1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-04 18:06:22 +03:00
occt/src/Geom2dAPI/Geom2dAPI_Interpolate.cxx
imn 353e6fa0cf 0028594: Geom2dAPI_Interpolate generated curve is not the same as proe
Boolean flag "Scale" has been added for methods "Load" in "Geom2dAPI_Interpolate" class
2017-04-12 17:52:43 +03:00

934 lines
26 KiB
C++

// Created on: 1994-08-18
// Created by: Laurent PAINNOT
// Copyright (c) 1994-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// 8-Aug-95 : xab : interpolation uses BSplCLib::Interpolate
#include <BSplCLib.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2dAPI_Interpolate.hxx>
#include <gp_Vec2d.hxx>
#include <PLib.hxx>
#include <Standard_ConstructionError.hxx>
#include <StdFail_NotDone.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <TColStd_Array1OfBoolean.hxx>
#include <TColStd_Array1OfInteger.hxx>
#include <TColStd_HArray1OfBoolean.hxx>
#include <TColStd_HArray1OfReal.hxx>
//=======================================================================
//function : CheckPoints
//purpose :
//=======================================================================
static Standard_Boolean CheckPoints(const TColgp_Array1OfPnt2d& PointArray,
const Standard_Real Tolerance)
{
Standard_Integer ii ;
Standard_Real tolerance_squared = Tolerance * Tolerance,
distance_squared ;
Standard_Boolean result = Standard_True ;
for (ii = PointArray.Lower() ; result && ii < PointArray.Upper() ; ii++) {
distance_squared =
PointArray.Value(ii).SquareDistance(PointArray.Value(ii+1)) ;
result = (distance_squared >= tolerance_squared) ;
}
return result ;
}
//=======================================================================
//function : CheckTangents
//purpose :
//=======================================================================
static Standard_Boolean CheckTangents(
const TColgp_Array1OfVec2d& Tangents,
const TColStd_Array1OfBoolean& TangentFlags,
const Standard_Real Tolerance)
{
Standard_Integer ii,
index ;
Standard_Real tolerance_squared = Tolerance * Tolerance,
distance_squared ;
Standard_Boolean result = Standard_True ;
index = TangentFlags.Lower() ;
for (ii = Tangents.Lower(); result && ii <= Tangents.Upper() ; ii++) {
if(TangentFlags.Value(index)) {
distance_squared =
Tangents.Value(ii).SquareMagnitude() ;
result = (distance_squared >= tolerance_squared) ;
}
index += 1 ;
}
return result ;
}
//=======================================================================
//function : CheckParameters
//purpose :
//=======================================================================
static Standard_Boolean CheckParameters(const
TColStd_Array1OfReal& Parameters)
{
Standard_Integer ii ;
Standard_Real distance ;
Standard_Boolean result = Standard_True ;
for (ii = Parameters.Lower() ; result && ii < Parameters.Upper() ; ii++) {
distance =
Parameters.Value(ii+1) - Parameters.Value(ii) ;
result = (distance >= RealSmall()) ;
}
return result ;
}
//=======================================================================
//function : BuildParameters
//purpose :
//=======================================================================
static void BuildParameters(const Standard_Boolean PeriodicFlag,
const TColgp_Array1OfPnt2d& PointsArray,
Handle(TColStd_HArray1OfReal)& ParametersPtr)
{
Standard_Integer ii,
index ;
Standard_Real distance ;
Standard_Integer
num_parameters = PointsArray.Length() ;
if (PeriodicFlag) {
num_parameters += 1 ;
}
ParametersPtr =
new TColStd_HArray1OfReal(1,
num_parameters) ;
ParametersPtr->SetValue(1,0.0e0) ;
index = 2 ;
for (ii = PointsArray.Lower() ; ii < PointsArray.Upper() ; ii++) {
distance =
PointsArray.Value(ii).Distance(PointsArray.Value(ii+1)) ;
ParametersPtr->SetValue(index,
ParametersPtr->Value(ii) + distance) ;
index += 1 ;
}
if (PeriodicFlag) {
distance =
PointsArray.Value(PointsArray.Upper()).
