1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-06 18:26:22 +03:00
occt/src/Geom/Geom_ConicalSurface.hxx
abv 92efcf78a6 0026936: Drawbacks of inlining in new type system in OCCT 7.0 -- automatic
Automatic restore of IMPLEMENT_STANDARD_RTTIEXT macro (upgrade -rtti)
2015-12-04 14:15:06 +03:00

308 lines
12 KiB
C++

// Created on: 1993-03-10
// Created by: JCV
// Copyright (c) 1993-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _Geom_ConicalSurface_HeaderFile
#define _Geom_ConicalSurface_HeaderFile
#include <Standard.hxx>
#include <Standard_Type.hxx>
#include <Standard_Real.hxx>
#include <Geom_ElementarySurface.hxx>
#include <Standard_Boolean.hxx>
#include <Standard_Integer.hxx>
class Standard_ConstructionError;
class Standard_RangeError;
class gp_Ax3;
class gp_Cone;
class gp_Trsf;
class gp_GTrsf2d;
class gp_Pnt;
class Geom_Curve;
class gp_Vec;
class Geom_Geometry;
class Geom_ConicalSurface;
DEFINE_STANDARD_HANDLE(Geom_ConicalSurface, Geom_ElementarySurface)
//! Describes a cone.
//! A cone is defined by the half-angle at its apex, and
//! is positioned in space by a coordinate system (a
//! gp_Ax3 object) and a reference radius as follows:
//! - The "main Axis" of the coordinate system is the
//! axis of revolution of the cone.
//! - The plane defined by the origin, the "X Direction"
//! and the "Y Direction" of the coordinate system is
//! the reference plane of the cone. The intersection
//! of the cone with this reference plane is a circle of
//! radius equal to the reference radius.
//! - The apex of the cone is on the negative side of
//! the "main Axis" of the coordinate system if the
//! half-angle is positive, and on the positive side if
//! the half-angle is negative.
//! This coordinate system is the "local coordinate
//! system" of the cone. The following apply:
//! - Rotation around its "main Axis", in the
//! trigonometric sense given by the "X Direction"
//! and the "Y Direction", defines the u parametric direction.
//! - Its "X Axis" gives the origin for the u parameter.
//! - Its "main Direction" is the v parametric direction of the cone.
//! - Its origin is the origin of the v parameter.
//! The parametric range of the two parameters is:
//! - [ 0, 2.*Pi ] for u, and - ] -infinity, +infinity [ for v
//! The parametric equation of the cone is: P(u, v) =
//! O + (R + v*sin(Ang)) * (cos(u)*XDir + sin(u)*YDir) + v*cos(Ang)*ZDir where:
//! - O, XDir, YDir and ZDir are respectively
//! the origin, the "X Direction", the "Y Direction" and
//! the "Z Direction" of the cone's local coordinate system,
//! - Ang is the half-angle at the apex of the cone, and
//! - R is the reference radius.
class Geom_ConicalSurface : public Geom_ElementarySurface
{
public:
//! A3 defines the local coordinate system of the conical surface.
//! Ang is the conical surface semi-angle ]0, PI/2[.
//! Radius is the radius of the circle Viso in the placement plane
//! of the conical surface defined with "XAxis" and "YAxis".
//! The "ZDirection" of A3 defines the direction of the surface's
//! axis of symmetry.
//! If the location point of A3 is the apex of the surface
//! Radius = 0 .
//! At the creation the parametrization of the surface is defined
//! such that the normal Vector (N = D1U ^ D1V) is oriented towards
//! the "outside region" of the surface.
//!
//! Raised if Radius < 0.0 or Ang < Resolution from gp or
//! Ang >= PI/2 - Resolution
Standard_EXPORT Geom_ConicalSurface(const gp_Ax3& A3, const Standard_Real Ang, const Standard_Real Radius);
//! Creates a ConicalSurface from a non transient Cone from
//! package gp.
Standard_EXPORT Geom_ConicalSurface(const gp_Cone& C);
//! Set <me> so that <me> has the same geometric properties as C.
