mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-08 18:40:55 +03:00
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl": - WOK-generated header files from inc and sources from drv are moved to src - CDL files removed - All packages are converted to nocdlpack
187 lines
5.8 KiB
C++
187 lines
5.8 KiB
C++
// Copyright (c) 1997-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
//#ifndef OCCT_DEBUG
|
|
#define No_Standard_RangeError
|
|
#define No_Standard_OutOfRange
|
|
#define No_Standard_DimensionError
|
|
|
|
//#endif
|
|
|
|
#include <math_Householder.hxx>
|
|
#include <math_Matrix.hxx>
|
|
#include <Standard_ConstructionError.hxx>
|
|
#include <Standard_DimensionError.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
|
|
// Cette classe decrit la methode de Householder qui transforme A en un
|
|
// produit de matrice orthogonale par une triangulaire superieure. Les seconds
|
|
// membres sont modifies dans le meme temps.
|
|
// Les references sur le cote sont celles de l'algorithme explique en page
|
|
// 90 du livre "Introduction a l'analyse numerique matricielle et a
|
|
// l'optimisation." par P.G. CIARLET, edition MASSON. Les secondes
|
|
// references sont celles du sous-programme HOUSEO d'Euclid.
|
|
// A la difference du sous-programme Houseo, la premiere colonne n'est pas
|
|
// traitee separement. Les tests effectues ont montre que le code effectue
|
|
// specialement pour celle-ci etait plus long qu'une simple recopie. C'est
|
|
// donc cette solution de recopie initiale qui a ete retenue.
|
|
math_Householder::math_Householder(const math_Matrix& A, const math_Vector& B,
|
|
const Standard_Real EPS):
|
|
Sol(1, A.ColNumber(), 1, 1),
|
|
Q(1, A.RowNumber(),
|
|
1, A.ColNumber()) {
|
|
|
|
mylowerArow = A.LowerRow();
|
|
mylowerAcol = A.LowerCol();
|
|
myupperArow = A.UpperRow();
|
|
myupperAcol = A.UpperCol();
|
|
math_Matrix B1(1, B.Length(), 1, 1);
|
|
B1.SetCol(1, B);
|
|
Perform(A, B1, EPS);
|
|
}
|
|
|
|
|
|
|
|
math_Householder::math_Householder(const math_Matrix& A, const math_Matrix& B,
|
|
const Standard_Real EPS):
|
|
Sol(1, A.ColNumber(),
|
|
1, B.ColNumber()),
|
|
Q(1, A.RowNumber(),
|
|
A.LowerCol(), A.UpperCol()) {
|
|
|
|
mylowerArow = A.LowerRow();
|
|
mylowerAcol = A.LowerCol();
|
|
myupperArow = A.UpperRow();
|
|
myupperAcol = A.UpperCol();
|
|
Perform(A, B, EPS);
|
|
}
|
|
|
|
|
|
math_Householder::math_Householder(const math_Matrix& A, const math_Matrix& B,
|
|
const Standard_Integer lowerArow,
|
|
const Standard_Integer upperArow,
|
|
const Standard_Integer lowerAcol,
|
|
const Standard_Integer upperAcol,
|
|
const Standard_Real EPS):
|
|
Sol(1, upperAcol-lowerAcol+1,
|
|
1, B.ColNumber()),
|
|
Q(1, upperArow-lowerArow+1,
|
|
1, upperAcol-lowerAcol+1) {
|
|
mylowerArow = lowerArow;
|
|
myupperArow = upperArow;
|
|
mylowerAcol = lowerAcol;
|
|
myupperAcol = upperAcol;
|
|
|
|
Perform(A, B, EPS);
|
|
}
|
|
|
|
|
|
void math_Householder::Perform(const math_Matrix& A, const math_Matrix& B,
|
|
const Standard_Real EPS) {
|
|
|
|
Standard_Integer i, j, k, n, l, m;
|
|
Standard_Real scale, f, g, h = 0., alfaii;
|
|
Standard_Real qki;
|
|
Standard_Real cj;
|
|
n = Q.ColNumber();
|
|
l = Q.RowNumber();
|
|
m = B.ColNumber();
|
|
math_Matrix B2(1, l, 1, m);
|
|
|
|
Standard_Integer lbrow = B.LowerRow();
|
|
for (i = 1; i <= l; i++) {
|
|
for (j = 1; j <= n; j++) {
|
|
Q(i, j) = A(i+mylowerArow-1, j+mylowerAcol-1);
|
|
}
|
|
for (j=1; j <= m; j++) {
|
|
B2(i, j) = B(i+lbrow-1, j);
|
|
}
|
|
}
|
|
|
|
Standard_DimensionError_Raise_if(l != B.RowNumber() || n > l, " ");
|
|
|
|
// Traitement de chaque colonne de A:
|
|
for (i = 1; i <= n; i++) {
|
|
h = scale = 0.0;
|
|
for (k = i; k <= l; k++) {
|
|
qki = Q(k, i);
|
|
h += qki*qki; // = ||a||*||a|| = EUAI
|
|
}
|
|
f = Q(i,i); // = a1 = AII
|
|
g = f<1.e-15 ? Sqrt(h) : -Sqrt(h);
|
|
if (fabs(g) <= EPS) {
|
|
Done = Standard_False;
|
|
return;
|
|
}
|
|
h -= f*g; // = (v*v)/2 = C1
|
|
alfaii = g-f; // = v = ALFAII
|
|
for (j =i+1; j <= n; j++) {
|
|
scale = 0.0;
|
|
for (k = i; k <= l; k++) {
|
|
scale += Q(k,i)* Q(k,j); // = SCAL
|
|
}
|
|
cj = (g*Q(i,j) - scale)/h;
|
|
Q(i,j) = Q(i,j) - alfaii*cj;
|
|
for(k= i+1; k <= l; k++) {
|
|
Q(k,j) = Q(k, j) + cj * Q(k,i);
|
|
}
|
|
}
|
|
|
|
// Modification de B:
|
|
|
|
for (j = 1; j <= m; j++) {
|
|
scale= Q(i,i)*B2(i,j);
|
|
for (k = i+1; k <= l; k++) {
|
|
scale += Q(k,i)*B2(k,j);
|
|
}
|
|
cj = (g*B2(i,j) - scale)/h;
|
|
B2(i,j) = B2(i,j) - cj*alfaii;
|
|
for (k = i+1; k <= l; k++) {
|
|
B2(k,j) = B2(k,j) + cj*Q(k,i);
|
|
}
|
|
}
|
|
Q(i,i) = g;
|
|
}
|
|
|
|
|
|
// Remontee:
|
|
for (j = 1; j <= m; j++) {
|
|
Sol(n,j) = B2(n,j)/Q(n,n);
|
|
for (i = n -1; i >=1; i--) {
|
|
scale= 0.0;
|
|
for(k = i+1; k <= n; k++) {
|
|
scale += Q(i,k) * Sol(k,j);
|
|
}
|
|
Sol(i,j) = (B2(i,j) - scale)/Q(i,i);
|
|
}
|
|
}
|
|
Done = Standard_True;
|
|
}
|
|
|
|
|
|
|
|
|
|
void math_Householder::Dump(Standard_OStream& o) const {
|
|
|
|
o <<"math_Householder ";
|
|
if (Done) {
|
|
o << " Status = Done \n";
|
|
}
|
|
else {
|
|
o << "Status = not Done \n";
|
|
}
|
|
}
|
|
|