Distance(PointsArray.Value(PointsArray.Lower())) ;
ParametersPtr->SetValue(index,
ParametersPtr->Value(ii) + distance) ;
}
}
//=======================================================================
//function : BuildPeriodicTangents
//purpose :
//=======================================================================
static void BuildPeriodicTangent(
const TColgp_Array1OfPnt2d& PointsArray,
TColgp_Array1OfVec2d& TangentsArray,
TColStd_Array1OfBoolean& TangentFlags,
const TColStd_Array1OfReal& ParametersArray)
{
Standard_Integer
ii,
degree ;
Standard_Real *point_array,
*parameter_array,
eval_result[2][2] ;
gp_Vec2d a_vector ;
if (PointsArray.Length() < 3) {
throw Standard_ConstructionError();
}
if (!TangentFlags.Value(1)) {
degree = 3 ;
if (PointsArray.Length() == 3) {
degree = 2 ;
}
point_array = (Standard_Real *) &PointsArray.Value(PointsArray.Lower()) ;
parameter_array =
(Standard_Real *) &ParametersArray.Value(1) ;
TangentFlags.SetValue(1,Standard_True) ;
PLib::EvalLagrange(ParametersArray.Value(1),
1,
degree,
2,
point_array[0],
parameter_array[0],
eval_result[0][0]) ;
for (ii = 1 ; ii <= 2 ; ii++) {
a_vector.SetCoord(ii,eval_result[1][ii-1]) ;
}
TangentsArray.SetValue(1,a_vector) ;
}
}
//=======================================================================
//function : BuildTangents
//purpose :
//=======================================================================
static void BuildTangents(const TColgp_Array1OfPnt2d& PointsArray,
TColgp_Array1OfVec2d& TangentsArray,
TColStd_Array1OfBoolean& TangentFlags,
const TColStd_Array1OfReal& ParametersArray)
{
Standard_Integer ii,
degree ;
Standard_Real *point_array,
*parameter_array,
eval_result[2][2] ;
gp_Vec2d a_vector ;
degree = 3 ;
if ( PointsArray.Length() < 3) {
throw Standard_ConstructionError();
}
if (PointsArray.Length() == 3) {
degree = 2 ;
}
if (!TangentFlags.Value(1)) {
point_array = (Standard_Real *) &PointsArray.Value(PointsArray.Lower()) ;
parameter_array =
(Standard_Real *) &ParametersArray.Value(1) ;
TangentFlags.SetValue(1,Standard_True) ;
PLib::EvalLagrange(ParametersArray.Value(1),
1,
degree,
2,
point_array[0],
parameter_array[0],
eval_result[0][0]) ;
for (ii = 1 ; ii <= 2 ; ii++) {
a_vector.SetCoord(ii,eval_result[1][ii-1]) ;
}
TangentsArray.SetValue(1,a_vector) ;
}
if (! TangentFlags.Value(TangentFlags.Upper())) {
point_array =
(Standard_Real *) &PointsArray.Value(PointsArray.Upper() - degree) ;
TangentFlags.SetValue(TangentFlags.Upper(),Standard_True) ;
parameter_array =
(Standard_Real *)&ParametersArray.Value(ParametersArray.Upper() - degree) ;
PLib::EvalLagrange(ParametersArray.Value(ParametersArray.Upper()),
1,
degree,
2,
point_array[0],
parameter_array[0],
eval_result[0][0]) ;
for (ii = 1 ; ii <= 2 ; ii++) {
a_vector.SetCoord(ii,eval_result[1][ii-1]) ;
}
TangentsArray.SetValue(TangentsArray.Upper(),a_vector) ;
}
}
//=======================================================================
//function : BuildTangents
//purpose : scale the given tangent so that they have the length of
// the size of the derivative of the lagrange interpolation
//
//=======================================================================
static void ScaleTangents(const TColgp_Array1OfPnt2d& PointsArray,
