mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-04 18:06:22 +03:00
Adaptor2d_Curve2d, Adaptor3d_Curve and Adaptor3d_Surface now inherit Standard_Transient. Interfaces Adaptor2d_HCurve2d, Adaptor3d_HCurve, Adaptor3d_HSurface and their subclasses are now aliases to Adaptor2d_Curve2d, Adaptor3d_Curve and Adaptor3d_Surface. Removed numerous unsafe reinterpret casts. Generic classes Adaptor3d_GenHCurve, Adaptor3d_GenHSurface, Adaptor2d_GenHCurve2d have been removed. Several redundant .lxx files have been merged into .hxx. Removed obsolete adaptor classes with H suffix.
827 lines
24 KiB
C++
827 lines
24 KiB
C++
// Created on: 1998-04-21
|
|
// Created by: Stephanie HUMEAU
|
|
// Copyright (c) 1998-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <GeomFill_LocationDraft.hxx>
|
|
|
|
#include <Adaptor3d_Curve.hxx>
|
|
#include <Adaptor3d_Surface.hxx>
|
|
#include <Geom_Line.hxx>
|
|
#include <Geom_Surface.hxx>
|
|
#include <GeomAdaptor_Curve.hxx>
|
|
#include <GeomAdaptor_Surface.hxx>
|
|
#include <GeomFill_DraftTrihedron.hxx>
|
|
#include <GeomFill_FunctionDraft.hxx>
|
|
#include <GeomFill_LocationLaw.hxx>
|
|
#include <GeomFill_Tensor.hxx>
|
|
#include <GeomFill_TrihedronLaw.hxx>
|
|
#include <gp_Dir.hxx>
|
|
#include <gp_Mat.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <IntCurveSurface_HInter.hxx>
|
|
#include <IntCurveSurface_Intersection.hxx>
|
|
#include <IntCurveSurface_IntersectionPoint.hxx>
|
|
#include <math_FunctionSetWithDerivatives.hxx>
|
|
#include <math_Gauss.hxx>
|
|
#include <math_Matrix.hxx>
|
|
#include <math_NewtonFunctionSetRoot.hxx>
|
|
#include <math_Vector.hxx>
|
|
#include <Standard_NotImplemented.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <Standard_Type.hxx>
|
|
|
|
IMPLEMENT_STANDARD_RTTIEXT(GeomFill_LocationDraft,GeomFill_LocationLaw)
|
|
|
|
//==================================================================
|
|
//Function: GeomFill_LocationDraft
|
|
//Purpose : constructor
|
|
//==================================================================
|
|
GeomFill_LocationDraft::GeomFill_LocationDraft
|
|
(const gp_Dir& Direction,
|
|
const Standard_Real Angle)
|
|
{
|
|
myDir = Direction; // direction de depouille
|
|
|
|
myAngle = Angle; // angle de depouille (teta prime)
|
|
|
|
mySurf.Nullify();
|
|
myLaw = new (GeomFill_DraftTrihedron)(myDir, Angle); // triedre
|
|
myNbPts = 41; // nb de points utilises pour les calculs
|
|
myPoles2d = new (TColgp_HArray1OfPnt2d)(1, 2*myNbPts);
|
|
Intersec = Standard_False; //intersection avec surface d'arret ?
