1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00
occt/src/IntPatch/IntPatch_ImpImpIntersection_3.gxx
abv d5f74e42d6 0024624: Lost word in license statement in source files
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast
Wrong license statements corrected in several files.
Copyright and license statements added in XSD and GLSL files.
Copyright year updated in some files.
Obsolete documentation files removed from DrawResources.
2014-02-20 16:15:17 +04:00

804 lines
24 KiB
Plaintext

// Created on: 1992-05-07
// Created by: Jacques GOUSSARD
// Copyright (c) 1992-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
//modified by NIZNHY-PKV Thu Sep 15 11:09:12 2011
static
void SeamPosition(const gp_Pnt& aPLoc,
const gp_Ax3& aPos,
gp_Ax2& aSeamPos);
static
void AdjustToSeam (const gp_Cylinder& aQuad,
gp_Circ& aCirc);
static
void AdjustToSeam (const gp_Sphere& aQuad,
gp_Circ& aCirc,
const Standard_Real aTolAng);
static
void AdjustToSeam (const gp_Cone& aQuad,
gp_Circ& aCirc);
static
void AdjustToSeam (const gp_Torus& aQuad,
gp_Circ& aCirc);
//modified by NIZNHY-PKV Thu Sep 15 11:09:13 2011
//=======================================================================
//function : IntPP
//purpose :
// Traitement du cas Plan/Plan
//=======================================================================
Standard_Boolean IntPP (const IntSurf_Quadric& Quad1,
const IntSurf_Quadric& Quad2,
const Standard_Real Tolang,
const Standard_Real TolTang,
Standard_Boolean& Same,
IntPatch_SequenceOfLine& slin)
{
IntSurf_TypeTrans trans1,trans2;
IntAna_ResultType typint;
gp_Pln pl1(Quad1.Plane());
gp_Pln pl2(Quad2.Plane());
IntAna_QuadQuadGeo inter(pl1,pl2,Tolang,TolTang);
if (!inter.IsDone()) {return Standard_False;}
Same = Standard_False;
typint = inter.TypeInter();
if (typint == IntAna_Same) { // cas faces confondues
Same = Standard_True;
}
else if (typint != IntAna_Empty) { // on a une ligne
gp_Lin linsol = inter.Line(1);
Standard_Real discri = linsol.Direction().DotCross
(Quad2.Normale(linsol.Location()),
Quad1.Normale(linsol.Location()));
if (discri>0.0) {
trans1 = IntSurf_Out;
trans2 = IntSurf_In;
}
else {
trans1 = IntSurf_In;
trans2 = IntSurf_Out;
}
Handle(IntPatch_GLine) glig =
new IntPatch_GLine (linsol,Standard_False,trans1,trans2);
slin.Append(glig);
}
return Standard_True;
}
//=======================================================================
//function : IntPCy
//purpose :
// Traitement du cas Plan/Cylindre et reciproquement
//=======================================================================
Standard_Boolean IntPCy (const IntSurf_Quadric& Quad1,
const IntSurf_Quadric& Quad2,
const Standard_Real Tolang,
const Standard_Real TolTang,
const Standard_Boolean Reversed,
Standard_Boolean& Empty,
IntPatch_SequenceOfLine& slin,
const Standard_Real H)
{
gp_Pln Pl;
gp_Cylinder Cy;
IntSurf_TypeTrans trans1,trans2;
IntAna_ResultType typint;
IntAna_QuadQuadGeo inter;
if (!Reversed) {
Pl = Quad1.Plane();
Cy = Quad2.Cylinder();
}
else {
Pl = Quad2.Plane();
Cy = Quad1.Cylinder();
}
inter.Perform(Pl,Cy,Tolang,TolTang,H);
if (!inter.IsDone()) {return Standard_False;}
typint = inter.TypeInter();
Standard_Integer NbSol = inter.NbSolutions();
Empty = Standard_False;
switch (typint) {
case IntAna_Empty : {
Empty = Standard_True;
}
break;
case IntAna_Line: {
gp_Lin linsol = inter.Line(1);
gp_Pnt orig(linsol.Location());
if (NbSol == 1) { // ligne de tangence
gp_Vec TestCurvature(orig,Cy.Location());
gp_Vec Normp,Normcyl;
if (!Reversed) {
Normp = Quad1.Normale(orig);
Normcyl = Quad2.Normale(orig);
}
else {
Normp = Quad2.Normale(orig);
Normcyl = Quad1.Normale(orig);
}
IntSurf_Situation situcyl;
IntSurf_Situation situp;
if (Normp.Dot(TestCurvature) > 0.) {
situcyl = IntSurf_Outside;
if (Normp.Dot(Normcyl) > 0.) {
situp = IntSurf_Inside;
}
else {
situp = IntSurf_Outside;
}
}
else {
situcyl = IntSurf_Inside;
if (Normp.Dot(Normcyl) > 0.) {
situp = IntSurf_Outside;
}
else {
situp = IntSurf_Inside;
}
}
Handle(IntPatch_GLine) glig;
if (!Reversed) {
glig = new IntPatch_GLine(linsol, Standard_True, situp, situcyl);
}
else {
glig = new IntPatch_GLine(linsol, Standard_True, situcyl, situp);
}
slin.Append(glig);
}
else {
// on a 2 droites. Il faut determiner les transitions
// de chacune.