TColgp_Array1OfVec2d& TangentsArray,
const TColStd_Array1OfBoolean& TangentFlags,
const TColStd_Array1OfReal& ParametersArray)
{
Standard_Integer ii,
jj,
degree=0,
index,
num_points ;
Standard_Real *point_array,
*parameter_array,
value[2],
ratio,
eval_result[2][2] ;
gp_Vec2d a_vector ;
num_points = PointsArray.Length() ;
if (num_points == 2) {
degree = 1 ;
}
else if (num_points >= 3) {
degree = 2 ;
}
index = PointsArray.Lower() ;
for (ii = TangentFlags.Lower() ; ii <= TangentFlags.Upper() ; ii++) {
if (TangentFlags.Value(ii)) {
point_array =
(Standard_Real *) &PointsArray.Value(index) ;
parameter_array =
(Standard_Real *) &ParametersArray.Value(index) ;
PLib::EvalLagrange(ParametersArray.Value(ii),
1,
degree,
2,
point_array[0],
parameter_array[0],
eval_result[0][0]) ;
value[0] =
value[1] = 0.0e0 ;
for (jj = 1 ; jj <= 2 ; jj++) {
value[0] += Abs(TangentsArray.Value(ii).Coord(jj)) ;
value[1] += Abs(eval_result[1][jj-1]) ;
}
ratio = value[1] / value[0] ;
for (jj = 1 ; jj <= 2 ; jj++) {
a_vector.SetCoord(jj, ratio *
TangentsArray.Value(ii).Coord(jj)) ;
}
TangentsArray.SetValue(ii, a_vector) ;
if (ii != TangentFlags.Lower()) {
index += 1 ;
}
if (index > PointsArray.Upper() - degree) {
index = PointsArray.Upper() - degree ;
}
}
}
}
//=======================================================================
//function : Geom2dAPI_Interpolate
//purpose :
//=======================================================================
Geom2dAPI_Interpolate::Geom2dAPI_Interpolate
(const Handle(TColgp_HArray1OfPnt2d)& PointsPtr,
const Standard_Boolean PeriodicFlag,
const Standard_Real Tolerance) :
myTolerance(Tolerance),
myPoints(PointsPtr),
myIsDone(Standard_False),
myPeriodic(PeriodicFlag),
myTangentRequest(Standard_False)
{
Standard_Integer ii ;
Standard_Boolean result =
CheckPoints(PointsPtr->Array1(),
Tolerance) ;
myTangents =
new TColgp_HArray1OfVec2d(myPoints->Lower(),
myPoints->Upper()) ;
myTangentFlags =
new TColStd_HArray1OfBoolean(myPoints->Lower(),
myPoints->Upper()) ;
if (!result) {
throw Standard_ConstructionError();
}
BuildParameters(PeriodicFlag,
PointsPtr->Array1(),
myParameters) ;
for (ii = myPoints->Lower() ; ii <= myPoints->Upper() ; ii++) {
myTangentFlags->SetValue(ii,Standard_False) ;
}
}
//=======================================================================
//function : Geom2dAPI_Interpolate
//purpose :
//=======================================================================
Geom2dAPI_Interpolate::Geom2dAPI_Interpolate
(const Handle(TColgp_HArray1OfPnt2d)& PointsPtr,
const Handle(TColStd_HArray1OfReal)& ParametersPtr,
const Standard_Boolean PeriodicFlag,
const Standard_Real Tolerance) :
myTolerance(Tolerance),
myPoints(PointsPtr),
myIsDone(Standard_False),
myParameters(ParametersPtr),
myPeriodic(PeriodicFlag),
myTangentRequest(Standard_False)
{
Standard_Integer ii ;
Standard_Boolean result =
CheckPoints(PointsPtr->Array1(),
Tolerance) ;
if (PeriodicFlag) {
if ((PointsPtr->Length()) + 1 != ParametersPtr->Length()) {
throw Standard_ConstructionError();
}
}
myTangents =
new TColgp_HArray1OfVec2d(myPoints->Lower(),
myPoints->Upper()) ;
myTangentFlags =
new TColStd_HArray1OfBoolean(myPoints->Lower(),