|
|
WithTrans = Standard_False;
|
|
}
|
|
|
|
|
|
|
|
//==================================================================
|
|
//Function: Copy
|
|
//Purpose :
|
|
//==================================================================
|
|
Handle(GeomFill_LocationLaw) GeomFill_LocationDraft::Copy() const
|
|
{
|
|
Handle(GeomFill_TrihedronLaw) law;
|
|
law = myLaw->Copy();
|
|
Handle(GeomFill_LocationDraft) copy =
|
|
new (GeomFill_LocationDraft) (myDir,myAngle);
|
|
copy->SetCurve(myCurve);
|
|
copy->SetStopSurf(mySurf);
|
|
if (WithTrans) copy->SetTrsf(Trans);
|
|
|
|
return copy;
|
|
}
|
|
|
|
//==================================================================
|
|
//Function: SetTrsf
|
|
//Purpose :
|
|
//==================================================================
|
|
void GeomFill_LocationDraft::SetTrsf(const gp_Mat& Transfo)
|
|
{
|
|
Trans = Transfo;
|
|
gp_Mat Aux;
|
|
Aux.SetIdentity();
|
|
Aux -= Trans;
|
|
WithTrans = Standard_False; // Au cas ou Trans = I
|
|
for (Standard_Integer ii=1; ii<=3 && !WithTrans ; ii++)
|
|
for (Standard_Integer jj=1; jj<=3 && !WithTrans; jj++)
|
|
if (Abs(Aux.Value(ii, jj)) > 1.e-14) WithTrans = Standard_True;
|
|
}
|
|
|
|
//==================================================================
|
|
//Function: SetCurve
|
|
//Purpose : Calcul des poles sur la surfaces d'arret (intersection
|
|
// entre la generatrice et la surface en myNbPts points de la section)
|
|
//==================================================================
|
|
void GeomFill_LocationDraft::SetCurve(const Handle(Adaptor3d_Curve)& C)
|
|
{
|
|
myCurve = C;
|
|
myTrimmed = C;
|
|
myLaw->SetCurve(C);
|
|
|
|
Prepare();
|
|
}
|
|
|
|
//==================================================================
|
|
//Function: SetStopSurf
|
|
//Purpose :
|
|
//==================================================================
|
|
void GeomFill_LocationDraft::SetStopSurf(const Handle(Adaptor3d_Surface)& Surf)
|
|
{
|
|
mySurf = Surf;
|
|
Prepare();
|
|
}
|
|
|
|
//==================================================================
|
|
//Function: SetAngle
|
|
//Purpose :
|
|
//==================================================================
|
|
void GeomFill_LocationDraft::SetAngle(const Standard_Real Angle)
|
|
{
|
|
myAngle = Angle;
|
|
myLaw->SetAngle(myAngle);
|
|
Prepare();
|
|
}
|
|
|
|
//==================================================================
|
|
//Function: Prepare
|
|
//Purpose : Poses les jalon de l'intersection : depouille / Surface
|
|
//==================================================================
|
|
void GeomFill_LocationDraft::Prepare()
|
|
{
|
|
if (mySurf.IsNull()) {
|
|
Intersec = Standard_False;
|
|
return;
|
|
}
|
|
|
|
Intersec = Standard_True;
|
|
|
|
Standard_Integer ii,jj;
|
|
Standard_Real f, l, t;
|
|
gp_Pnt P;
|
|
gp_Vec D,T,N,B;
|
|
Handle(Geom_Line) L;
|
|
IntCurveSurface_IntersectionPoint P1,P2;
|
|
f = myCurve->FirstParameter();
|
|
l = myCurve->LastParameter();
|
|
|
|
for (ii=1; ii<=myNbPts; ii++)
|
|
{
|
|
t = Standard_Real(myNbPts - ii)*f + Standard_Real(ii - 1)*l;
