1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-06 18:26:22 +03:00
occt/src/GeomFill/GeomFill_GuideTrihedronAC.cxx
abv 92efcf78a6 0026936: Drawbacks of inlining in new type system in OCCT 7.0 -- automatic
Automatic restore of IMPLEMENT_STANDARD_RTTIEXT macro (upgrade -rtti)
2015-12-04 14:15:06 +03:00

436 lines
12 KiB
C++

// Created by: Stephanie HUMEAU
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// Creted: Tue Jun 23 15:39:24 1998
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_HCurve.hxx>
#include <Approx_CurvlinFunc.hxx>
#include <GeomAdaptor.hxx>
#include <GeomAdaptor_HCurve.hxx>
#include <GeomFill_Frenet.hxx>
#include <GeomFill_GuideTrihedronAC.hxx>
#include <GeomFill_TrihedronLaw.hxx>
#include <GeomLib.hxx>
#include <gp_Dir.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <Precision.hxx>
#include <Standard_ConstructionError.hxx>
#include <Standard_OutOfRange.hxx>
#include <Standard_Type.hxx>
#include <TColStd_SequenceOfReal.hxx>
IMPLEMENT_STANDARD_RTTIEXT(GeomFill_GuideTrihedronAC,GeomFill_TrihedronWithGuide)
//=======================================================================
//function : GuideTrihedron
//purpose : Constructor
//=======================================================================
GeomFill_GuideTrihedronAC::GeomFill_GuideTrihedronAC(const Handle(Adaptor3d_HCurve) & guide)
{
myCurve.Nullify();
myGuide = guide;
myTrimG = guide;
myGuideAC = new (Approx_CurvlinFunc) (myGuide,1.e-7);
Lguide = myGuideAC->GetLength();
UTol = STol = Precision::PConfusion();
Orig1 = 0; // origines pour le cas path multi-edges
Orig2 = 1;
}
//=======================================================================
//function : Guide
//purpose : calculation of trihedron
//=======================================================================
Handle(Adaptor3d_HCurve) GeomFill_GuideTrihedronAC::Guide()const
{
return myGuide;
}
//=======================================================================
//function : D0
//purpose : calculation of trihedron
//=======================================================================
Standard_Boolean GeomFill_GuideTrihedronAC::D0(const Standard_Real Param,
gp_Vec& Tangent,
gp_Vec& Normal,
gp_Vec& BiNormal)
{
Standard_Real s = myCurveAC->GetSParameter(Param); // abscisse curviligne <=> Param
Standard_Real OrigG = Orig1 + s*(Orig2-Orig1); // abscisse curv sur le guide (cas multi-edges)
Standard_Real tG = myGuideAC->GetUParameter(myGuide->GetCurve(), OrigG, 1); // param <=> s sur theGuide
gp_Pnt P, PG;
gp_Vec To, B;
myTrimmed->D1(Param, P, To);//point et derivee au parametre Param sur myCurve
myTrimG->D0(tG, PG);// point au parametre tG sur myGuide
myCurPointOnGuide = PG;
gp_Vec n (P, PG); // vecteur definissant la normale
Normal = n.Normalized();
B = To.Crossed(Normal);
BiNormal = B/B.Magnitude();
Tangent = Normal.Crossed(BiNormal);
Tangent.Normalize();
return Standard_True;
}
//=======================================================================
//function : D1
//purpose : calculation of trihedron and first derivative
//=======================================================================
Standard_Boolean GeomFill_GuideTrihedronAC::D1(const Standard_Real Param,
gp_Vec& Tangent,
gp_Vec& DTangent,
gp_Vec& Normal,
gp_Vec& DNormal,
gp_Vec& BiNormal,
gp_Vec& DBiNormal)
{
//triedre
Standard_Real s, OrigG, tG, dtg;
// abscisse curviligne <=> Param
s = myCurveAC->GetSParameter(Param);
// parametre <=> s sur theGuide
OrigG = Orig1 + s*(Orig2-Orig1);
// parametre <=> s sur theGuide
tG = myGuideAC->GetUParameter(myGuide->GetCurve(), OrigG, 1);
gp_Pnt P, PG;
gp_Vec To, DTo, TG, B, BPrim;
myTrimmed->D2(Param, P, To, DTo);
myTrimG->D1(tG, PG, TG);
myCurPointOnGuide = PG;
gp_Vec n (P, PG), dn;
Standard_Real Norm = n.Magnitude();
if (Norm < 1.e-12) {
Norm = 1;
#ifdef OCCT_DEBUG
cout << "GuideTrihedronAC : Normal indefinie" << endl;
#endif
}
n /= Norm;