Standard_EXPORT void SetCone (const gp_Cone& C);
//! Changes the radius of the conical surface in the placement
//! plane (Z = 0, V = 0). The local coordinate system is not
//! modified.
//! Raised if R < 0.0
Standard_EXPORT void SetRadius (const Standard_Real R);
//! Changes the semi angle of the conical surface.
//!
//! Raised if Ang < Resolution or Ang >= PI/2 - Resolution
Standard_EXPORT void SetSemiAngle (const Standard_Real Ang);
//! returns a non transient cone with the same geometric properties
//! as <me>.
Standard_EXPORT gp_Cone Cone() const;
//! return 2.PI - U.
Standard_EXPORT Standard_Real UReversedParameter (const Standard_Real U) const Standard_OVERRIDE;
//! Computes the u (or v) parameter on the modified
//! surface, when reversing its u (or v) parametric
//! direction, for any point of u parameter U (or of v
//! parameter V) on this cone.
//! In the case of a cone, these functions return respectively:
//! - 2.*Pi - U, -V.
Standard_EXPORT Standard_Real VReversedParameter (const Standard_Real V) const Standard_OVERRIDE;
//! Changes the orientation of this cone in the v
//! parametric direction. The bounds of the surface are
//! not changed but the v parametric direction is reversed.
//! As a consequence, for a cone:
//! - the "main Direction" of the local coordinate system
//! is reversed, and
//! - the half-angle at the apex is inverted.
Standard_EXPORT virtual void VReverse() Standard_OVERRIDE;
//! Computes the parameters on the transformed surface for
//! the transform of the point of parameters U,V on <me>.
//!
//! me->Transformed(T)->Value(U',V')
//!
//! is the same point as
//!
//! me->Value(U,V).Transformed(T)
//!
//! Where U',V' are the new values of U,V after calling
//!
//! me->TranformParameters(U,V,T)
//!
//! This methods multiplies V by T.ScaleFactor()
Standard_EXPORT virtual void TransformParameters (Standard_Real& U, Standard_Real& V, const gp_Trsf& T) const Standard_OVERRIDE;
//! Returns a 2d transformation used to find the new
//! parameters of a point on the transformed surface.
//!
//! me->Transformed(T)->Value(U',V')
//!
//! is the same point as
//!
//! me->Value(U,V).Transformed(T)
//!
//! Where U',V' are obtained by transforming U,V with
//! th 2d transformation returned by
//!
//! me->ParametricTransformation(T)
//!
//! This methods returns a scale centered on the
//! U axis with T.ScaleFactor
Standard_EXPORT virtual gp_GTrsf2d ParametricTransformation (const gp_Trsf& T) const Standard_OVERRIDE;
//! Computes the apex of this cone. It is on the negative
//! side of the axis of revolution of this cone if the
//! half-angle at the apex is positive, and on the positive
//! side of the "main Axis" if the half-angle is negative.
Standard_EXPORT gp_Pnt Apex() const;
//! The conical surface is infinite in the V direction so
//! V1 = Realfirst from Standard and V2 = RealLast.
//! U1 = 0 and U2 = 2*PI.
Standard_EXPORT void Bounds (Standard_Real& U1, Standard_Real& U2, Standard_Real& V1, Standard_Real& V2) const Standard_OVERRIDE;
//! Returns the coefficients of the implicit equation of the
//! quadric in the absolute cartesian coordinate system :
//! These coefficients are normalized.
//! A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) +
//! 2.(C1.X + C2.Y + C3.Z) + D = 0.0
Standard_EXPORT void Coefficients (Standard_Real& A1, Standard_Real& A2, Standard_Real& A3, Standard_Real& B1, Standard_Real& B2, Standard_Real& B3, Standard_Real& C1, Standard_Real& C2, Standard_Real& C3, Standard_Real& D) const;
//! Returns the reference radius of this cone.