|
|
t /= (myNbPts-1);
|
|
|
|
myCurve->D0(t, P);
|
|
myLaw->D0(t,T,N,B);
|
|
|
|
// Generatrice
|
|
D = Cos(myAngle)*B + Sin(myAngle)*N;
|
|
|
|
L = new (Geom_Line) (P, D);
|
|
|
|
IntCurveSurface_HInter Int; // intersection surface / generatrice
|
|
Handle(GeomAdaptor_Curve) AC = new (GeomAdaptor_Curve) (L);
|
|
Int.Perform(AC, mySurf); // calcul de l'intersection
|
|
|
|
if (Int.NbPoints() > 0) // il y a au moins 1 intersection
|
|
{
|
|
P1 = Int.Point(1); // 1er point d'intersection
|
|
|
|
for (jj=2 ; jj<=Int.NbPoints() ; jj++)
|
|
{
|
|
P2 = Int.Point(jj);
|
|
if(P1.W() > P2.W()) P1 = P2; // point le plus proche
|
|
}//for_jj
|
|
|
|
gp_Pnt2d p (P1.W(), t); // point de la courbe
|
|
gp_Pnt2d q (P1.U(),P1.V()); // point sur la surface
|
|
myPoles2d->SetValue(2*ii-1,p); // point de la courbe (indice impair)
|
|
myPoles2d->SetValue(2*ii,q); // point sur la surface (indice pair)
|
|
}
|
|
else
|
|
{// au moins un point ou il n'y a pas intersection
|
|
Intersec = Standard_False;
|
|
}
|
|
|
|
}//for_ii
|
|
}
|
|
|
|
//==================================================================
|
|
//Function: GetCurve
|
|
//Purpose : return the path
|
|
//==================================================================
|
|
const Handle(Adaptor3d_Curve)& GeomFill_LocationDraft::GetCurve() const
|
|
{
|
|
return myCurve;
|
|
}
|
|
|
|
|
|
//==================================================================
|
|
//Function: D0
|
|
//Purpose :
|
|
//==================================================================
|
|
Standard_Boolean GeomFill_LocationDraft::D0(const Standard_Real Param,
|
|
gp_Mat& M,
|
|
gp_Vec& V)
|
|
{
|
|
Standard_Boolean Ok;
|
|
gp_Vec T,N,B;
|
|
gp_Pnt P;
|
|
|
|
myTrimmed->D0(Param, P);
|
|
V.SetXYZ(P.XYZ());
|
|
|
|
Ok = myLaw->D0(Param, T, N, B);
|
|
if (!Ok) return Ok;
|
|
M.SetCols(N.XYZ(), B.XYZ(), T.XYZ());
|
|
|
|
if (WithTrans) {
|
|
M *= Trans;
|
|
}
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//==================================================================
|
|
//Function: D0
|
|
//Purpose : calcul de l'intersection (C0) sur la surface
|
|
//==================================================================
|
|
Standard_Boolean GeomFill_LocationDraft::D0(const Standard_Real Param,
|
|
gp_Mat& M,
|
|
gp_Vec& V,
|
|
TColgp_Array1OfPnt2d& Poles2d)
|
|
{
|
|
Standard_Boolean Ok;
|
|
// gp_Vec D,T,N,B,DT,DN,DB;
|
|
gp_Vec D,T,N,B;
|
|
gp_Pnt P;
|
|
|
|
myCurve->D0(Param, P);
|
|
V.SetXYZ(P.XYZ());
|
|
Ok = myLaw->D0(Param, T, N, B);
|
|
if (!Ok) return Ok;
|
|
M.SetCols(N.XYZ(), B.XYZ(), T.XYZ());
|
|
|
|
if (WithTrans) {
|
|
M *= Trans;
|
|
}
|
|
|
|
if (Intersec == Standard_True) {
|
|
// la generatrice intersecte la surface d'arret
|
|
// la generatrice
|
|
D = Cos(myAngle)*B + Sin(myAngle)*N;
|
|
|
|
Handle(Geom_Line) L = new (Geom_Line) (P, D);
|
|
Handle(GeomAdaptor_Curve) G = new (GeomAdaptor_Curve) (L);
|
|
|
|
Standard_Real t1,t2,Paramt1,t2Param;
|
|
Standard_Real U0=0,V0=0,W0=0;
|
|
|
|
Standard_Integer ii = 1;
|
|
|
|
// on recherche l'intervalle auquel appartient Param
