1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00
occt/src/IntPatch/IntPatch_ImpImpIntersection_2.gxx
kgv c22b52d60e 0028966: Coding Rules - remove Adaptor2d_HCurve2d, Adaptor3d_HCurve and Adaptor3d_HSurface classes
Adaptor2d_Curve2d, Adaptor3d_Curve and Adaptor3d_Surface now inherit Standard_Transient.
Interfaces Adaptor2d_HCurve2d, Adaptor3d_HCurve, Adaptor3d_HSurface and their subclasses
are now aliases to Adaptor2d_Curve2d, Adaptor3d_Curve and Adaptor3d_Surface.
Removed numerous unsafe reinterpret casts.

Generic classes Adaptor3d_GenHCurve, Adaptor3d_GenHSurface, Adaptor2d_GenHCurve2d have been removed.
Several redundant .lxx files have been merged into .hxx.

Removed obsolete adaptor classes with H suffix.
2020-12-11 19:12:48 +03:00

583 lines
16 KiB
Plaintext

// Created on: 1992-05-07
// Created by: Jacques GOUSSARD
// Copyright (c) 1992-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <IntPatch_WLine.hxx>
static
Standard_Integer SetQuad(const Handle(Adaptor3d_Surface)& theS,
GeomAbs_SurfaceType& theTS,
IntSurf_Quadric& theQuad);
//=======================================================================
//function : IntPatch_ImpImpIntersection
//purpose :
//=======================================================================
IntPatch_ImpImpIntersection::IntPatch_ImpImpIntersection ():
myDone(IntStatus_Fail),
empt(Standard_True),
tgte(Standard_False),
oppo(Standard_False)
{
}
//=======================================================================
//function : IntPatch_ImpImpIntersection
//purpose :
//=======================================================================
IntPatch_ImpImpIntersection::IntPatch_ImpImpIntersection
(const Handle(Adaptor3d_Surface)& S1,
const Handle(Adaptor3d_TopolTool)& D1,
const Handle(Adaptor3d_Surface)& S2,
const Handle(Adaptor3d_TopolTool)& D2,
const Standard_Real TolArc,
const Standard_Real TolTang,
const Standard_Boolean theIsReqToKeepRLine)
{
Perform(S1,D1,S2,D2,TolArc,TolTang, theIsReqToKeepRLine);
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
void IntPatch_ImpImpIntersection::Perform(const Handle(Adaptor3d_Surface)& S1,
const Handle(Adaptor3d_TopolTool)& D1,
const Handle(Adaptor3d_Surface)& S2,
const Handle(Adaptor3d_TopolTool)& D2,
const Standard_Real TolArc,
const Standard_Real TolTang,
const Standard_Boolean theIsReqToKeepRLine)
{
myDone = IntStatus_Fail;
spnt.Clear();
slin.Clear();
Standard_Boolean isPostProcessingRequired = Standard_True;
empt = Standard_True;
tgte = Standard_False;
oppo = Standard_False;
Standard_Boolean all1 = Standard_False;
Standard_Boolean all2 = Standard_False;
Standard_Boolean SameSurf = Standard_False;
Standard_Boolean multpoint = Standard_False;
Standard_Boolean nosolonS1 = Standard_False;
// indique s il y a des points sur restriction du carreau 1
Standard_Boolean nosolonS2 = Standard_False;
// indique s il y a des points sur restriction du carreau 2
Standard_Integer i, nbpt, nbseg;
IntPatch_SequenceOfSegmentOfTheSOnBounds edg1,edg2;
IntPatch_SequenceOfPathPointOfTheSOnBounds pnt1,pnt2;
//
// On commence par intersecter les supports des surfaces
IntSurf_Quadric quad1, quad2;
IntPatch_ArcFunction AFunc;
const Standard_Real Tolang = 1.e-8;
GeomAbs_SurfaceType typs1, typs2;
Standard_Boolean bEmpty = Standard_False;
//
const Standard_Integer iT1 = SetQuad(S1, typs1, quad1);
const Standard_Integer iT2 = SetQuad(S2, typs2, quad2);
//
if (!iT1 || !iT2) {
