
|
}
|
|
} // if (TbSel(NoU,NoV)
|
|
} // for (NoV = 1; ...
|
|
} // for (NoU = 1; ...
|
|
/*
|
|
c- Calcul des maxima:
|
|
-----------------
|
|
c.a) Initialisations:
|
|
*/
|
|
// - des 'bords' du tableau TbDist2
|
|
for (NoV = 0; NoV <= aNbV+1; NoV++) {
|
|
TbDist2(0,NoV) = RealFirst();
|
|
TbDist2(aNbU+1,NoV) = RealFirst();
|
|
}
|
|
for (NoU = 1; NoU <= aNbU; NoU++) {
|
|
TbDist2(NoU,0) = RealFirst();
|
|
TbDist2(NoU,aNbV+1) = RealFirst();
|
|
}
|
|
|
|
// - du tableau TbSel(0,aNbU+1,0,aNbV+1) de selection des points
|
|
TbSel.Init(0);
|
|
/*for (NoU = 0; NoU <= aNbU+1; NoU++) {
|
|
for (NoV = 0; NoV <= aNbV+1; NoV++) {
|
|
TbSel(NoU,NoV) = 0;
|
|
}
|
|
}*/
|
|
/*
|
|
c.b) Calcul des maxima:
|
|
*/
|
|
// - recherche d un maximum sur la grille
|
|
for (NoU = 1; NoU <= aNbU; NoU++) {
|
|
for (NoV = 1; NoV <= aNbV; NoV++) {
|
|
if (TbSel(NoU,NoV) == 0) {
|
|
Dist2 = TbDist2(NoU,NoV);
|
|
if ((TbDist2(NoU-1,NoV-1) <= Dist2) &&
|
|
(TbDist2(NoU-1,NoV ) <= Dist2) &&
|
|
(TbDist2(NoU-1,NoV+1) <= Dist2) &&
|
|
(TbDist2(NoU ,NoV-1) <= Dist2) &&
|
|
(TbDist2(NoU ,NoV+1) <= Dist2) &&
|
|
(TbDist2(NoU+1,NoV-1) <= Dist2) &&
|
|
(TbDist2(NoU+1,NoV ) <= Dist2) &&
|
|
(TbDist2(NoU+1,NoV+1) <= Dist2)) {
|
|
|
|
// - calcul de l extremum sur la surface:
|
|
|
|
UV(1) = aParamArray1->Value(NoU);
|
|
UV(2) = aParamArray2->Value(NoV);
|
|
|
|
math_FunctionSetRoot S (myF,UV,Tol,UVinf,UVsup);
|
|
|
|
// - mise a jour du tableau TbSel
|
|
for (Nu = NoU-1; Nu <= NoU+1; Nu++) {
|
|
for (Nv = NoV-1; Nv <= NoV+1; Nv++) {
|
|
TbSel(Nu,Nv) = 1;
|
|
}
|
|
}
|
|
}
|
|
} // if (TbSel(NoU,NoV))
|
|
} // for (NoV = 1; ...)
|
|
} // for (NoU = 1; ...)
|
|
myDone = Standard_True;
|
|
}
|
|
//=============================================================================
|
|
|
|
Standard_Boolean Extrema_GenExtCC::IsDone () const { return myDone; }
|
|
//=============================================================================
|
|
|
|
Standard_Integer Extrema_GenExtCC::NbExt () const
|
|
{
|
|
StdFail_NotDone_Raise_if (!myDone, "Extrema_GenExtCC::NbExt()")
|
|
return myF.NbExt();
|
|
}
|
|
//=============================================================================
|
|
|
|
Standard_Real Extrema_GenExtCC::SquareDistance (const Standard_Integer N) const
|
|
{
|
|
StdFail_NotDone_Raise_if (!myDone, "Extrema_GenExtCC::SquareDistance()")
|
|
Standard_OutOfRange_Raise_if ((N < 1 || N > NbExt()), "Extrema_GenExtCC::SquareDistance()")
|
|
return myF.SquareDistance(N);
|
|
}
|
|
//=============================================================================
|
|
|
|
void Extrema_GenExtCC::Points (const Standard_Integer N,
|
|
POnC& P1, POnC& P2) const
|
|
{
|
|
StdFail_NotDone_Raise_if (!myDone, "Extrema_GenExtCC::SquareDistance()")
|
|
Standard_OutOfRange_Raise_if ((N < 1 || N > NbExt()), "Extrema_GenExtCC::SquareDistance()")
|
|
myF.Points(N,P1,P2);
|
|
}
|