|
|
while (ii<2*myNbPts && myPoles2d->Value(ii).Coord(2) < Param) ii=ii+2;
|
|
|
|
if (ii<2*myNbPts && !IsEqual(myPoles2d->Value(ii).Coord(2),Param))
|
|
{
|
|
|
|
// interpolation lineaire pour initialiser le germe de la recherche
|
|
t1 = myPoles2d->Value(ii).Coord(2);
|
|
t2 = myPoles2d->Value(ii-2).Coord(2);
|
|
|
|
Paramt1 = (Param-t1) / (t2-t1);
|
|
t2Param = (t2-Param) / (t2-t1);
|
|
|
|
W0 = myPoles2d->Value(ii-2).Coord(1)*Paramt1
|
|
+ myPoles2d->Value(ii).Coord(1)*t2Param;
|
|
U0 = myPoles2d->Value(ii-1).Coord(1)*Paramt1
|
|
+ myPoles2d->Value(ii+1).Coord(1)*t2Param;
|
|
V0 = myPoles2d->Value(ii-1).Coord(2)*Paramt1
|
|
+ myPoles2d->Value(ii+1).Coord(2)*t2Param;
|
|
}//if
|
|
// on est sur un param ou les points ont deja ete calcules
|
|
else if (ii<2*myNbPts && IsEqual(myPoles2d->Value(ii).Coord(2) ,Param))
|
|
{
|
|
W0 = myPoles2d->Value(ii).Coord(1);
|
|
U0 = myPoles2d->Value(ii+1).Coord(1);
|
|
V0 = myPoles2d->Value(ii+1).Coord(2);
|
|
}//else if
|
|
|
|
// recherche de la solution (pt d'intersection generatrice / surface)
|
|
// point initial
|
|
math_Vector X(1,3);
|
|
X(1) = W0;
|
|
X(2) = U0;
|
|
X(3) = V0;
|
|
|
|
// tolerance sur X
|
|
math_Vector XTol(1,3);
|
|
XTol.Init(0.00001);
|
|
|
|
// tolerance sur F
|
|
Standard_Real FTol = 0.0000001;
|
|
Standard_Integer Iter = 100;
|
|
|
|
// fonction dont il faut trouver la racine : G(W)-S(U,V)=0
|
|
GeomFill_FunctionDraft E(mySurf , G);
|
|
|
|
// resolution
|
|
math_NewtonFunctionSetRoot Result(E, XTol, FTol, Iter);
|
|
Result.Perform(E, X);
|
|
|
|
if (Result.IsDone())
|
|
{
|
|
math_Vector R(1,3);
|
|
Result.Root(R); // solution
|
|
|
|
gp_Pnt2d p (R(2), R(3)); // point sur la surface
|
|
gp_Pnt2d q (R(1), Param); // point de la courbe
|
|
Poles2d.SetValue(1,p);
|
|
Poles2d.SetValue(2,q);
|
|
}
|
|
else {
|
|
return Standard_False;
|
|
}
|
|
}// if_Intersec
|
|
|
|
// la generatrice n'intersecte pas la surface d'arret
|
|
return Standard_True;
|
|
}
|
|
|
|
//==================================================================
|
|
//Function: D1
|
|
//Purpose : calcul de l'intersection (C1) sur la surface
|
|
//==================================================================
|
|
Standard_Boolean GeomFill_LocationDraft::D1(const Standard_Real Param,
|
|
gp_Mat& M,
|
|
gp_Vec& V,
|
|
gp_Mat& DM,
|
|
gp_Vec& DV,
|
|
TColgp_Array1OfPnt2d& Poles2d,
|
|
TColgp_Array1OfVec2d& DPoles2d)
|
|
{
|
|
Standard_Boolean Ok;
|
|
gp_Vec D,T,N,B,DT,DN,DB;
|
|
gp_Pnt P;
|
|
|
|
myCurve->D1(Param, P, DV);
|
|
V.SetXYZ(P.XYZ());
|
|
|
|
Ok = myLaw->D1(Param, T, DT, N, DN, B, DB);
|
|
if (!Ok) return Standard_False;
|
|
|
|
M.SetCols(N.XYZ(), B.XYZ(), T.XYZ());
|
|
DM.SetCols(DN.XYZ(), DB.XYZ(), DT.XYZ());
|
|
|
|
if (WithTrans) {
|
|
M *= Trans;
|
|
DM *= Trans;
|
|
}
|
|
|
|
if (Intersec == Standard_True)
|
|
{ // la generatrice intersecte la surface d'arret
|
|
// la generatrice
|
|
D = Cos(myAngle)*B + Sin(myAngle)*N;
|
|
|
|
Handle(Geom_Line) L = new (Geom_Line) (P, D);
|
|
Handle(GeomAdaptor_Curve) G = new (GeomAdaptor_Curve) (L);
|
|
|
|