throw Standard_ConstructionError();
return;
}
//
const Standard_Boolean bReverse = iT1 > iT2;
const Standard_Integer iTT = iT1*10 + iT2;
//
switch (iTT) {
case 11: { // Plane/Plane
if (!IntPP(quad1, quad2, Tolang, TolTang, SameSurf, slin)) {
return;
}
break;
}
//
case 12:
case 21: { // Plane/Cylinder
Standard_Real VMin, VMax, H;
//
const Handle(Adaptor3d_Surface)& aSCyl = bReverse ? S1 : S2;
VMin = aSCyl->FirstVParameter();
VMax = aSCyl->LastVParameter();
H = (Precision::IsNegativeInfinite(VMin) ||
Precision::IsPositiveInfinite(VMax)) ? 0 : (VMax - VMin);
//
if (!IntPCy(quad1, quad2, Tolang, TolTang, bReverse, empt, slin, H)) {
return;
}
bEmpty = empt;
break;
}
//
case 13:
case 31: { // Plane/Cone
if (!IntPCo(quad1, quad2, Tolang, TolTang, bReverse, empt, multpoint, slin, spnt)) {
return;
}
bEmpty = empt;
break;
}
//
case 14:
case 41: { // Plane/Sphere
if (!IntPSp(quad1, quad2, Tolang, TolTang, bReverse, empt, slin, spnt)) {
return;
}
bEmpty = empt;
break;
}
//
case 15:
case 51: { // Plane/Torus
if (!IntPTo(quad1, quad2, TolTang, bReverse, empt, slin)) {
return;
}
bEmpty = empt;
break;
}
//
case 22:
{ // Cylinder/Cylinder
Bnd_Box2d aBox1, aBox2;
const Standard_Real aU1f = S1->FirstUParameter();
Standard_Real aU1l = S1->LastUParameter();
const Standard_Real aU2f = S2->FirstUParameter();
Standard_Real aU2l = S2->LastUParameter();
const Standard_Real anUperiod = 2.0*M_PI;
if(aU1l - aU1f > anUperiod)
aU1l = aU1f + anUperiod;
if(aU2l - aU2f > anUperiod)
aU2l = aU2f + anUperiod;
aBox1.Add(gp_Pnt2d(aU1f, S1->FirstVParameter()));
aBox1.Add(gp_Pnt2d(aU1l, S1->LastVParameter()));
aBox2.Add(gp_Pnt2d(aU2f, S2->FirstVParameter()));
aBox2.Add(gp_Pnt2d(aU2l, S2->LastVParameter()));
// Resolution is too big if the cylinder radius is
// too small. Therefore, we shall bind its value above.
// Here, we use simple constant.
const Standard_Real a2DTol = Min(1.0e-4, Min( S1->UResolution(TolTang),
S2->UResolution(TolTang)));
myDone = IntCyCy(quad1, quad2, TolTang, a2DTol, aBox1, aBox2,
empt, SameSurf, multpoint, slin, spnt);
if (myDone == IntPatch_ImpImpIntersection::IntStatus_Fail)
{
return;
}
bEmpty = empt;
if(!slin.IsEmpty())
{
const Handle(IntPatch_WLine)& aWLine =
Handle(IntPatch_WLine)::DownCast(slin.Value(1));
if(!aWLine.IsNull())
{//No geometric solution
isPostProcessingRequired = Standard_False;
}
}
break;
}
//
case 23:
case 32: { // Cylinder/Cone
if (!IntCyCo(quad1, quad2, TolTang, bReverse, empt, multpoint, slin, spnt)) {
return;
}
bEmpty = empt;
break;
}
//
case 24:
case 42: { // Cylinder/Sphere
if (!IntCySp(quad1, quad2, TolTang, bReverse, empt, multpoint, slin, spnt)) {
return;
}
bEmpty = empt;
break;
}
//
case 25:
case 52: { // Cylinder/Torus
if (!IntCyTo(quad1, quad2, TolTang, bReverse, empt, slin)) {
return;
}
bEmpty = empt;
break;
}
//
case 33: { // Cone/Cone
if (!IntCoCo(quad1, quad2, TolTang, empt, SameSurf, multpoint, slin, spnt)) {
return;
}
bEmpty = empt;
break;
}
//
case 34:
case 43: { // Cone/Sphere
if (!IntCoSp(quad1, quad2, TolTang, bReverse, empt, multpoint, slin, spnt)) {
return;
}
bEmpty = empt;
break;
}
//
case 35:
case 53: { // Cone/Torus
if (!IntCoTo(quad1, quad2, TolTang, bReverse, empt, slin)) {
return;
}
break;
}
//
case 44: { // Sphere/Sphere
if (!IntSpSp(quad1, quad2, TolTang, empt, SameSurf, slin, spnt)) {
return;
}
bEmpty = empt;
break;
}
//
case 45:
case 54: { // Sphere/Torus
if (!IntSpTo(quad1, quad2, TolTang, bReverse, empt, slin)) {