myPoints->Upper()) ;
if (!result) {
throw Standard_ConstructionError();
}
result =
CheckParameters(ParametersPtr->Array1()) ;
if (!result) {
throw Standard_ConstructionError();
}
for (ii = myPoints->Lower() ; ii <= myPoints->Upper() ; ii++) {
myTangentFlags->SetValue(ii,Standard_False) ;
}
}
//=======================================================================
//function : Load
//purpose :
//=======================================================================
void Geom2dAPI_Interpolate::Load(
const TColgp_Array1OfVec2d& Tangents,
const Handle(TColStd_HArray1OfBoolean)& TangentFlagsPtr,
const Standard_Boolean Scale)
{
Standard_Boolean result ;
Standard_Integer ii ;
myTangentRequest = Standard_True ;
myTangentFlags = TangentFlagsPtr ;
if (Tangents.Length() != myPoints->Length() ||
TangentFlagsPtr->Length() != myPoints->Length()) {
throw Standard_ConstructionError();
}
result =
CheckTangents(Tangents,
TangentFlagsPtr->Array1(),
myTolerance) ;
if (result) {
myTangents =
new TColgp_HArray1OfVec2d(Tangents.Lower(),Tangents.Upper()) ;
for (ii = Tangents.Lower() ; ii <= Tangents.Upper() ; ii++ ) {
myTangents->SetValue(ii,Tangents.Value(ii)) ;
}
if (Scale) {
ScaleTangents(myPoints->Array1(),
myTangents->ChangeArray1(),
TangentFlagsPtr->Array1(),
myParameters->Array1()) ;
}
}
else {
throw Standard_ConstructionError();
}
}
//=======================================================================
//function : Load
//purpose :
//=======================================================================
void Geom2dAPI_Interpolate::Load(const gp_Vec2d& InitialTangent,
const gp_Vec2d& FinalTangent,
const Standard_Boolean Scale)
{
Standard_Boolean result ;
myTangentRequest = Standard_True ;
myTangentFlags->SetValue(1,Standard_True) ;
myTangentFlags->SetValue(myPoints->Length(),Standard_True) ;
myTangents->SetValue(1,InitialTangent) ;
myTangents->SetValue(myPoints->Length(),FinalTangent);
result =
CheckTangents(myTangents->Array1(),
myTangentFlags->Array1(),
myTolerance) ;
if (!result) {
throw Standard_ConstructionError();
}
if (Scale) {
ScaleTangents(myPoints->Array1(),
myTangents->ChangeArray1(),
myTangentFlags->Array1(),
myParameters->Array1()) ;
}
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
void Geom2dAPI_Interpolate::Perform()
{
if (myPeriodic) {
PerformPeriodic() ;
}
else {
PerformNonPeriodic() ;
}
}
//=======================================================================
//function : PerformPeriodic
//purpose :
//=======================================================================
void Geom2dAPI_Interpolate::PerformPeriodic()
{
Standard_Integer degree,
ii,
jj,
index,
index1,
// index2,
mult_index,
half_order,
inversion_problem,
num_points,
num_distinct_knots,
num_poles ;
Standard_Real period ;
gp_Pnt2d a_point ;
num_points = myPoints->Length() ;
period = myParameters->Value(myParameters->Upper()) -
myParameters->Value(myParameters->Lower()) ;
num_poles = num_points + 1 ;
if (num_points == 2 && !myTangentRequest) {
//
// build a periodic curve of degree 1
//
degree = 1 ;
TColStd_Array1OfInteger deg1_mults(1,num_poles) ;
for (ii = 1 ; ii <= num_poles ; ii++) {
deg1_mults.SetValue(ii,1) ;
}
myCurve =