Standard_Real t1,t2,Paramt1,t2Param;
|
|
Standard_Real U0=0,V0=0,W0=0;
|
|
|
|
Standard_Integer ii = 1;
|
|
|
|
// recherche de la solution (pt d'intersection generatrice / surface)
|
|
|
|
// on recherche l'intervalle auquel appartient Param
|
|
while (ii < 2*myNbPts && myPoles2d->Value(ii).Coord(2) < Param) ii=ii+2;
|
|
|
|
|
|
if (ii < 2*myNbPts && !IsEqual(myPoles2d->Value(ii).Coord(2) ,Param))
|
|
{
|
|
// interpolation lineaire pour initialiser le germe de la recherche
|
|
t1 = myPoles2d->Value(ii).Coord(2);
|
|
t2 = myPoles2d->Value(ii-2).Coord(2);
|
|
|
|
Paramt1 = (Param-t1) / (t2-t1);
|
|
t2Param = (t2-Param) / (t2-t1);
|
|
|
|
W0 = myPoles2d->Value(ii-2).Coord(1)*Paramt1
|
|
+ myPoles2d->Value(ii).Coord(1)*t2Param;
|
|
U0 = myPoles2d->Value(ii-1).Coord(1)*Paramt1
|
|
+ myPoles2d->Value(ii+1).Coord(1)*t2Param;
|
|
V0 = myPoles2d->Value(ii-1).Coord(2)*Paramt1
|
|
+ myPoles2d->Value(ii+1).Coord(2)*t2Param;
|
|
}//if
|
|
else if (ii<2*myNbPts && IsEqual(myPoles2d->Value(ii).Coord(2) ,Param))
|
|
{
|
|
W0 = myPoles2d->Value(ii).Coord(1);
|
|
U0 = myPoles2d->Value(ii+1).Coord(1);
|
|
V0 = myPoles2d->Value(ii+1).Coord(2);
|
|
}//else if
|
|
|
|
// germe
|
|
math_Vector X(1,3);
|
|
X(1) = W0;
|
|
X(2) = U0;
|
|
X(3) = V0;
|
|
|
|
// tolerance sur X
|
|
math_Vector XTol(1,3);
|
|
XTol.Init(0.0001);
|
|
|
|
// tolerance sur F
|
|
Standard_Real FTol = 0.000001;
|
|
Standard_Integer Iter = 100;
|
|
|
|
|
|
// fonction dont il faut trouver la racine : G(W)-S(U,V)=0
|
|
GeomFill_FunctionDraft E(mySurf,G);
|
|
|
|
|
|
// resolution
|
|
math_NewtonFunctionSetRoot Result(E, XTol, FTol, Iter);
|
|
Result.Perform(E, X);
|
|
|
|
if (Result.IsDone())
|
|
{
|
|
math_Vector R(1,3);
|
|
Result.Root(R); // solution
|
|
|
|
gp_Pnt2d p (R(2), R(3)); // point sur la surface
|
|
gp_Pnt2d q (R(1), Param); // point de la courbe
|
|
Poles2d.SetValue(1,p);
|
|
Poles2d.SetValue(2,q);
|
|
|
|
// derivee de la fonction par rapport a Param
|
|
math_Vector DEDT(1,3,0);
|
|
E.DerivT(myTrimmed, Param, R(1), DN, myAngle, DEDT); // dE/dt => DEDT
|
|
|
|
math_Vector DSDT (1,3,0);
|
|
math_Matrix DEDX (1,3,1,3,0);
|
|
E.Derivatives(R, DEDX); // dE/dx au point R => DEDX
|
|
|
|
// resolution du syst. lin. : DEDX*DSDT = -DEDT
|
|
math_Gauss Ga(DEDX);
|
|
if (Ga.IsDone())
|
|
{
|
|
Ga.Solve (DEDT.Opposite(), DSDT); // resolution du syst. lin.
|
|
gp_Vec2d dp (DSDT(2), DSDT(3)); // surface
|
|
gp_Vec2d dq (DSDT(1), 1); // courbe
|
|
DPoles2d.SetValue(1, dp);
|
|
DPoles2d.SetValue(2, dq);
|
|
}//if
|
|
|
|
|
|
}//if_Result
|
|
else {// la generatrice n'intersecte pas la surface d'arret
|
|
return Standard_False;
|
|
}
|
|
}// if_Intersec
|
|
return Standard_True;
|
|
}
|
|
|
|
//==================================================================
|
|
//Function: D2
|
|
//Purpose : calcul de l'intersection (C2) sur la surface
|
|
//==================================================================
|
|
Standard_Boolean GeomFill_LocationDraft::D2(const Standard_Real Param,
|
|
gp_Mat& M,
|
|
gp_Vec& V,
|
|
gp_Mat& DM,
|
|
gp_Vec& DV,
|
|
gp_Mat& D2M,
|
|