return;
}
bEmpty = empt;
break;
}
//
case 55: { // Torus/Torus
if (!IntToTo(quad1, quad2, TolTang, SameSurf, empt, slin)) {
return;
}
bEmpty = empt;
break;
}
//
default: {
throw Standard_ConstructionError();
break;
}
}
//
if (bEmpty) {
if (myDone == IntStatus_Fail)
myDone = IntStatus_OK;
return;
}
//
if(isPostProcessingRequired)
{
if (!SameSurf) {
AFunc.SetQuadric(quad2);
AFunc.Set(S1);
solrst.Perform(AFunc, D1, TolArc, TolTang);
if (!solrst.IsDone()) {
return;
}
if (solrst.AllArcSolution() && typs1 == typs2) {
all1 = Standard_True;
}
nbpt = solrst.NbPoints();
nbseg= solrst.NbSegments();
for (i = 1; i <= nbpt; i++)
{
const IntPatch_ThePathPointOfTheSOnBounds& aPt = solrst.Point(i);
pnt1.Append(aPt);
}
for (i = 1; i <= nbseg; i++)
{
const IntPatch_TheSegmentOfTheSOnBounds& aSegm = solrst.Segment(i);
edg1.Append(aSegm);
}
nosolonS1 = (nbpt == 0) && (nbseg == 0);
if (nosolonS1 && all1) { // cas de face sans restrictions
all1 = Standard_False;
}
}//if (!SameSurf) {
else {
nosolonS1 = Standard_True;
}
if (!SameSurf) {
AFunc.SetQuadric(quad1);
AFunc.Set(S2);
solrst.Perform(AFunc, D2, TolArc, TolTang);
if (!solrst.IsDone()) {
return;
}
if (solrst.AllArcSolution() && typs1 == typs2) {
all2 = Standard_True;
}
nbpt = solrst.NbPoints();
nbseg= solrst.NbSegments();
for (i=1; i<= nbpt; i++) {
const IntPatch_ThePathPointOfTheSOnBounds& aPt = solrst.Point(i);
pnt2.Append(aPt);
}
for (i=1; i<= nbseg; i++) {
const IntPatch_TheSegmentOfTheSOnBounds& aSegm = solrst.Segment(i);
edg2.Append(aSegm);
}
nosolonS2 = (nbpt == 0) && (nbseg == 0);
if (nosolonS2 && all2) { // cas de face sans restrictions
all2 = Standard_False;
}
}// if (!SameSurf) {
else {
nosolonS2 = Standard_True;
}
//
if (SameSurf || (all1 && all2)) {
// faces "paralleles" parfaites
empt = Standard_False;
tgte = Standard_True;
slin.Clear();
spnt.Clear();
gp_Pnt Ptreference;
switch (typs1) {
case GeomAbs_Plane: {
Ptreference = (S1->Plane()).Location();
}
break;
case GeomAbs_Cylinder: {
Ptreference = ElSLib::Value(0.,0.,S1->Cylinder());
}
break;
case GeomAbs_Sphere: {
Ptreference = ElSLib::Value(M_PI/4.,M_PI/4.,S1->Sphere());
}
break;
case GeomAbs_Cone: {
Ptreference = ElSLib::Value(0.,10.,S1->Cone());
}
break;
case GeomAbs_Torus: {
Ptreference = ElSLib::Value(0.,0.,S1->Torus());
}
break;
default:
break;
}
//
oppo = quad1.Normale(Ptreference).Dot(quad2.Normale(Ptreference)) < 0.0;
myDone = IntStatus_OK;
return;
}// if (SameSurf || (all1 && all2)) {
if (!nosolonS1 || !nosolonS2) {
empt = Standard_False;
// C est la qu il faut commencer a bosser...
PutPointsOnLine(S1,S2,pnt1, slin, Standard_True, D1, quad1,quad2,
multpoint,TolArc);
PutPointsOnLine(S1,S2,pnt2, slin, Standard_False,D2, quad2,quad1,
multpoint,TolArc);
if (edg1.Length() != 0) {
ProcessSegments(edg1,slin,quad1,quad2,Standard_True,TolArc);
}
if (edg2.Length() != 0) {
ProcessSegments(edg2,slin,quad1,quad2,Standard_False,TolArc);
}
if (edg1.Length() !=0 || edg2.Length() !=0) {
// ProcessRLine(slin,S1,S2,TolArc);
ProcessRLine(slin,quad1,quad2,TolArc, theIsReqToKeepRLine);
}
}//if (!nosolonS1 || !nosolonS2) {
else {
empt = ((slin.Length()==0) && (spnt.Length()==0));
}
}
Standard_Integer nblin = slin.Length(),
aNbPnt = spnt.Length();
//
//modified by NIZNHY-PKV Tue Sep 06 10:03:35 2011f
if (aNbPnt) {
IntPatch_SequenceOfPoint aSIP;
//
for(i=1; i<=aNbPnt; ++i) {
Standard_Real aU1, aV1, aU2, aV2;
gp_Pnt2d aP2D;
TopAbs_State aState1, aState2;
