1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-10 18:51:21 +03:00
occt/src/AppParCurves/AppParCurves_BSpGradient.gxx
ski 742cc8b01d 0027350: Support for Universal Windows Platform
- Toolchain file to configure a Visual Studio generator for a Windows 10 Universal Application was added (CMake).
- There is no support for environment variables in UWP.
- SID is not supported (were excluded).
- Windows registry is not supported (were excluded).
- Mess with usage of Unicode/ANSI was corrected.
- Added sample to check UWP functionality.
- Excluded usage of methods with Unicode characters where it is possible.
- Minor corrections to allow building OCAF (except TKVCAF) and DE (except VRML and XDE)
- Building of unsupported modules for UWP platform is off by default .
- Checking of DataExchange functionality was added to XAML (UWP) sample.
- Added information about UWP to the documentation.
- Update of results of merge with issue 27801
2016-08-26 09:43:29 +03:00

384 lines
10 KiB
Plaintext

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// lpa, le 11/09/91
// Application de la methode du gradient corrige pour minimiser
// F = somme(||C(ui, Poles(ui)) - ptli||2.
// La methode de gradient conjugue est programmee dans la bibliotheque
// mathematique: math_BFGS.
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#include <AppParCurves_Constraint.hxx>
#include <AppParCurves_ConstraintCouple.hxx>
#include <math_BFGS.hxx>
#include <StdFail_NotDone.hxx>
#include <AppParCurves_MultiPoint.hxx>
#include <gp_Pnt.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec.hxx>
#include <gp_Vec2d.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <TColgp_Array1OfVec.hxx>
#include <TColgp_Array1OfVec2d.hxx>
static AppParCurves_Constraint FirstConstraint
(const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
const Standard_Integer FirstPoint)
{
Standard_Integer i, myindex;
Standard_Integer low = TheConstraints->Lower(), upp= TheConstraints->Upper();
AppParCurves_ConstraintCouple mycouple;
AppParCurves_Constraint Cons = AppParCurves_NoConstraint;
for (i = low; i <= upp; i++) {
mycouple = TheConstraints->Value(i);
Cons = mycouple.Constraint();
myindex = mycouple.Index();
if (myindex == FirstPoint) {
break;
}
}
return Cons;
}
static AppParCurves_Constraint LastConstraint
(const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
const Standard_Integer LastPoint)
{
Standard_Integer i, myindex;
Standard_Integer low = TheConstraints->Lower(), upp= TheConstraints->Upper();
AppParCurves_ConstraintCouple mycouple;
AppParCurves_Constraint Cons = AppParCurves_NoConstraint;
for (i = low; i <= upp; i++) {
mycouple = TheConstraints->Value(i);
Cons = mycouple.Constraint();
myindex = mycouple.Index();
if (myindex == LastPoint) {
break;
}
}
return Cons;
}
AppParCurves_BSpGradient::
AppParCurves_BSpGradient(const MultiLine& SSP,
const Standard_Integer FirstPoint,
const Standard_Integer LastPoint,
const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
math_Vector& Parameters,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
const Standard_Integer Deg,
const Standard_Real Tol3d,
const Standard_Real Tol2d,
const Standard_Integer NbIterations):
ParError(FirstPoint, LastPoint,0.0),
mylambda1(0.0),
mylambda2(0.0),
myIsLambdaDefined(Standard_False)
{
Perform(SSP, FirstPoint, LastPoint, TheConstraints, Parameters,
Knots, Mults, Deg, Tol3d, Tol2d, NbIterations);
}
AppParCurves_BSpGradient::
AppParCurves_BSpGradient(const MultiLine& SSP,
const Standard_Integer FirstPoint,
const Standard_Integer LastPoint,
const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