gp_Vec& D2V,
|
|
TColgp_Array1OfPnt2d& Poles2d,
|
|
TColgp_Array1OfVec2d& DPoles2d,
|
|
TColgp_Array1OfVec2d& D2Poles2d)
|
|
{
|
|
Standard_Boolean Ok;
|
|
gp_Vec D,T,N,B,DT,DN,DB,D2T,D2N,D2B;
|
|
gp_Pnt P;
|
|
|
|
myCurve->D2(Param, P, DV, D2V);
|
|
V.SetXYZ(P.XYZ());
|
|
|
|
Ok = myLaw->D2(Param, T, DT, D2T, N, DN, D2N, B, DB, D2B);
|
|
if (!Ok) return Ok;
|
|
|
|
M.SetCols(N.XYZ(), B.XYZ(), T.XYZ());
|
|
DM.SetCols(DN.XYZ(), DB.XYZ(), DT.XYZ());
|
|
D2M.SetCols(D2N.XYZ(), D2B.XYZ(), D2T.XYZ());
|
|
|
|
if (WithTrans) {
|
|
M *= Trans;
|
|
DM *= Trans;
|
|
D2M *= Trans;
|
|
}
|
|
if (Intersec == Standard_True)
|
|
{// la generatrice intersecte la surface d'arret
|
|
|
|
// la generatrice
|
|
D = Cos(myAngle) * B + Sin(myAngle) * N;
|
|
|
|
Handle(Geom_Line) L = new (Geom_Line) (P, D);
|
|
Handle(GeomAdaptor_Curve) G = new (GeomAdaptor_Curve) (L);
|
|
|
|
Standard_Real t1,t2,Paramt1,t2Param;
|
|
Standard_Real U0=0,V0=0,W0=0;
|
|
|
|
Standard_Integer ii = 1;
|
|
|
|
// on recherche l'intervalle auquel appartient Param
|
|
while (ii<2*myNbPts && myPoles2d->Value(ii).Coord(2) < Param) ii=ii+2;
|
|
|
|
if (ii<2*myNbPts && !IsEqual(myPoles2d->Value(ii).Coord(2) ,Param))
|
|
{
|
|
|
|
// interpolation lineaire pour initialiser le germe de la recherche
|
|
t1 = myPoles2d->Value(ii).Coord(2);
|
|
t2 = myPoles2d->Value(ii-2).Coord(2);
|
|
|
|
Paramt1 = (Param-t1) / (t2-t1);
|
|
t2Param = (t2-Param) / (t2-t1);
|
|
|
|
W0 = myPoles2d->Value(ii-2).Coord(1)*Paramt1 +
|
|
myPoles2d->Value(ii).Coord(1)*t2Param;
|
|
U0 = myPoles2d->Value(ii-1).Coord(1)*Paramt1 +
|
|
myPoles2d->Value(ii+1).Coord(1)*t2Param;
|
|
V0 = myPoles2d->Value(ii-1).Coord(2)*Paramt1 +
|
|
myPoles2d->Value(ii+1).Coord(2)*t2Param;
|
|
}//if
|
|
else if (ii<2*myNbPts && IsEqual(myPoles2d->Value(ii).Coord(2) ,Param))
|
|
{
|
|
W0 = myPoles2d->Value(ii).Coord(1);
|
|
U0 = myPoles2d->Value(ii+1).Coord(1);
|
|
V0 = myPoles2d->Value(ii+1).Coord(2);
|
|
}//else if
|
|
|
|
// recherche de la solution (pt d'intersection generatrice / surface)
|
|
// germe
|
|
math_Vector X(1,3);
|
|
X(1) = W0;
|
|
X(2) = U0;
|
|
X(3) = V0;
|
|
|
|
// tolerance sur X
|
|
math_Vector XTol(1,3);
|
|
XTol.Init(0.0001);
|
|
|
|
// tolerance sur F
|
|
Standard_Real FTol = 0.000001;
|
|
Standard_Integer Iter = 150;
|
|
|
|
|
|
// fonction dont il faut trouver la racine : G(W)-S(U,V)=0
|
|
GeomFill_FunctionDraft E(mySurf,G);
|
|
|
|
|
|
// resolution
|
|
math_NewtonFunctionSetRoot Result (E, XTol, FTol, Iter);
|
|
Result.Perform(E, X);
|
|
|
|
if (Result.IsDone())
|
|
{
|
|
math_Vector R(1,3);
|
|
Result.Root(R); // solution
|
|
|
|
// solution
|
|
gp_Pnt2d p (R(2), R(3)); // point sur la surface
|
|
gp_Pnt2d q (R(1), Param); // point de la courbe
|
|
Poles2d.SetValue(1,p);
|
|
Poles2d.SetValue(2,q);
|
|
|
|
|
|
// premiere derivee de la fonction
|
|
math_Vector DEDT(1,3,0);
|
|
E.DerivT(myTrimmed, Param, R(1), DN, myAngle, DEDT); // dE/dt => DEDT
|
|
|
|
math_Vector DSDT (1,3,0);
|
|
math_Matrix DEDX (1,3,1,3,0);
|
|
E.Derivatives(R, DEDX); // dE/dx => DEDX
|
|
|
|
// resolution du syst. lin.