if (linsol.Direction().DotCross(Quad2.Normale(orig),
Quad1.Normale(orig)) >0.) {
trans1 = IntSurf_Out;
trans2 = IntSurf_In;
}
else {
trans1 = IntSurf_In;
trans2 = IntSurf_Out;
}
Handle(IntPatch_GLine) glig =
new IntPatch_GLine(linsol, Standard_False,trans1,trans2);
slin.Append(glig);
linsol = inter.Line(2);
orig = linsol.Location();
if (linsol.Direction().DotCross(Quad2.Normale(orig),
Quad1.Normale(orig)) >0.) {
trans1 = IntSurf_Out;
trans2 = IntSurf_In;
}
else {
trans1 = IntSurf_In;
trans2 = IntSurf_Out;
}
glig = new IntPatch_GLine(linsol, Standard_False,trans1,trans2);
slin.Append(glig);
}
}
break;
//
case IntAna_Circle: {
gp_Circ cirsol;
gp_Pnt ptref;
gp_Vec Tgt;
//
cirsol = inter.Circle(1);
//modified by NIZNHY-PKV Thu Sep 15 11:30:03 2011f
AdjustToSeam(Cy, cirsol);
//modified by NIZNHY-PKV Thu Sep 15 11:30:15 2011t
ElCLib::D1(0.,cirsol,ptref,Tgt);
if (Tgt.DotCross(Quad2.Normale(ptref),Quad1.Normale(ptref)) > 0.0) {
trans1 = IntSurf_Out;
trans2 = IntSurf_In;
}
else {
trans1 = IntSurf_In;
trans2 = IntSurf_Out;
}
Handle(IntPatch_GLine) glig = new IntPatch_GLine(cirsol,Standard_False,trans1,trans2);
slin.Append(glig);
}
break;
//
case IntAna_Ellipse: {
gp_Elips elipsol = inter.Ellipse(1);
gp_Pnt ptref;
gp_Vec Tgt;
ElCLib::D1(0.,elipsol,ptref,Tgt);
if (Tgt.DotCross(Quad2.Normale(ptref),Quad1.Normale(ptref)) > 0.0) {
trans1 = IntSurf_Out;
trans2 = IntSurf_In;
}
else {
trans1 = IntSurf_In;
trans2 = IntSurf_Out;
}
Handle(IntPatch_GLine) glig = new IntPatch_GLine(elipsol,Standard_False,trans1,trans2);
slin.Append(glig);
}
break;
//
default: {
return Standard_False; // on ne doit pas passer ici
}
}
return Standard_True;
}
//=======================================================================
//function : IntPSp
//purpose :
// Traitement du cas Plan/Sphere et reciproquement
//=======================================================================
Standard_Boolean IntPSp (const IntSurf_Quadric& Quad1,
const IntSurf_Quadric& Quad2,
//modified by NIZNHY-PKV Tue Sep 20 08:59:36 2011f
const Standard_Real Tolang,
//modified by NIZNHY-PKV Tue Sep 20 08:59:39 2011t
const Standard_Real TolTang,
const Standard_Boolean Reversed,
Standard_Boolean& Empty,
IntPatch_SequenceOfLine& slin,
IntPatch_SequenceOfPoint& spnt)
{
gp_Circ cirsol;
gp_Pln Pl;
gp_Sphere Sp;
IntSurf_TypeTrans trans1,trans2;
IntAna_ResultType typint;
IntAna_QuadQuadGeo inter;
if (!Reversed) {
Pl = Quad1.Plane();
Sp = Quad2.Sphere();
}
else {
Pl = Quad2.Plane();
Sp = Quad1.Sphere();
}
inter.Perform(Pl,Sp);
if (!inter.IsDone()) {return Standard_False;}
typint = inter.TypeInter();
Empty = Standard_False;
switch (typint) {
case IntAna_Empty : {
Empty = Standard_True;
}
break;
//
case IntAna_Point: {
gp_Pnt psol = inter.Point(1);
Standard_Real U1,V1,U2,V2;
Quad1.Parameters(psol,U1,V1);
Quad2.Parameters(psol,U2,V2);
IntPatch_Point ptsol;
ptsol.SetValue(psol,TolTang,Standard_True);
ptsol.SetParameters(U1,V1,U2,V2);
spnt.Append(ptsol);
}
break;
//
case IntAna_Circle: {
cirsol = inter.Circle(1);
//modified by NIZNHY-PKV Thu Sep 15 11:30:03 2011f