math_Vector& Parameters,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
const Standard_Integer Deg,
const Standard_Real Tol3d,
const Standard_Real Tol2d,
const Standard_Integer NbIterations,
const Standard_Real lambda1,
const Standard_Real lambda2):
ParError(FirstPoint, LastPoint,0.0),
mylambda1(lambda1),
mylambda2(lambda2),
myIsLambdaDefined(Standard_True)
{
Perform(SSP, FirstPoint, LastPoint, TheConstraints, Parameters,
Knots, Mults, Deg, Tol3d, Tol2d, NbIterations);
}
void AppParCurves_BSpGradient::
Perform(const MultiLine& SSP,
const Standard_Integer FirstPoint,
const Standard_Integer LastPoint,
const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
math_Vector& Parameters,
const TColStd_Array1OfReal& Knots,
const TColStd_Array1OfInteger& Mults,
const Standard_Integer Deg,
const Standard_Real Tol3d,
const Standard_Real Tol2d,
const Standard_Integer NbIterations)
{
// Standard_Boolean grad = Standard_True;
Standard_Integer i, j, k, i2, l;
Standard_Real UF, DU, Fval = 0.0, FU, DFU;
Standard_Integer nbP3d = ToolLine::NbP3d(SSP);
Standard_Integer nbP2d = ToolLine::NbP2d(SSP);
Standard_Integer mynbP3d=nbP3d, mynbP2d=nbP2d;
Standard_Integer nbP = nbP3d + nbP2d;
// gp_Pnt Pt, P1, P2;
gp_Pnt Pt;
// gp_Pnt2d Pt2d, P12d, P22d;
gp_Pnt2d Pt2d;
// gp_Vec V1, V2, MyV;
gp_Vec V1, MyV;
// gp_Vec2d V12d, V22d, MyV2d;
gp_Vec2d V12d, MyV2d;
Done = Standard_False;
if (nbP3d == 0) mynbP3d = 1;
if (nbP2d == 0) mynbP2d = 1;
TColgp_Array1OfPnt TabP(1, mynbP3d);
TColgp_Array1OfPnt2d TabP2d(1, mynbP2d);
TColgp_Array1OfVec TabV(1, mynbP3d);
TColgp_Array1OfVec2d TabV2d(1, mynbP2d);
// Calcul de la fonction F= somme(||C(ui)-Ptli||2):
// Appel a une fonction heritant de MultipleVarFunctionWithGradient
// pour calculer F et grad_F.
// ================================================================
Standard_Integer nbpoles = -Deg -1;
for (i = Mults.Lower() ;i <= Mults.Upper(); i++) {
nbpoles += Mults(i);
}
TColgp_Array1OfPnt TabPole(1, nbpoles);
TColgp_Array1OfPnt2d TabPole2d(1, nbpoles);
TColgp_Array1OfPnt ThePoles(1, (nbpoles)*mynbP3d);
TColgp_Array1OfPnt2d ThePoles2d(1, (nbpoles)*mynbP2d);
AppParCurves_Constraint
FirstCons = FirstConstraint(TheConstraints, FirstPoint),
LastCons = LastConstraint(TheConstraints, LastPoint);
AppParCurves_BSpParFunction MyF(SSP, FirstPoint,LastPoint, TheConstraints,
Parameters, Knots, Mults, nbpoles);
if (FirstCons >= AppParCurves_TangencyPoint ||
LastCons >= AppParCurves_TangencyPoint) {
if (!myIsLambdaDefined) {
AppParCurves_BSpParLeastSquare thefitt(SSP, Knots, Mults, FirstPoint,
LastPoint, FirstCons, LastCons,
Parameters, nbpoles);
if (FirstCons >= AppParCurves_TangencyPoint) {
mylambda1 = thefitt.FirstLambda();
MyF.SetFirstLambda(mylambda1);
}
if (LastCons >= AppParCurves_TangencyPoint) {
mylambda2 = thefitt.LastLambda();
MyF.SetLastLambda(mylambda2);
}
}
else {
MyF.SetFirstLambda(mylambda1);
MyF.SetLastLambda(mylambda2);
}
}
MyF.Value(Parameters, Fval);
MError3d = MyF.MaxError3d();
MError2d = MyF.MaxError2d();
SCU = MyF.CurveValue();
if (MError3d > Tol3d || MError2d > Tol2d) {
// Stockage des Poles des courbes pour projeter:
// ============================================
i2 = 0;
for (k = 1; k <= nbP3d; k++) {
SCU.Curve(k, TabPole);
for (j=1; j<=nbpoles; j++) ThePoles(j+i2) = TabPole(j);
i2 += nbpoles;
}
i2 = 0;
for (k = 1; k <= nbP2d; k++) {
SCU.Curve(nbP3d+k, TabPole2d);
for (j=1; j<=nbpoles; j++) ThePoles2d(j+i2) = TabPole2d(j);
i2 += nbpoles;
}
// Une iteration rapide de projection est faite par la methode de
// Rogers & Fog 89, methode equivalente a Hoschek 88 qui ne necessite pas
// le calcul de D2.