new Geom2d_BSplineCurve(myPoints->Array1(),
myParameters->Array1(),
deg1_mults,
degree,
myPeriodic) ;
myIsDone = Standard_True ;
}
else {
num_distinct_knots = num_points + 1 ;
half_order = 2 ;
degree = 3 ;
num_poles += 2 ;
if (myTangentRequest)
for (ii = myTangentFlags->Lower() + 1 ;
ii <= myTangentFlags->Upper() ; ii++) {
if (myTangentFlags->Value(ii)) {
num_poles += 1 ;
}
}
TColStd_Array1OfReal parameters(1,num_poles) ;
TColStd_Array1OfReal flatknots(1,num_poles + degree + 1) ;
TColStd_Array1OfInteger mults(1,num_distinct_knots) ;
TColStd_Array1OfInteger contact_order_array(1, num_poles) ;
TColgp_Array1OfPnt2d poles(1,num_poles) ;
for (ii = 1 ; ii <= half_order ; ii++) {
flatknots.SetValue(ii,myParameters->Value(myParameters->Upper() -1) -
period) ;
flatknots.SetValue(ii + half_order,myParameters->
Value(myParameters->Lower())) ;
flatknots.SetValue(num_poles + ii,
myParameters->Value(myParameters->Upper())) ;
flatknots.SetValue(num_poles + half_order + ii,
myParameters->Value(half_order) + period) ;
}
for (ii = 1 ; ii <= num_poles ; ii++) {
contact_order_array.SetValue(ii,0) ;
}
for (ii = 2 ; ii < num_distinct_knots ; ii++) {
mults.SetValue(ii,1) ;
}
mults.SetValue(1,half_order) ;
mults.SetValue(num_distinct_knots ,half_order) ;
if (num_points >= 3) {
//
// only enter here if there are more than 3 points otherwise
// it means we have already the tangent
//
BuildPeriodicTangent(myPoints->Array1(),
myTangents->ChangeArray1(),
myTangentFlags->ChangeArray1(),
myParameters->Array1()) ;
}
contact_order_array.SetValue(2,1) ;
parameters.SetValue(1,myParameters->Value(1)) ;
parameters.SetValue(2,myParameters->Value(1)) ;
poles.SetValue(1,myPoints->Value(1)) ;
for (jj = 1 ; jj <= 2 ; jj++) {
a_point.SetCoord(jj,myTangents->Value(1).Coord(jj)) ;
}
poles.SetValue(2,a_point) ;
mult_index = 2 ;
index = 3 ;
index1 = degree + 2 ;
if (myTangentRequest) {
for (ii = myTangentFlags->Lower() + 1 ;
ii <= myTangentFlags->Upper() ; ii++) {
parameters.SetValue(index,myParameters->Value(ii)) ;
flatknots.SetValue(index1,myParameters->Value(ii)) ;
poles.SetValue(index,myPoints->Value(ii)) ;
index += 1 ;
index1 += 1 ;
if (myTangentFlags->Value(ii)) {
mults.SetValue(mult_index,mults.Value(mult_index) + 1) ;
contact_order_array(index) = 1 ;
parameters.SetValue(index,
myParameters->Value(ii)) ;
flatknots.SetValue(index1,myParameters->Value(ii)) ;
for (jj = 1 ; jj <= 2 ; jj++) {
a_point.SetCoord(jj,myTangents->Value(ii).Coord(jj)) ;
}
poles.SetValue(index,a_point) ;
index += 1 ;
index1 += 1 ;
}
mult_index += 1 ;
}
}
else {
index = degree + 1 ;
index1 = 2 ;
for(ii = myParameters->Lower() ; ii <= myParameters->Upper() ; ii++) {
parameters.SetValue(index1,
myParameters->Value(ii)) ;
flatknots.SetValue(index,
myParameters->Value(ii)) ;
index += 1 ;
index1 += 1 ;
}
index = 3 ;
for (ii = myPoints->Lower() + 1 ; ii <= myPoints->Upper() ; ii++) {
//
// copy all the given points since the last one will be initialized
// below by the first point in the array myPoints
//
poles.SetValue(index,
myPoints->Value(ii)) ;
index += 1 ;
}
}
contact_order_array.SetValue(num_poles - 1, 1) ;
parameters.SetValue(num_poles-1,
myParameters->Value(myParameters->Upper())) ;
//
