mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
83 lines
2.8 KiB
C++
83 lines
2.8 KiB
C++
// Created on: 1992-09-02
|
|
// Created by: Remi GILET
|
|
// Copyright (c) 1992-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <gce_MakeElips.hxx>
|
|
#include <gp.hxx>
|
|
#include <gp_Ax2.hxx>
|
|
#include <gp_Elips.hxx>
|
|
#include <gp_Lin.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
|
|
//=========================================================================
|
|
// Creation d une Ellipse 3d de gp a partir de son Ax2 et de son +
|
|
// grand rayon <MajorRadius> et son petit rayon <MinorRadius>. +
|
|
//=========================================================================
|
|
gce_MakeElips::gce_MakeElips(const gp_Ax2& A2 ,
|
|
const Standard_Real MajorRadius ,
|
|
const Standard_Real MinorRadius )
|
|
{
|
|
if (MajorRadius < MinorRadius ) { TheError = gce_InvertRadius;}
|
|
else if (MinorRadius < 0.0) { TheError = gce_NegativeRadius; }
|
|
else {
|
|
TheElips = gp_Elips(A2,MajorRadius,MinorRadius);
|
|
TheError = gce_Done;
|
|
}
|
|
|
|
}
|
|
|
|
//=========================================================================
|
|
// Creation d une Ellipse 3d de gp de centre <Center> et de sommets +
|
|
// <S1> et <S2>. +
|
|
// <S1> donne le grand rayon et <S2> le petit rayon. +
|
|
//=========================================================================
|
|
|
|
gce_MakeElips::gce_MakeElips(const gp_Pnt& S1 ,
|
|
const gp_Pnt& S2 ,
|
|
const gp_Pnt& Center )
|
|
{
|
|
Standard_Real D1 = S1.Distance(Center);
|
|
if (D1 < gp::Resolution()) { TheError = gce_NullAxis; }
|
|
else {
|
|
gp_Dir XAxis(gp_XYZ(S1.XYZ()-Center.XYZ()));
|
|
Standard_Real D2 = gp_Lin(Center,XAxis).Distance(S2);
|
|
if (D1 < D2 || D2 < gp::Resolution()) { TheError = gce_InvertAxis; }
|
|
else {
|
|
gp_Dir Norm(XAxis.Crossed(gp_Dir(gp_XYZ(S2.XYZ()-Center.XYZ()))));
|
|
TheElips = gp_Elips(gp_Ax2(Center,Norm,XAxis),D1,D2);
|
|
TheError = gce_Done;
|
|
}
|
|
}
|
|
}
|
|
|
|
const gp_Elips& gce_MakeElips::Value() const
|
|
{
|
|
StdFail_NotDone_Raise_if (TheError != gce_Done,
|
|
"gce_MakeElips::Value() - no result");
|
|
return TheElips;
|
|
}
|
|
|
|
const gp_Elips& gce_MakeElips::Operator() const
|
|
{
|
|
return Value();
|
|
}
|
|
|
|
gce_MakeElips::operator gp_Elips() const
|
|
{
|
|
return Value();
|
|
}
|