const math_Matrix& A = MyF.FunctionMatrix();
const math_Matrix& DA = MyF.DerivativeFunctionMatrix();
const math_IntegerVector& Index = MyF.Index();
Standard_Real aa, da, a, b, c, d , e , f, px, py, pz;
Standard_Integer indexdeb, indexfin;
for (j = FirstPoint+1; j <= LastPoint-1; j++) {
UF = Parameters(j);
if (nbP3d != 0 && nbP2d != 0) ToolLine::Value(SSP, j, TabP, TabP2d);
else if (nbP2d != 0) ToolLine::Value(SSP, j, TabP2d);
else ToolLine::Value(SSP, j, TabP);
FU = 0.0;
DFU = 0.0;
i2 = 0;
indexdeb = Index(j) + 1;
indexfin = indexdeb + Deg;
for (k = 1; k <= nbP3d; k++) {
a = b = c = d = e = f = 0.0;
for (l = indexdeb; l <= indexfin; l++) {
Pt = ThePoles(l+i2);
px = Pt.X(); py = Pt.Y(); pz = Pt.Z();
aa = A(j, l); da = DA(j, l);
a += aa* px; d += da* px;
b += aa* py; e += da* py;
c += aa* pz; f += da* pz;
}
Pt.SetCoord(a, b, c);
V1.SetCoord(d, e, f);
i2 += nbpoles;
MyV = gp_Vec(Pt, TabP(k));
FU += MyV*V1;
DFU += V1.SquareMagnitude();
}
i2 = 0;
for (k = 1; k <= nbP2d; k++) {
a = b = d = e = 0.0;
for (l = indexdeb; l <= indexfin; l++) {
Pt2d = ThePoles2d(l+i2);
px = Pt2d.X(); py = Pt2d.Y();
aa = A(j, l); da = DA(j, l);
a += aa* px; d += da* px;
b += aa* py; e += da* py;
}
Pt2d.SetCoord(a, b);
V12d.SetCoord(d, e);
i2 += nbpoles;
MyV2d = gp_Vec2d(Pt2d, TabP2d(k));
FU += MyV2d*V12d;
DFU += V12d.SquareMagnitude();
}
if (DFU >= RealEpsilon()) {
DU = FU/DFU;
DU = Sign(Min(5.e-02, Abs(DU)), DU);
UF += DU;
Parameters(j) = UF;
}
}
MyF.Value(Parameters, Fval);
MError3d = MyF.MaxError3d();
MError2d = MyF.MaxError2d();
}
if (MError3d<= Tol3d && MError2d <= Tol2d) {
Done = Standard_True;
}
else if (NbIterations != 0) {
// NbIterations de gradient conjugue:
// =================================
Standard_Real Eps = 1.e-07;
AppParCurves_BSpGradient_BFGS FResol(MyF, Parameters, Tol3d,
Tol2d, Eps, NbIterations);
}
SCU = MyF.CurveValue();
AvError = 0.;
for (j = FirstPoint; j <= LastPoint; j++) {
Parameters(j) = MyF.NewParameters()(j);
// Recherche des erreurs maxi et moyenne a un index donne:
for (k = 1; k <= nbP; k++) {
ParError(j) = Max(ParError(j), MyF.Error(j, k));
}
AvError += ParError(j);
}
AvError = AvError/(LastPoint-FirstPoint+1);
MError3d = MyF.MaxError3d();
MError2d = MyF.MaxError2d();
if (MError3d <= Tol3d && MError2d <= Tol2d) {
Done = Standard_True;
}
}
AppParCurves_MultiBSpCurve AppParCurves_BSpGradient::Value() const {
return SCU;
}
Standard_Boolean AppParCurves_BSpGradient::IsDone() const {
return Done;
}
Standard_Real AppParCurves_BSpGradient::Error(const Standard_Integer Index) const {
return ParError(Index);
}
Standard_Real AppParCurves_BSpGradient::AverageError() const {
return AvError;
}
Standard_Real AppParCurves_BSpGradient::MaxError3d() const {
return MError3d;
}
Standard_Real AppParCurves_BSpGradient::MaxError2d() const {
return MError2d;
}