|
|
math_Gauss Ga (DEDX);
|
|
if (Ga.IsDone())
|
|
{
|
|
Ga.Solve (DEDT.Opposite(), DSDT);
|
|
gp_Vec2d dp (DSDT(2), DSDT(3)); // surface
|
|
gp_Vec2d dq (DSDT(1), 1); // courbe
|
|
DPoles2d.SetValue(1, dp);
|
|
DPoles2d.SetValue(2, dq);
|
|
}//if
|
|
|
|
|
|
// deuxieme derivee
|
|
GeomFill_Tensor D2EDX2(3,3,3);
|
|
E.Deriv2X(R, D2EDX2); // d2E/dx2
|
|
|
|
math_Vector D2EDT2(1,3,0);
|
|
E.Deriv2T(myTrimmed, Param, R(1), D2N, myAngle ,D2EDT2); // d2E/dt2
|
|
|
|
math_Matrix D2EDTDX(1,3,1,3,0);
|
|
E.DerivTX(DN, myAngle, D2EDTDX); // d2E/dtdx
|
|
|
|
math_Vector D2SDT2(1,3,0); // d2s/dt2
|
|
math_Matrix aT(1,3,1,3,0);
|
|
D2EDX2.Multiply(DSDT,aT);
|
|
|
|
// resolution du syst. lin.
|
|
math_Gauss Ga1 (DEDX);
|
|
if (Ga1.IsDone())
|
|
{
|
|
Ga1.Solve ( -aT*DSDT - 2*D2EDTDX*DSDT - D2EDT2 , D2SDT2);
|
|
gp_Vec2d d2p (D2SDT2(2), D2SDT2(3)); // surface
|
|
gp_Vec2d d2q (D2SDT2(1), 0); // courbe
|
|
D2Poles2d.SetValue(1, d2p);
|
|
D2Poles2d.SetValue(2, d2q);
|
|
}//if
|
|
else {// la generatrice n'intersecte pas la surface d'arret
|
|
return Standard_False;
|
|
}
|
|
}//if_Result
|
|
} //if_Intersec
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//==================================================================
|
|
//Function : HasFirstRestriction
|
|
//Purpose :
|
|
//==================================================================
|
|
Standard_Boolean GeomFill_LocationDraft::HasFirstRestriction() const
|
|
{
|
|
return Standard_False;
|
|
}
|
|
|
|
//==================================================================
|
|
//Function : HasLastRestriction
|
|
//Purpose :
|
|
//==================================================================
|
|
Standard_Boolean GeomFill_LocationDraft::HasLastRestriction() const
|
|
{
|
|
|
|
if (Intersec == Standard_True) return Standard_True;
|
|
else return Standard_False;
|
|
}
|
|
|
|
//==================================================================
|
|
//Function : TraceNumber
|
|
//Purpose :
|
|
//==================================================================
|
|
Standard_Integer GeomFill_LocationDraft::TraceNumber() const
|
|
{
|
|
if (Intersec == Standard_True) return 1;
|
|
else return 0;
|
|
}
|
|
|
|
//==================================================================
|
|
//Function:NbIntervals
|
|
//Purpose :
|
|
//==================================================================
|
|
Standard_Integer GeomFill_LocationDraft::NbIntervals
|
|
(const GeomAbs_Shape S) const
|
|
{
|
|
return myLaw->NbIntervals(S);
|
|
}
|
|
|
|
//==================================================================
|
|
//Function:Intervals
|
|
//Purpose :
|
|
//==================================================================
|
|
void GeomFill_LocationDraft::Intervals(TColStd_Array1OfReal& T,
|
|
const GeomAbs_Shape S) const
|
|
{
|
|
myLaw->Intervals(T, S);
|
|
}
|
|
|
|
//==================================================================
|
|
//Function:SetInterval
|
|
//Purpose :
|
|
//==================================================================
|
|
void GeomFill_LocationDraft::SetInterval(const Standard_Real First,
|
|
const Standard_Real Last)
|
|
{
|
|
myLaw->SetInterval( First, Last);
|
|
myTrimmed = myCurve->Trim( First, Last, 0);
|
|
}
|
|
//==================================================================
|
|
//Function: GetInterval
|
|
//Purpose :
|
|
//==================================================================
|
|
void GeomFill_LocationDraft::GetInterval(Standard_Real& First,
|
|
Standard_Real& Last) const
|
|
{
|
|
First = myTrimmed->FirstParameter();
|
|
Last = myTrimmed->LastParameter();
|
|
}
|
|
|
|