AdjustToSeam(Sp, cirsol, Tolang);
//modified by NIZNHY-PKV Thu Sep 15 11:30:15 2011t
gp_Pnt ptref;
gp_Vec Tgt;
ElCLib::D1(0.,cirsol,ptref,Tgt);
if (Tgt.DotCross(Quad2.Normale(ptref),Quad1.Normale(ptref)) >0.) {
trans1 = IntSurf_Out;
trans2 = IntSurf_In;
}
else {
trans1 = IntSurf_In;
trans2 = IntSurf_Out;
}
Handle(IntPatch_GLine) glig = new IntPatch_GLine(cirsol,Standard_False,trans1,trans2);
slin.Append(glig);
}
break;
default: {
return Standard_False; // on ne doit pas passer ici
}
}
return Standard_True;
}
//=======================================================================
//function : IntPCo
//purpose :
// Traitement du cas Plan/Cone et reciproquement
//=======================================================================
Standard_Boolean IntPCo (const IntSurf_Quadric& Quad1,
const IntSurf_Quadric& Quad2,
const Standard_Real Tolang,
const Standard_Real TolTang,
const Standard_Boolean Reversed,
Standard_Boolean& Empty,
Standard_Boolean& Multpoint,
IntPatch_SequenceOfLine& slin,
IntPatch_SequenceOfPoint& spnt)
{
gp_Pnt apex;
gp_Pln Pl;
gp_Cone Co;
IntSurf_TypeTrans trans1,trans2;
IntAna_ResultType typint;
IntAna_QuadQuadGeo inter;
if (!Reversed) {
Pl = Quad1.Plane();
Co = Quad2.Cone();
apex = Co.Apex();
}
else {
Pl = Quad2.Plane();
Co = Quad1.Cone();
apex = Co.Apex();
}
inter.Perform(Pl,Co,Tolang,TolTang);
if (!inter.IsDone()) {
return Standard_False;
}
//
typint = inter.TypeInter();
Standard_Integer NbSol = inter.NbSolutions();
Empty = Standard_False;
switch (typint) {
case IntAna_Point: {
gp_Pnt psol = inter.Point(1);
Standard_Real U1,V1,U2,V2;
Quad1.Parameters(psol,U1,V1);
Quad2.Parameters(psol,U2,V2);
IntPatch_Point ptsol;
ptsol.SetValue(psol,TolTang,Standard_False);
ptsol.SetParameters(U1,V1,U2,V2);
spnt.Append(ptsol);
}
break;
case IntAna_Line: {
gp_Lin linsol = inter.Line(1);
if (linsol.Direction().Dot(Co.Axis().Direction()) <0.) {
linsol.SetDirection(linsol.Direction().Reversed());
}
Standard_Real para = ElCLib::Parameter(linsol, apex);
gp_Pnt ptbid (ElCLib::Value(para+5.,linsol));
Standard_Real U1,V1,U2,V2;
Quad1.Parameters(apex,U1,V1);
Quad2.Parameters(apex,U2,V2);
if (NbSol == 1) { // ligne de tangence
IntPatch_Point ptsol;
ptsol.SetValue(apex,TolTang,Standard_False);
ptsol.SetParameters(U1,V1,U2,V2);
ptsol.SetParameter(para);
gp_Pnt ptbid2(apex.XYZ() + 5.*Co.Axis().Direction().XYZ());
gp_Vec TestCurvature(ptbid,ptbid2);
gp_Vec Normp,Normco;
if (!Reversed) {
Normp = Quad1.Normale(ptbid);
Normco = Quad2.Normale(ptbid);
}
else {
Normp = Quad2.Normale(ptbid);
Normco = Quad1.Normale(ptbid);
}
IntSurf_Situation situco,situco_otherside;
IntSurf_Situation situp,situp_otherside;
if (Normp.Dot(TestCurvature) > 0.) {
situco = IntSurf_Outside;
situco_otherside = IntSurf_Inside;
if (Normp.Dot(Normco) > 0.) {
situp = IntSurf_Inside;
situp_otherside = IntSurf_Outside;
}
else {
situp = IntSurf_Outside;
situp_otherside = IntSurf_Inside;
}
}
else {
situco = IntSurf_Inside;
situco_otherside = IntSurf_Outside;
if (Normp.Dot(Normco) > 0.) {
situp = IntSurf_Outside;
situp_otherside = IntSurf_Inside;
}
else {
