1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-08 18:40:55 +03:00
occt/src/PLib/PLib_HermitJacobi.hxx
abv 92efcf78a6 0026936: Drawbacks of inlining in new type system in OCCT 7.0 -- automatic
Automatic restore of IMPLEMENT_STANDARD_RTTIEXT macro (upgrade -rtti)
2015-12-04 14:15:06 +03:00

149 lines
5.4 KiB
C++

// Created on: 1997-10-22
// Created by: Philippe MANGIN
// Copyright (c) 1997-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _PLib_HermitJacobi_HeaderFile
#define _PLib_HermitJacobi_HeaderFile
#include <Standard.hxx>
#include <Standard_Type.hxx>
#include <math_Matrix.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <PLib_Base.hxx>
#include <Standard_Integer.hxx>
#include <GeomAbs_Shape.hxx>
#include <Standard_Real.hxx>
class PLib_JacobiPolynomial;
class Standard_ConstructionError;
class PLib_HermitJacobi;
DEFINE_STANDARD_HANDLE(PLib_HermitJacobi, PLib_Base)
//! This class provides method to work with Jacobi Polynomials
//! relativly to an order of constraint
//! q = myWorkDegree-2*(myNivConstr+1)
//! Jk(t) for k=0,q compose the Jacobi Polynomial base relativly to the weigth W(t)
//! iorder is the integer value for the constraints:
//! iorder = 0 <=> ConstraintOrder = GeomAbs_C0
//! iorder = 1 <=> ConstraintOrder = GeomAbs_C1
//! iorder = 2 <=> ConstraintOrder = GeomAbs_C2
//! P(t) = H(t) + W(t) * Q(t) Where W(t) = (1-t**2)**(2*iordre+2)
//! the coefficients JacCoeff represents P(t) JacCoeff are stored as follow:
//!
//! c0(1) c0(2) .... c0(Dimension)
//! c1(1) c1(2) .... c1(Dimension)
//!
//! cDegree(1) cDegree(2) .... cDegree(Dimension)
//!
//! The coefficients
//! c0(1) c0(2) .... c0(Dimension)
//! c2*ordre+1(1) ... c2*ordre+1(dimension)
//!
//! represents the part of the polynomial in the
//! Hermit's base: H(t)
//! H(t) = c0H00(t) + c1H01(t) + ...c(iordre)H(0 ;iorder)+ c(iordre+1)H10(t)+...
//! The following coefficients represents the part of the
//! polynomial in the Jacobi base ie Q(t)
//! Q(t) = c2*iordre+2 J0(t) + ...+ cDegree JDegree-2*iordre-2
class PLib_HermitJacobi : public PLib_Base
{
public:
//! Initialize the polynomial class
//! Degree has to be <= 30
//! ConstraintOrder has to be GeomAbs_C0
//! GeomAbs_C1
//! GeomAbs_C2
Standard_EXPORT PLib_HermitJacobi(const Standard_Integer WorkDegree, const GeomAbs_Shape ConstraintOrder);
//! This method computes the maximum error on the polynomial
//! W(t) Q(t) obtained by missing the coefficients of JacCoeff from
//! NewDegree +1 to Degree
Standard_EXPORT Standard_Real MaxError (const Standard_Integer Dimension, Standard_Real& HermJacCoeff, const Standard_Integer NewDegree) const;
//! Compute NewDegree <= MaxDegree so that MaxError is lower
//! than Tol.
//! MaxError can be greater than Tol if it is not possible
//! to find a NewDegree <= MaxDegree.
//! In this case NewDegree = MaxDegree
Standard_EXPORT void ReduceDegree (const Standard_Integer Dimension, const Standard_Integer MaxDegree, const Standard_Real Tol, Standard_Real& HermJacCoeff, Standard_Integer& NewDegree, Standard_Real& MaxError) const Standard_OVERRIDE;
Standard_EXPORT Standard_Real AverageError (const Standard_Integer Dimension, Standard_Real& HermJacCoeff, const Standard_Integer NewDegree) const;
//! Convert the polynomial P(t) = H(t) + W(t) Q(t) in the canonical base.
Standard_EXPORT void ToCoefficients (const Standard_Integer Dimension, const Standard_Integer Degree, const TColStd_Array1OfReal& HermJacCoeff, TColStd_Array1OfReal& Coefficients) const Standard_OVERRIDE;
//! Compute the values of the basis functions in u
Standard_EXPORT void D0 (const Standard_Real U, TColStd_Array1OfReal& BasisValue) Standard_OVERRIDE;
//! Compute the values and the derivatives values of
//! the basis functions in u
Standard_EXPORT void D1 (const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1) Standard_OVERRIDE;
//! Compute the values and the derivatives values of
//! the basis functions in u
Standard_EXPORT void D2 (const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1, TColStd_Array1OfReal& BasisD2) Standard_OVERRIDE;
//! Compute the values and the derivatives values of
//! the basis functions in u
Standard_EXPORT void D3 (const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1, TColStd_Array1OfReal& BasisD2, TColStd_Array1OfReal& BasisD3) Standard_OVERRIDE;
//! returns WorkDegree
Standard_Integer WorkDegree() const Standard_OVERRIDE;
//! returns NivConstr
Standard_Integer NivConstr() const;
DEFINE_STANDARD_RTTIEXT(PLib_HermitJacobi,PLib_Base)
protected:
private:
//! Compute the values and the derivatives values of
//! the basis functions in u
Standard_EXPORT void D0123 (const Standard_Integer NDerive, const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1, TColStd_Array1OfReal& BasisD2, TColStd_Array1OfReal& BasisD3);
math_Matrix myH;
Handle(PLib_JacobiPolynomial) myJacobi;
TColStd_Array1OfReal myWCoeff;
};
#include <PLib_HermitJacobi.lxx>
#endif // _PLib_HermitJacobi_HeaderFile