//==================================================================
|
|
//Function: GetDomain
|
|
//Purpose :
|
|
//==================================================================
|
|
void GeomFill_LocationDraft::GetDomain(Standard_Real& First,
|
|
Standard_Real& Last) const
|
|
{
|
|
First = myCurve->FirstParameter();
|
|
Last = myCurve->LastParameter();
|
|
}
|
|
|
|
//==================================================================
|
|
//function : Resolution
|
|
//purpose :
|
|
//==================================================================
|
|
void GeomFill_LocationDraft::Resolution (const Standard_Integer Index,
|
|
const Standard_Real Tol,
|
|
Standard_Real& TolU,
|
|
Standard_Real& TolV) const
|
|
|
|
{
|
|
if (Index==1) {
|
|
TolU = mySurf->UResolution(Tol);
|
|
TolV = mySurf->VResolution(Tol);
|
|
}
|
|
else {
|
|
TolU = Tol;
|
|
TolV = Tol;
|
|
}
|
|
}
|
|
|
|
//==================================================================
|
|
//Function:GetMaximalNorm
|
|
//Purpose : On suppose les triedres normes => return 1
|
|
//==================================================================
|
|
Standard_Real GeomFill_LocationDraft::GetMaximalNorm()
|
|
{
|
|
return 1.;
|
|
}
|
|
|
|
//==================================================================
|
|
//Function:GetAverageLaw
|
|
//Purpose :
|
|
//==================================================================
|
|
void GeomFill_LocationDraft::GetAverageLaw(gp_Mat& AM,
|
|
gp_Vec& AV)
|
|
{
|
|
Standard_Integer ii;
|
|
Standard_Real U, delta;
|
|
gp_Vec V1,V2,V3, V;
|
|
|
|
myLaw->GetAverageLaw(V1, V2, V3);
|
|
AM.SetCols(V1.XYZ(), V2.XYZ(), V3.XYZ());
|
|
|
|
AV.SetCoord(0., 0., 0.);
|
|
delta = (myTrimmed->LastParameter() - myTrimmed->FirstParameter())/10;
|
|
U= myTrimmed->FirstParameter();
|
|
for (ii=0; ii<=10; ii++, U+=delta) {
|
|
V.SetXYZ( myTrimmed->Value(U).XYZ() );
|
|
AV += V;
|
|
}
|
|
AV /= 11;
|
|
}
|
|
|
|
//==================================================================
|
|
//Function : IsTranslation
|
|
//Purpose :
|
|
//==================================================================
|
|
// Standard_Boolean GeomFill_LocationDraft::IsTranslation(Standard_Real& Error) const
|
|
Standard_Boolean GeomFill_LocationDraft::IsTranslation(Standard_Real& ) const
|
|
{
|
|
return myLaw->IsConstant();
|
|
}
|
|
|
|
//==================================================================
|
|
//Function : IsRotation
|
|
//Purpose :
|
|
//==================================================================
|
|
Standard_Boolean GeomFill_LocationDraft::IsRotation(Standard_Real& Error) const
|
|
{
|
|
GeomAbs_CurveType Type;
|
|
Error = 0;
|
|
Type = myCurve->GetType();
|
|
if (Type == GeomAbs_Circle) {
|
|
return myLaw->IsOnlyBy3dCurve();
|
|
}
|
|
return Standard_False;
|
|
}
|
|
|
|
//==================================================================
|
|
//Function : Rotation
|
|
//Purpose :
|
|
//==================================================================
|
|
void GeomFill_LocationDraft::Rotation(gp_Pnt& Centre) const
|
|
{
|
|
Centre = myCurve->Circle().Location();
|
|
}
|
|
|
|
|
|
//==================================================================
|
|
//Function : IsIntersec
|
|
//Purpose :
|
|
//==================================================================
|
|
Standard_Boolean GeomFill_LocationDraft::IsIntersec() const
|
|
{
|
|
return Intersec;
|
|
}
|
|
|
|
|
|
//==================================================================
|
|
//Function : Direction
|
|
//Purpose :
|
|
//==================================================================
|
|
gp_Dir GeomFill_LocationDraft::Direction() const
|
|
{
|
|
return myDir;
|
|
}
|