//
const IntPatch_Point& aIP=spnt(i);
aIP.Parameters(aU1, aV1, aU2, aV2);
//
aP2D.SetCoord(aU1, aV1);
aState1=D1->Classify(aP2D, TolArc);
//
aP2D.SetCoord(aU2, aV2);
aState2=D2->Classify(aP2D, TolArc);
//
if(aState1!=TopAbs_OUT && aState2!=TopAbs_OUT) {
aSIP.Append(aIP);
}
}
//
spnt.Clear();
//
aNbPnt=aSIP.Length();
for(i=1; i<=aNbPnt; ++i) {
const IntPatch_Point& aIP=aSIP(i);
spnt.Append(aIP);
}
//
}// if (aNbPnt) {
//modified by NIZNHY-PKV Tue Sep 06 10:18:20 2011t
//
for(i=1; i<=nblin; i++) {
IntPatch_IType thetype = slin.Value(i)->ArcType();
if( (thetype == IntPatch_Ellipse)
||(thetype == IntPatch_Circle)
||(thetype == IntPatch_Lin)
||(thetype == IntPatch_Parabola)
||(thetype == IntPatch_Hyperbola)) {
Handle(IntPatch_GLine)& glin = *((Handle(IntPatch_GLine)*)&slin.Value(i));
glin->ComputeVertexParameters(TolArc);
}
else if(thetype == IntPatch_Analytic) {
Handle(IntPatch_ALine)& aligold = *((Handle(IntPatch_ALine)*)&slin.Value(i));
aligold->ComputeVertexParameters(TolArc);
}
else if(thetype == IntPatch_Restriction) {
Handle(IntPatch_RLine)& rlig = *((Handle(IntPatch_RLine)*)&slin.Value(i));
rlig->ComputeVertexParameters(TolArc);
}
}
//
//----------------------------------------------------------------
//-- On place 2 vertex sur les courbes de GLine qui n en
//-- contiennent pas.
for(i=1; i<=nblin; i++) {
gp_Pnt P;
IntPatch_Point point;
Standard_Real u1,v1,u2,v2;
if(slin.Value(i)->ArcType() == IntPatch_Circle) {
const Handle(IntPatch_GLine)& glin = *((Handle(IntPatch_GLine)*)&slin.Value(i));
if(glin->NbVertex() == 0) {
gp_Circ Circ = glin->Circle();
P=ElCLib::Value(0.0,Circ);
quad1.Parameters(P,u1,v1);
quad2.Parameters(P,u2,v2);
point.SetValue(P,TolArc,Standard_False);
point.SetParameters(u1,v1,u2,v2);
point.SetParameter(0.0);
glin->AddVertex(point);
P=ElCLib::Value(0.0,Circ);
quad1.Parameters(P,u1,v1);
quad2.Parameters(P,u2,v2);
point.SetValue(P,TolArc,Standard_False);
point.SetParameters(u1,v1,u2,v2);
point.SetParameter(M_PI+M_PI);
glin->AddVertex(point);
}
}
else if(slin.Value(i)->ArcType() == IntPatch_Ellipse) {
const Handle(IntPatch_GLine)& glin = *((Handle(IntPatch_GLine)*)&slin.Value(i));
if(glin->NbVertex() == 0) {
gp_Elips Elips = glin->Ellipse();
P=ElCLib::Value(0.0,Elips);
quad1.Parameters(P,u1,v1);
quad2.Parameters(P,u2,v2);
point.SetValue(P,TolArc,Standard_False);
point.SetParameters(u1,v1,u2,v2);
point.SetParameter(0.0);
glin->AddVertex(point);
P=ElCLib::Value(0.0,Elips);
quad1.Parameters(P,u1,v1);
quad2.Parameters(P,u2,v2);
point.SetValue(P,TolArc,Standard_False);
point.SetParameters(u1,v1,u2,v2);
point.SetParameter(M_PI+M_PI);
glin->AddVertex(point);
}
}
}
myDone = IntStatus_OK;
}
//=======================================================================
//function : SetQuad
//purpose :
//=======================================================================
Standard_Integer SetQuad(const Handle(Adaptor3d_Surface)& theS,
GeomAbs_SurfaceType& theTS,
IntSurf_Quadric& theQuad)
{
theTS = theS->GetType();
Standard_Integer iRet = 0;
switch (theTS) {
case GeomAbs_Plane:
theQuad.SetValue(theS->Plane());
iRet = 1;
break;
case GeomAbs_Cylinder:
theQuad.SetValue(theS->Cylinder());
iRet = 2;
break;
case GeomAbs_Cone:
theQuad.SetValue(theS->Cone());
iRet = 3;
break;
case GeomAbs_Sphere:
theQuad.SetValue(theS->Sphere());
iRet = 4;
break;
case GeomAbs_Torus:
theQuad.SetValue(theS->Torus());
iRet = 5;
break;
default:
break;
}
//
return iRet;
}