mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-08 18:40:55 +03:00
149 lines
5.4 KiB
C++
149 lines
5.4 KiB
C++
// Created on: 1997-10-22
|
|
// Created by: Philippe MANGIN
|
|
// Copyright (c) 1997-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#ifndef _PLib_HermitJacobi_HeaderFile
|
|
#define _PLib_HermitJacobi_HeaderFile
|
|
|
|
#include <Standard.hxx>
|
|
#include <Standard_Type.hxx>
|
|
|
|
#include <math_Matrix.hxx>
|
|
#include <TColStd_Array1OfReal.hxx>
|
|
#include <PLib_Base.hxx>
|
|
#include <Standard_Integer.hxx>
|
|
#include <GeomAbs_Shape.hxx>
|
|
#include <Standard_Real.hxx>
|
|
class PLib_JacobiPolynomial;
|
|
class Standard_ConstructionError;
|
|
|
|
|
|
class PLib_HermitJacobi;
|
|
DEFINE_STANDARD_HANDLE(PLib_HermitJacobi, PLib_Base)
|
|
|
|
//! This class provides method to work with Jacobi Polynomials
|
|
//! relativly to an order of constraint
|
|
//! q = myWorkDegree-2*(myNivConstr+1)
|
|
//! Jk(t) for k=0,q compose the Jacobi Polynomial base relativly to the weigth W(t)
|
|
//! iorder is the integer value for the constraints:
|
|
//! iorder = 0 <=> ConstraintOrder = GeomAbs_C0
|
|
//! iorder = 1 <=> ConstraintOrder = GeomAbs_C1
|
|
//! iorder = 2 <=> ConstraintOrder = GeomAbs_C2
|
|
//! P(t) = H(t) + W(t) * Q(t) Where W(t) = (1-t**2)**(2*iordre+2)
|
|
//! the coefficients JacCoeff represents P(t) JacCoeff are stored as follow:
|
|
//!
|
|
//! c0(1) c0(2) .... c0(Dimension)
|
|
//! c1(1) c1(2) .... c1(Dimension)
|
|
//!
|
|
//! cDegree(1) cDegree(2) .... cDegree(Dimension)
|
|
//!
|
|
//! The coefficients
|
|
//! c0(1) c0(2) .... c0(Dimension)
|
|
//! c2*ordre+1(1) ... c2*ordre+1(dimension)
|
|
//!
|
|
//! represents the part of the polynomial in the
|
|
//! Hermit's base: H(t)
|
|
//! H(t) = c0H00(t) + c1H01(t) + ...c(iordre)H(0 ;iorder)+ c(iordre+1)H10(t)+...
|
|
//! The following coefficients represents the part of the
|
|
//! polynomial in the Jacobi base ie Q(t)
|
|
//! Q(t) = c2*iordre+2 J0(t) + ...+ cDegree JDegree-2*iordre-2
|
|
class PLib_HermitJacobi : public PLib_Base
|
|
{
|
|
|
|
public:
|
|
|
|
|
|
|
|
//! Initialize the polynomial class
|
|
//! Degree has to be <= 30
|
|
//! ConstraintOrder has to be GeomAbs_C0
|
|
//! GeomAbs_C1
|
|
//! GeomAbs_C2
|
|
Standard_EXPORT PLib_HermitJacobi(const Standard_Integer WorkDegree, const GeomAbs_Shape ConstraintOrder);
|
|
|
|
|
|
//! This method computes the maximum error on the polynomial
|
|
//! W(t) Q(t) obtained by missing the coefficients of JacCoeff from
|
|
//! NewDegree +1 to Degree
|
|
Standard_EXPORT Standard_Real MaxError (const Standard_Integer Dimension, Standard_Real& HermJacCoeff, const Standard_Integer NewDegree) const;
|
|
|
|
|
|
//! Compute NewDegree <= MaxDegree so that MaxError is lower
|
|
//! than Tol.
|
|
//! MaxError can be greater than Tol if it is not possible
|
|
//! to find a NewDegree <= MaxDegree.
|
|
//! In this case NewDegree = MaxDegree
|
|
Standard_EXPORT void ReduceDegree (const Standard_Integer Dimension, const Standard_Integer MaxDegree, const Standard_Real Tol, Standard_Real& HermJacCoeff, Standard_Integer& NewDegree, Standard_Real& MaxError) const Standard_OVERRIDE;
|
|
|
|
Standard_EXPORT Standard_Real AverageError (const Standard_Integer Dimension, Standard_Real& HermJacCoeff, const Standard_Integer NewDegree) const;
|
|
|
|
|
|
//! Convert the polynomial P(t) = H(t) + W(t) Q(t) in the canonical base.
|
|
Standard_EXPORT void ToCoefficients (const Standard_Integer Dimension, const Standard_Integer Degree, const TColStd_Array1OfReal& HermJacCoeff, TColStd_Array1OfReal& Coefficients) const Standard_OVERRIDE;
|
|
|
|
//! Compute the values of the basis functions in u
|
|
Standard_EXPORT void D0 (const Standard_Real U, TColStd_Array1OfReal& BasisValue) Standard_OVERRIDE;
|
|
|
|
//! Compute the values and the derivatives values of
|
|
//! the basis functions in u
|
|
Standard_EXPORT void D1 (const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1) Standard_OVERRIDE;
|
|
|
|
//! Compute the values and the derivatives values of
|
|
//! the basis functions in u
|
|
Standard_EXPORT void D2 (const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1, TColStd_Array1OfReal& BasisD2) Standard_OVERRIDE;
|
|
|
|
//! Compute the values and the derivatives values of
|
|
//! the basis functions in u
|
|
Standard_EXPORT void D3 (const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1, TColStd_Array1OfReal& BasisD2, TColStd_Array1OfReal& BasisD3) Standard_OVERRIDE;
|
|
|
|
//! returns WorkDegree
|
|
Standard_Integer WorkDegree() const Standard_OVERRIDE;
|
|
|
|
//! returns NivConstr
|
|
Standard_Integer NivConstr() const;
|
|
|
|
|
|
|
|
|
|
DEFINE_STANDARD_RTTIEXT(PLib_HermitJacobi,PLib_Base)
|
|
|
|
protected:
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
//! Compute the values and the derivatives values of
|
|
//! the basis functions in u
|
|
Standard_EXPORT void D0123 (const Standard_Integer NDerive, const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1, TColStd_Array1OfReal& BasisD2, TColStd_Array1OfReal& BasisD3);
|
|
|
|
math_Matrix myH;
|
|
Handle(PLib_JacobiPolynomial) myJacobi;
|
|
TColStd_Array1OfReal myWCoeff;
|
|
|
|
|
|
};
|
|
|
|
|
|
#include <PLib_HermitJacobi.lxx>
|
|
|
|
|
|
|
|
|
|
|
|
#endif // _PLib_HermitJacobi_HeaderFile
|