//derivee de n par rapport a Param
dtg = (Orig2-Orig1)*(To.Magnitude()/TG.Magnitude())*(Lguide/L);
dn.SetLinearForm(dtg, TG, -1, To);
dn /= Norm;
// triedre
Normal = n;
B = To.Crossed(Normal);
Standard_Real NormB = B.Magnitude();
B/= NormB;
BiNormal = B;
Tangent = Normal.Crossed(BiNormal);
Tangent.Normalize();
// derivee premiere
DNormal.SetLinearForm(-(n.Dot(dn)), n, dn);
BPrim.SetLinearForm(DTo.Crossed(Normal), To.Crossed(DNormal));
DBiNormal.SetLinearForm(-(B.Dot(BPrim)), B, BPrim);
DBiNormal /= NormB;
DTangent.SetLinearForm(Normal.Crossed(DBiNormal), DNormal.Crossed(BiNormal));
return Standard_True;
}
//=======================================================================
//function : D2
//purpose : calculation of trihedron and derivatives
//=======================================================================
Standard_Boolean GeomFill_GuideTrihedronAC::D2(const Standard_Real Param,
gp_Vec& Tangent,
gp_Vec& DTangent,
gp_Vec& D2Tangent,
gp_Vec& Normal,
gp_Vec& DNormal,
gp_Vec& D2Normal,
gp_Vec& BiNormal,
gp_Vec& DBiNormal,
gp_Vec& D2BiNormal)
{
// abscisse curviligne <=> Param
Standard_Real s = myCurveAC->GetSParameter(Param);
// parametre <=> s sur theGuide
Standard_Real OrigG = Orig1 + s*(Orig2-Orig1);
Standard_Real tG = myGuideAC->GetUParameter(myGuide->GetCurve(),
OrigG, 1);
gp_Pnt P,PG;
gp_Vec TG,DTG;
// gp_Vec To,DTo,D2To,B;
gp_Vec To,DTo,D2To;
myTrimmed->D3(Param, P, To, DTo, D2To);
myTrimG->D2(tG, PG, TG, DTG);
myCurPointOnGuide = PG;
Standard_Real NTo = To.Magnitude();
Standard_Real N2To = To.SquareMagnitude();
Standard_Real NTG = TG.Magnitude();
Standard_Real N2Tp = TG.SquareMagnitude();
Standard_Real d2tp_dt2, dtg_dt;
dtg_dt = (Orig2-Orig1)*(NTo/NTG)*(Lguide/L);
gp_Vec n(P, PG); // vecteur definissant la normale
Standard_Real Norm = n.Magnitude(), ndn;
//derivee de n par rapport a Param
gp_Vec dn, d2n;
dn.SetLinearForm(dtg_dt, TG, -1, To);
//derivee seconde de tG par rapport a Param
d2tp_dt2 = (Orig2-Orig1)*(Lguide/L) *
( DTo.Dot(To) / (NTo*NTG) - N2To*TG*DTG*(Lguide/L) / (N2Tp*N2Tp));
//derivee seconde de n par rapport a Param
d2n.SetLinearForm(dtg_dt*dtg_dt,DTG, d2tp_dt2, TG, -1, DTo);
if (Norm > 1.e-9) {
n /= Norm;
dn /= Norm;
d2n /= Norm;
}
//triedre
Normal = n;
gp_Vec TN, DTN, D2TN;
TN = To.Crossed(Normal);
Standard_Real Norma = TN.Magnitude();
if (Norma > 1.e-9) TN /= Norma;
BiNormal = TN;
Tangent = Normal.Crossed(BiNormal);
// Tangent.Normalize();
// derivee premiere du triedre
// gp_Vec DTN = DTo.Crossed(Normal);
// gp_Vec TDN = To.Crossed(DNormal);
// gp_Vec DT = DTN + TDN;
ndn = n.Dot(dn);
DNormal.SetLinearForm(-ndn, n, dn);
DTN.SetLinearForm(DTo.Crossed(Normal), To.Crossed(DNormal));
DTN /= Norma;
Standard_Real TNDTN = TN.Dot(DTN);
DBiNormal.SetLinearForm(-TNDTN, TN, DTN);
DTangent.SetLinearForm(Normal.Crossed(DBiNormal),
DNormal.Crossed(BiNormal));
//derivee seconde du triedre
#ifdef OCCT_DEBUG
gp_Vec DTDN = DTo.Crossed(DNormal); (void)DTDN;
#endif
Standard_Real TN2 = TN.SquareMagnitude();
D2Normal.SetLinearForm(-2*ndn, dn,
3*ndn*ndn - (dn.SquareMagnitude() + n.Dot(d2n)),n,
d2n);
D2TN.SetLinearForm(1, D2To.Crossed(Normal),
2, DTo.Crossed(DNormal),
To.Crossed(D2Normal));
D2TN /= Norma;
D2BiNormal.SetLinearForm(-2*TNDTN, DTN,
3*TNDTN*TNDTN - (TN2 + TN.Dot(D2TN)), TN,
D2TN);
D2Tangent.SetLinearForm(1, D2Normal.Crossed(BiNormal),
2, DNormal.Crossed(DBiNormal),
Normal.Crossed(D2BiNormal) );
// return Standard_True;
return Standard_False;
}
//=======================================================================
//function : Copy
//purpose :
//=======================================================================
Handle(GeomFill_TrihedronLaw) GeomFill_GuideTrihedronAC::Copy() const
{
Handle(GeomFill_GuideTrihedronAC) copy =
new (GeomFill_GuideTrihedronAC) (myGuide);
copy->SetCurve(myCurve);
copy->Origine(Orig1,Orig2);
return copy;
}
//=======================================================================