situp = IntSurf_Inside;
situp_otherside = IntSurf_Outside;
}
}
//----------------------------------------------------------
//-- Apex ---> Cone.Direction
//--
Handle(IntPatch_GLine) glig;
if (!Reversed) {
glig = new IntPatch_GLine(linsol, Standard_True, situp, situco);
}
else {
glig = new IntPatch_GLine(linsol, Standard_True, situco, situp);
}
glig->AddVertex(ptsol);
glig->SetFirstPoint(1);
slin.Append(glig);
//----------------------------------------------------------
//-- -Cone.Direction <------- Apex
//--
linsol.SetDirection(linsol.Direction().Reversed());
if (!Reversed) {
glig = new IntPatch_GLine(linsol, Standard_True, situp_otherside, situco_otherside);
}
else {
glig = new IntPatch_GLine(linsol, Standard_True, situco_otherside, situp_otherside);
}
glig->AddVertex(ptsol);
glig->SetFirstPoint(1);
slin.Append(glig);
}
else {
// on a 2 droites. Il faut determiner les transitions
// de chacune. On oriente chaque ligne dans le sens
// de l axe du cone. Les transitions de chaque ligne seront
// inverses l une de l autre => on ne fait le calcul que sur
// la premiere.
if (linsol.Direction().DotCross
(Quad2.Normale(ptbid),Quad1.Normale(ptbid)) >0.) {
trans1 = IntSurf_Out;
trans2 = IntSurf_In;
}
else {
trans1 = IntSurf_In;
trans2 = IntSurf_Out;
}
Multpoint = Standard_True;
//------------------------------------------- Ligne 1 -------
IntPatch_Point ptsol;
ptsol.SetValue(apex,TolTang,Standard_False);
ptsol.SetParameters(U1,V1,U2,V2);
ptsol.SetParameter(para);
ptsol.SetMultiple(Standard_True);
Handle(IntPatch_GLine) glig;
glig = new IntPatch_GLine(linsol, Standard_False,trans1,trans2);
glig->AddVertex(ptsol);
glig->SetFirstPoint(1);
slin.Append(glig);
//-----------------------------------------------------------
//-- Other Side : Les transitions restent les memes
//-- linsol -> -linsol et Quad1(2).N -> -Quad1(2).N
//--
linsol.SetDirection(linsol.Direction().Reversed());
glig = new IntPatch_GLine(linsol, Standard_False,trans1,trans2);
para = ElCLib::Parameter(linsol, apex);
ptsol.SetParameter(para);
glig->AddVertex(ptsol);
glig->SetFirstPoint(1);
slin.Append(glig);
//------------------------------------------- Ligne 2 -------
linsol = inter.Line(2);
if (linsol.Direction().Dot(Co.Axis().Direction()) <0.) {
linsol.SetDirection(linsol.Direction().Reversed());
}
para = ElCLib::Parameter(linsol, apex);
ptbid = ElCLib::Value(para+5.,linsol);
if (linsol.Direction().DotCross
(Quad2.Normale(ptbid),Quad1.Normale(ptbid)) >0.) {
trans1 = IntSurf_Out;
trans2 = IntSurf_In;
}
else {
trans1 = IntSurf_In;
trans2 = IntSurf_Out;
}
ptsol.SetParameter(para);
glig = new IntPatch_GLine(linsol, Standard_False,trans1,trans2);
para = ElCLib::Parameter(linsol, apex);
ptsol.SetParameter(para);
glig->AddVertex(ptsol);
glig->SetFirstPoint(1);
slin.Append(glig);
//-----------------------------------------------------------
//-- Other Side : Les transitions restent les memes
//-- linsol -> -linsol et Quad1(2).N -> -Quad1(2).N
//--
linsol.SetDirection(linsol.Direction().Reversed());
glig = new IntPatch_GLine(linsol, Standard_False,trans1,trans2);