//! The reference radius is the radius of the circle formed
//! by the intersection of this cone and its reference
//! plane (i.e. the plane defined by the origin, "X
//! Direction" and "Y Direction" of the local coordinate
//! system of this cone).
//! If the apex of this cone is on the origin of the local
//! coordinate system of this cone, the returned value is 0.
Standard_EXPORT Standard_Real RefRadius() const;
//! returns the semi-angle of the conical surface ]0.0, PI/2[.
Standard_EXPORT Standard_Real SemiAngle() const;
//! returns True.
Standard_EXPORT Standard_Boolean IsUClosed() const Standard_OVERRIDE;
//! returns False.
Standard_EXPORT Standard_Boolean IsVClosed() const Standard_OVERRIDE;
//! Returns True.
Standard_EXPORT Standard_Boolean IsUPeriodic() const Standard_OVERRIDE;
//! Returns False.
Standard_EXPORT Standard_Boolean IsVPeriodic() const Standard_OVERRIDE;
//! Builds the U isoparametric line of this cone. The
//! origin of this line is on the reference plane of this
//! cone (i.e. the plane defined by the origin, "X Direction"
//! and "Y Direction" of the local coordinate system of this cone).
Standard_EXPORT Handle(Geom_Curve) UIso (const Standard_Real U) const Standard_OVERRIDE;
//! Builds the V isoparametric circle of this cone. It is the
//! circle on this cone, located in the plane of Z
//! coordinate V*cos(Semi-Angle) in the local coordinate system of this
//! cone. The "Axis" of this circle is the axis of revolution
//! of this cone. Its starting point is defined by the "X
//! Direction" of this cone.
//! Warning
//! If the V isoparametric circle is close to the apex of
//! this cone, the radius of the circle becomes very small.
//! It is possible to have a circle with radius equal to 0.0.
Standard_EXPORT Handle(Geom_Curve) VIso (const Standard_Real V) const Standard_OVERRIDE;
//! Computes the point P (U, V) on the surface.
//! P (U, V) = Loc +
//! (RefRadius + V * sin (Semi-Angle)) * (cos (U) * XDir + sin (U) * YDir) +
//! V * cos (Semi-Angle) * ZDir
//! where Loc is the origin of the placement plane (XAxis, YAxis)
//! XDir is the direction of the XAxis and YDir the direction of
//! the YAxis.
Standard_EXPORT void D0 (const Standard_Real U, const Standard_Real V, gp_Pnt& P) const Standard_OVERRIDE;
//! Computes the current point and the first derivatives in the
//! directions U and V.
Standard_EXPORT void D1 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V) const Standard_OVERRIDE;
//! Computes the current point, the first and the second derivatives
//! in the directions U and V.
Standard_EXPORT void D2 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV) const Standard_OVERRIDE;
//! Computes the current point, the first,the second and the third
//! derivatives in the directions U and V.
Standard_EXPORT void D3 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV, gp_Vec& D3U, gp_Vec& D3V, gp_Vec& D3UUV, gp_Vec& D3UVV) const Standard_OVERRIDE;
//! Computes the derivative of order Nu in the u
//! parametric direction, and Nv in the v parametric
//! direction at the point of parameters (U, V) of this cone.
//! Exceptions
//! Standard_RangeError if:
//! - Nu + Nv is less than 1,
//! - Nu or Nv is negative.
Standard_EXPORT gp_Vec DN (const Standard_Real U, const Standard_Real V, const Standard_Integer Nu, const Standard_Integer Nv) const Standard_OVERRIDE;
//! Applies the transformation T to this cone.
Standard_EXPORT void Transform (const gp_Trsf& T) Standard_OVERRIDE;
//! Creates a new object which is a copy of this cone.
Standard_EXPORT Handle(Geom_Geometry) Copy() const Standard_OVERRIDE;
DEFINE_STANDARD_RTTIEXT(Geom_ConicalSurface,Geom_ElementarySurface)
protected:
private:
Standard_Real radius;
Standard_Real semiAngle;
};
#endif // _Geom_ConicalSurface_HeaderFile