//function : SetCurve
//purpose :
//=======================================================================
void GeomFill_GuideTrihedronAC::SetCurve(const Handle(Adaptor3d_HCurve)& C)
{
myCurve = C;
myTrimmed = C;
if (!myCurve.IsNull()) {
myCurveAC = new (Approx_CurvlinFunc) (C,1.e-7);
L = myCurveAC->GetLength();
// CorrectOrient(myGuide);
}
}
//=======================================================================
//function : NbIntervals
//purpose :
//=======================================================================
Standard_Integer GeomFill_GuideTrihedronAC::NbIntervals(const GeomAbs_Shape S) const
{
Standard_Integer Nb;
Nb = myCurveAC->NbIntervals(S);
TColStd_Array1OfReal DiscC(1, Nb+1);
myCurveAC->Intervals(DiscC, S);
Nb = myGuideAC->NbIntervals(S);
TColStd_Array1OfReal DiscG(1, Nb+1);
myGuideAC->Intervals(DiscG, S);
TColStd_SequenceOfReal Seq;
GeomLib::FuseIntervals(DiscC, DiscG, Seq);
return Seq.Length()-1;
}
//======================================================================
//function :Intervals
//purpose :
//=======================================================================
void GeomFill_GuideTrihedronAC::Intervals(TColStd_Array1OfReal& TT,
const GeomAbs_Shape S) const
{
Standard_Integer Nb, ii;
Nb = myCurveAC->NbIntervals(S);
TColStd_Array1OfReal DiscC(1, Nb+1);
myCurveAC->Intervals(DiscC, S);
Nb = myGuideAC->NbIntervals(S);
TColStd_Array1OfReal DiscG(1, Nb+1);
myGuideAC->Intervals(DiscG, S);
TColStd_SequenceOfReal Seq;
GeomLib::FuseIntervals(DiscC, DiscG, Seq);
Nb = Seq.Length();
for (ii=1; ii<=Nb; ii++) {
TT(ii) = myCurveAC->GetUParameter(myCurve->GetCurve(), Seq(ii), 1);
}
}
//======================================================================
//function :SetInterval
//purpose :
//=======================================================================
void GeomFill_GuideTrihedronAC::SetInterval(const Standard_Real First,
const Standard_Real Last)
{
myTrimmed = myCurve->Trim(First, Last, UTol);
Standard_Real Sf, Sl, U;
Sf = myCurveAC->GetSParameter(First);
Sl = myCurveAC->GetSParameter(Last);
// if (Sl>1) Sl=1;
// myCurveAC->Trim(Sf, Sl, UTol);
U = Orig1 + Sf*(Orig2-Orig1);
Sf = myGuideAC->GetUParameter(myGuide->GetCurve(), U, 1);
U = Orig1 + Sl*(Orig2-Orig1);
Sl = myGuideAC->GetUParameter(myGuide->GetCurve(), U, 1);
myTrimG = myGuide->Trim(Sf, Sl, UTol);
}
//=======================================================================
//function : GetAverageLaw
//purpose :
//=======================================================================
void GeomFill_GuideTrihedronAC::GetAverageLaw(gp_Vec& ATangent,
gp_Vec& ANormal,
gp_Vec& ABiNormal)
{
Standard_Integer ii;
Standard_Real t, Delta = (myCurve->LastParameter() -
myCurve->FirstParameter())/20.001;
ATangent.SetCoord(0.,0.,0.);
ANormal.SetCoord(0.,0.,0.);
ABiNormal.SetCoord(0.,0.,0.);
gp_Vec T, N, B;
for (ii=1; ii<=20; ii++) {
t = myCurve->FirstParameter() +(ii-1)*Delta;
D0(t, T, N, B);
ATangent +=T;
ANormal +=N;
ABiNormal+=B;
}
ATangent /= 20;
ANormal /= 20;
ABiNormal /= 20;
}
//=======================================================================
//function : IsConstant
//purpose :
//=======================================================================
Standard_Boolean GeomFill_GuideTrihedronAC::IsConstant() const
{
return Standard_False;
}
//=======================================================================
//function : IsOnlyBy3dCurve
//purpose :
//=======================================================================
Standard_Boolean GeomFill_GuideTrihedronAC::IsOnlyBy3dCurve() const
{
return Standard_False;
}
//=======================================================================
//function : Origine
//purpose :
//=======================================================================
void GeomFill_GuideTrihedronAC::Origine(const Standard_Real OrACR1,
const Standard_Real OrACR2)
{
Orig1 = OrACR1;
Orig2 = OrACR2;
}