para = ElCLib::Parameter(linsol, apex);
ptsol.SetParameter(para);
glig->AddVertex(ptsol);
glig->SetFirstPoint(1);
slin.Append(glig);
}
}
break;
case IntAna_Circle: {
gp_Circ cirsol = inter.Circle(1);
//modified by NIZNHY-PKV Thu Sep 15 11:34:04 2011f
AdjustToSeam(Co, cirsol);
//modified by NIZNHY-PKV Thu Sep 15 11:36:08 2011t
gp_Pnt ptref;
gp_Vec Tgt;
ElCLib::D1(0.,cirsol,ptref,Tgt);
if (Tgt.DotCross(Quad2.Normale(ptref),Quad1.Normale(ptref)) >0.) {
trans1 = IntSurf_Out;
trans2 = IntSurf_In;
}
else {
trans1 = IntSurf_In;
trans2 = IntSurf_Out;
}
Handle(IntPatch_GLine) glig = new IntPatch_GLine(cirsol,Standard_False,trans1,trans2);
slin.Append(glig);
}
break;
case IntAna_Ellipse: {
gp_Elips elipsol = inter.Ellipse(1);
gp_Pnt ptref;
gp_Vec Tgt;
ElCLib::D1(0.,elipsol,ptref,Tgt);
if (Tgt.DotCross(Quad2.Normale(ptref),Quad1.Normale(ptref)) >0.) {
trans1 = IntSurf_Out;
trans2 = IntSurf_In;
}
else {
trans1 = IntSurf_In;
trans2 = IntSurf_Out;
}
Handle(IntPatch_GLine) glig = new IntPatch_GLine(elipsol,Standard_False,trans1,trans2);
slin.Append(glig);
}
break;
case IntAna_Parabola: {
gp_Parab parabsol = inter.Parabola(1);
gp_Vec Tgtorig(parabsol.YAxis().Direction());
Standard_Real ptran = Tgtorig.DotCross(Quad2.Normale(parabsol.Location()),
Quad1.Normale(parabsol.Location()));
if (ptran >0.00000001) {
trans1 = IntSurf_Out;
trans2 = IntSurf_In;
}
else if (ptran <-0.00000001) {
trans1 = IntSurf_In;
trans2 = IntSurf_Out;
}
else {
trans1=trans2=IntSurf_Undecided;
}
Handle(IntPatch_GLine) glig = new IntPatch_GLine(parabsol,Standard_False,trans1,trans2);
slin.Append(glig);
}
break;
case IntAna_Hyperbola: {
gp_Pnt tophypr;
gp_Vec Tgttop;
for(Standard_Integer i=1; i<=2; i++) {
gp_Hypr hyprsol = inter.Hyperbola(i);
tophypr = ElCLib::Value(hyprsol.MajorRadius(),
hyprsol.XAxis());
Tgttop = hyprsol.YAxis().Direction();
Standard_Real qwe = Tgttop.DotCross(Quad2.Normale(tophypr),
Quad1.Normale(tophypr));
if (qwe>0.00000001) {
trans1 = IntSurf_Out;
trans2 = IntSurf_In;
}
else if (qwe<-0.00000001){
trans1 = IntSurf_In;
trans2 = IntSurf_Out;
}
else {
trans1=trans2=IntSurf_Undecided;
}
Handle(IntPatch_GLine) glig = new IntPatch_GLine(hyprsol,Standard_False,trans1,trans2);
slin.Append(glig);
}
}
break;
default: {
return Standard_False;
}
}
return Standard_True;
}
//=======================================================================
//function : IntPTo
//purpose :
//=======================================================================
Standard_Boolean IntPTo(const IntSurf_Quadric& theQuad1,
const IntSurf_Quadric& theQuad2,
const Standard_Real theTolTang,
const Standard_Boolean bReversed,
Standard_Boolean& bEmpty,
IntPatch_SequenceOfLine& theSeqLin)
{
const gp_Pln aPln = bReversed ? theQuad2.Plane() : theQuad1.Plane();
const gp_Torus aTorus = bReversed ? theQuad1.Torus() : theQuad2.Torus();
//
IntAna_QuadQuadGeo inter(aPln, aTorus, theTolTang);
Standard_Boolean bRet = inter.IsDone();
//
if (!bRet) {
return bRet;
}
//
IntAna_ResultType typint = inter.TypeInter();
Standard_Integer NbSol = inter.NbSolutions();
bEmpty = Standard_False;
//