// for the periodic curve ONLY the tangent of the first point
// will be used since the curve should close itself at the first
// point See BuildPeriodicTangent
//
for (jj = 1 ; jj <= 2 ; jj++) {
a_point.SetCoord(jj,myTangents->Value(1).Coord(jj)) ;
}
poles.SetValue(num_poles-1,a_point) ;
parameters.SetValue(num_poles,
myParameters->Value(myParameters->Upper())) ;
poles.SetValue(num_poles,
myPoints->Value(1)) ;
BSplCLib::Interpolate(degree,
flatknots,
parameters,
contact_order_array,
poles,
inversion_problem) ;
if (!inversion_problem) {
TColgp_Array1OfPnt2d newpoles(poles.Value(1),
1,
num_poles - 2) ;
myCurve =
new Geom2d_BSplineCurve(newpoles,
myParameters->Array1(),
mults,
degree,
myPeriodic) ;
myIsDone = Standard_True ;
}
}
}
//=======================================================================
//function : PerformNonPeriodic
//purpose :
//=======================================================================
void Geom2dAPI_Interpolate::PerformNonPeriodic()
{
Standard_Integer degree,
ii,
jj,
index,
index1,
index2,
index3,
mult_index,
inversion_problem,
num_points,
num_distinct_knots,
num_poles ;
gp_Pnt2d a_point ;
num_points =
num_distinct_knots =
num_poles = myPoints->Length() ;
if (num_poles == 2 && !myTangentRequest) {
degree = 1 ;
}
else if (num_poles == 3 && !myTangentRequest) {
degree = 2 ;
num_distinct_knots = 2 ;
}
else {
degree = 3 ;
num_poles += 2 ;
if (myTangentRequest)
for (ii = myTangentFlags->Lower() + 1 ;
ii < myTangentFlags->Upper() ; ii++) {
if (myTangentFlags->Value(ii)) {
num_poles += 1 ;
}
}
}
TColStd_Array1OfReal parameters(1,num_poles) ;
TColStd_Array1OfReal flatknots(1,num_poles + degree + 1) ;
TColStd_Array1OfInteger mults(1,num_distinct_knots) ;
TColStd_Array1OfReal knots(1,num_distinct_knots) ;
TColStd_Array1OfInteger contact_order_array(1, num_poles) ;
TColgp_Array1OfPnt2d poles(1,num_poles) ;
for (ii = 1 ; ii <= degree + 1 ; ii++) {
flatknots.SetValue(ii,myParameters->Value(1)) ;
flatknots.SetValue(ii + num_poles,
myParameters->Value(num_points)) ;
}
for (ii = 1 ; ii <= num_poles ; ii++) {
contact_order_array.SetValue(ii,0) ;
}
for (ii = 2 ; ii < num_distinct_knots ; ii++) {
mults.SetValue(ii,1) ;
}
mults.SetValue(1,degree + 1) ;
mults.SetValue(num_distinct_knots ,degree + 1) ;
switch (degree) {
case 1:
for (ii = 1 ; ii <= num_poles ; ii++) {
poles.SetValue(ii ,myPoints->Value(ii)) ;
}
myCurve =
new Geom2d_BSplineCurve(poles,
myParameters->Array1(),
mults,
degree) ;
myIsDone = Standard_True ;
break ;
case 2:
knots.SetValue(1,myParameters->Value(1)) ;
knots.SetValue(2,myParameters->Value(3)) ;
for (ii = 1 ; ii <= num_poles ; ii++) {
poles.SetValue(ii,myPoints->Value(ii)) ;
}
BSplCLib::Interpolate(degree,
flatknots,
myParameters->Array1(),
contact_order_array,
poles,
inversion_problem) ;
if (!inversion_problem) {
myCurve =
new Geom2d_BSplineCurve(poles,
knots,
mults,
degree) ;
myIsDone = Standard_True ;
}
break ;
case 3:
//
// check if the boundary conditions are set
//
if (num_points >= 3) {
//
// cannot build the tangents with degree 3 with only 2 points
// if those where not given in advance
//
BuildTangents(myPoints->Array1(),
myTangents->ChangeArray1(),
myTangentFlags->ChangeArray1(),
myParameters->Array1()) ;