switch (typint) {
case IntAna_Empty :
bEmpty = Standard_True;
break;
//
case IntAna_Circle : {
Standard_Integer i;
IntSurf_TypeTrans trans1, trans2;
gp_Pnt ptref;
gp_Vec Tgt;
//
for (i = 1; i <= NbSol; ++i) {
gp_Circ aC = inter.Circle(i);
if (!aPln.Axis().IsNormal(aTorus.Axis(), Precision::Angular())) {
AdjustToSeam(aTorus, aC);
}
ElCLib::D1(0., aC, ptref, Tgt);
//
if (Tgt.DotCross(theQuad2.Normale(ptref),theQuad1.Normale(ptref)) > 0.0) {
trans1 = IntSurf_Out;
trans2 = IntSurf_In;
}
else {
trans1 = IntSurf_In;
trans2 = IntSurf_Out;
}
//
Handle(IntPatch_GLine) glig =
new IntPatch_GLine(aC, Standard_False, trans1, trans2);
theSeqLin.Append(glig);
}
}
break;
//
case IntAna_NoGeometricSolution:
default:
bRet = Standard_False;
break;
}
//
return bRet;
}
//
//modified by NIZNHY-PKV Thu Sep 15 10:53:39 2011f
//=======================================================================
//function : AdjustToSeam
//purpose :
//=======================================================================
void AdjustToSeam (const gp_Cone& aQuad,
gp_Circ& aCirc)
{
gp_Ax2 aAx2;
//
const gp_Pnt& aPLoc=aCirc.Location();
const gp_Ax3& aAx3=aQuad.Position();
SeamPosition(aPLoc, aAx3, aAx2);
aCirc.SetPosition(aAx2);
}
//=======================================================================
//function : AdjustToSeam
//purpose :
//=======================================================================
void AdjustToSeam (const gp_Sphere& aQuad,
gp_Circ& aCirc,
const Standard_Real aTolAng)
{
gp_Ax2 aAx2;
//
const gp_Ax1& aAx1C=aCirc.Axis();
const gp_Ax3& aAx3=aQuad.Position();
const gp_Ax1& aAx1Q=aAx3.Axis();
//
const gp_Dir& aDirC=aAx1C.Direction();
const gp_Dir& aDirQ=aAx1Q.Direction();
if (aDirC.IsParallel(aDirQ, aTolAng)) {
const gp_Pnt& aPLoc=aCirc.Location();
SeamPosition(aPLoc, aAx3, aAx2);
aCirc.SetPosition(aAx2);
}
}
//=======================================================================
//function : AdjustToSeam
//purpose :
//=======================================================================
void AdjustToSeam (const gp_Cylinder& aQuad,
gp_Circ& aCirc)
{
gp_Ax2 aAx2;
//
const gp_Pnt& aPLoc=aCirc.Location();
const gp_Ax3& aAx3=aQuad.Position();
SeamPosition(aPLoc, aAx3, aAx2);
aCirc.SetPosition(aAx2);
}
//=======================================================================
//function : AdjustToSeam
//purpose :
//=======================================================================
void AdjustToSeam (const gp_Torus& aQuad,
gp_Circ& aCirc)
{
gp_Ax2 aAx2;
//
const gp_Pnt& aPLoc=aCirc.Location();
const gp_Ax3& aAx3=aQuad.Position();
SeamPosition(aPLoc, aAx3, aAx2);
aCirc.SetPosition(aAx2);
}
//=======================================================================
//function : SeamPosition
//purpose :
//=======================================================================
void SeamPosition(const gp_Pnt& aPLoc,
const gp_Ax3& aPos,
gp_Ax2& aSeamPos)
{
const gp_Dir& aDZ=aPos.Direction();
const gp_Dir& aDX=aPos.XDirection();
gp_Ax2 aAx2(aPLoc, aDZ, aDX);
aSeamPos=aAx2;
}
//modified by NIZNHY-PKV Thu Sep 15 10:53:41 2011t