}
contact_order_array.SetValue(2,1) ;
parameters.SetValue(1,myParameters->Value(1)) ;
parameters.SetValue(2,myParameters->Value(1)) ;
poles.SetValue(1,myPoints->Value(1)) ;
for (jj = 1 ; jj <= 2 ; jj++) {
a_point.SetCoord(jj,myTangents->Value(1).Coord(jj)) ;
}
poles.SetValue(2,a_point) ;
mult_index = 2 ;
index = 3 ;
index1 = 2 ;
index2 = myPoints->Lower() + 1 ;
index3 = degree + 2 ;
if (myTangentRequest) {
for (ii = myParameters->Lower() + 1 ;
ii < myParameters->Upper() ; ii++) {
parameters.SetValue(index,myParameters->Value(ii)) ;
poles.SetValue(index,myPoints->Value(index2)) ;
flatknots.SetValue(index3,myParameters->Value(ii)) ;
index += 1 ;
index3 += 1 ;
if (myTangentFlags->Value(index1)) {
//
// set the multiplicities, the order of the contact, the
// the flatknots,
//
mults.SetValue(mult_index,mults.Value(mult_index) + 1) ;
contact_order_array(index) = 1 ;
flatknots.SetValue(index3, myParameters->Value(ii)) ;
parameters.SetValue(index,
myParameters->Value(ii)) ;
for (jj = 1 ; jj <= 2 ; jj++) {
a_point.SetCoord(jj,myTangents->Value(ii).Coord(jj)) ;
}
poles.SetValue(index,a_point) ;
index += 1 ;
index3 += 1 ;
}
mult_index += 1 ;
index1 += 1 ;
index2 += 1 ;
}
}
else {
index1 = 2 ;
for(ii = myParameters->Lower() ; ii <= myParameters->Upper() ; ii++) {
parameters.SetValue(index1,
myParameters->Value(ii)) ;
index1 += 1 ;
}
index = 3 ;
for (ii = myPoints->Lower() + 1 ; ii <= myPoints->Upper() - 1 ; ii++) {
poles.SetValue(index,
myPoints->Value(ii)) ;
index += 1 ;
}
index = degree + 1 ;
for(ii = myParameters->Lower() ; ii <= myParameters->Upper() ; ii++) {
flatknots.SetValue(index,
myParameters->Value(ii)) ;
index += 1 ;
}
}
for (jj = 1 ; jj <= 2 ; jj++) {
a_point.SetCoord(jj,
myTangents->Value(num_points).Coord(jj)) ;
}
poles.SetValue(num_poles-1 ,a_point) ;
contact_order_array.SetValue(num_poles - 1,1) ;
parameters.SetValue(num_poles,
myParameters->Value(myParameters->Upper())) ;
parameters.SetValue(num_poles -1,
myParameters->Value(myParameters->Upper())) ;
poles.SetValue(num_poles,
myPoints->Value(num_points)) ;
BSplCLib::Interpolate(degree,
flatknots,
parameters,
contact_order_array,
poles,
inversion_problem) ;
if (!inversion_problem) {
myCurve =
new Geom2d_BSplineCurve(poles,
myParameters->Array1(),
mults,
degree) ;
myIsDone = Standard_True ;
}
break ;
}
}
//=======================================================================
//function : Handle(Geom2d_BSplineCurve)&
//purpose :
//=======================================================================
const Handle(Geom2d_BSplineCurve)& Geom2dAPI_Interpolate::Curve() const
{
if ( !myIsDone)
throw StdFail_NotDone(" ");
return myCurve;
}
//=======================================================================
//function : Geom2d_BSplineCurve
//purpose :
//=======================================================================
Geom2dAPI_Interpolate::operator Handle(Geom2d_BSplineCurve)() const
{
return myCurve;
}
//=======================================================================
//function : IsDone
//purpose :
//=======================================================================
Standard_Boolean Geom2dAPI_Interpolate::IsDone() const
{
return myIsDone;
}