mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-06 18:26:22 +03:00
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl": - WOK-generated header files from inc and sources from drv are moved to src - CDL files removed - All packages are converted to nocdlpack
761 lines
22 KiB
C++
761 lines
22 KiB
C++
// Created on: 1994-02-25
|
|
// Created by: Bruno DUMORTIER
|
|
// Copyright (c) 1994-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <Geom_BSplineCurve.hxx>
|
|
#include <Geom_Circle.hxx>
|
|
#include <Geom_ConicalSurface.hxx>
|
|
#include <Geom_Curve.hxx>
|
|
#include <Geom_CylindricalSurface.hxx>
|
|
#include <Geom_Line.hxx>
|
|
#include <Geom_Plane.hxx>
|
|
#include <Geom_RectangularTrimmedSurface.hxx>
|
|
#include <Geom_Surface.hxx>
|
|
#include <Geom_TrimmedCurve.hxx>
|
|
#include <GeomConvert.hxx>
|
|
#include <GeomFill.hxx>
|
|
#include <GeomFill_Generator.hxx>
|
|
#include <GeomFill_PolynomialConvertor.hxx>
|
|
#include <GeomFill_QuasiAngularConvertor.hxx>
|
|
#include <gp_Ax3.hxx>
|
|
#include <gp_Circ.hxx>
|
|
#include <gp_Dir.hxx>
|
|
#include <gp_Lin.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <Precision.hxx>
|
|
|
|
//=======================================================================
|
|
//function : Surface
|
|
//purpose :
|
|
//=======================================================================
|
|
Handle(Geom_Surface) GeomFill::Surface
|
|
(const Handle(Geom_Curve)& Curve1,
|
|
const Handle(Geom_Curve)& Curve2)
|
|
|
|
{
|
|
Handle(Geom_Curve) TheCurve1, TheCurve2;
|
|
Handle(Geom_Surface) Surf;
|
|
|
|
// recherche du type de la surface resultat:
|
|
// les surfaces reglees particulieres sont :
|
|
// - les plans
|
|
// - les cylindres
|
|
// - les cones
|
|
// dans ces trois cas les courbes doivent etre de meme type :
|
|
// - ou 2 droites
|
|
// - ou 2 cercles
|
|
|
|
|
|
Standard_Real a1=0, a2=0, b1=0, b2=0;
|
|
Standard_Boolean Trim1= Standard_False, Trim2 = Standard_False;
|
|
if ( Curve1->IsKind(STANDARD_TYPE(Geom_TrimmedCurve))) {
|
|
Handle(Geom_TrimmedCurve) Ctrim
|
|
= Handle(Geom_TrimmedCurve)::DownCast(Curve1);
|
|
TheCurve1 = Ctrim->BasisCurve();
|
|
a1 = Ctrim->FirstParameter();
|
|
b1 = Ctrim->LastParameter();
|
|
Trim1 = Standard_True;
|
|
}
|
|
else {
|
|
TheCurve1 = Handle(Geom_Curve)::DownCast(Curve1->Copy());
|
|
}
|
|
if ( Curve2->IsKind(STANDARD_TYPE(Geom_TrimmedCurve))) {
|
|
Handle(Geom_TrimmedCurve) Ctrim
|
|
= Handle(Geom_TrimmedCurve)::DownCast(Curve2);
|
|
TheCurve2 = Ctrim->BasisCurve();
|
|
a2 = Ctrim->FirstParameter();
|
|
b2 = Ctrim->LastParameter();
|
|
Trim2 = Standard_True;
|
|
}
|
|
else {
|
|
TheCurve2 = Handle(Geom_Curve)::DownCast(Curve2->Copy());
|
|
}
|
|
|
|
Standard_Boolean IsDone = Standard_False;
|
|
// Les deux courbes sont des droites.
|
|
if ( TheCurve1->IsKind(STANDARD_TYPE(Geom_Line)) &&
|
|
TheCurve2->IsKind(STANDARD_TYPE(Geom_Line)) &&
|
|
Trim1 && Trim2 ) {
|
|
|
|
gp_Lin L1 = (Handle(Geom_Line)::DownCast(TheCurve1))->Lin();
|
|
gp_Lin L2 = (Handle(Geom_Line)::DownCast(TheCurve2))->Lin();
|
|
gp_Dir D1 = L1.Direction();
|
|
gp_Dir D2 = L2.Direction();
|
|
|
|
if ( D1.IsParallel(D2, Precision::Angular())) {
|
|
gp_Vec P1P2(L1.Location(),L2.Location());
|
|
Standard_Real proj = P1P2.Dot(D1);
|
|
|
|
if ( D1.IsEqual(D2, Precision::Angular())) {
|
|
if ( Abs( a1 - proj - a2 ) <= Precision::Confusion() &&
|
|
Abs( b1 - proj - b2 ) <= Precision::Confusion() ) {
|
|
gp_Ax3 Ax(L1.Location(), gp_Dir(D1.Crossed(P1P2)),D1);
|
|
Handle(Geom_Plane) P = new Geom_Plane(Ax);
|
|
Standard_Real V = P1P2.Dot( Ax.YDirection());
|
|
Surf = new Geom_RectangularTrimmedSurface( P , a1, b1,
|
|
Min(0.,V),Max(0.,V));
|
|
IsDone = Standard_True;
|
|
}
|
|
}
|
|
if ( D1.IsOpposite(D2, Precision::Angular())) {
|
|
if ( Abs( a1 - proj + b2 ) <= Precision::Confusion() &&
|
|
Abs( b1 - proj + a2 ) <= Precision::Confusion() ) {
|
|
gp_Ax3 Ax(L1.Location(), gp_Dir(D1.Crossed(P1P2)),D1);
|
|
Handle(Geom_Plane) P = new Geom_Plane(Ax);
|
|
Standard_Real V = P1P2.Dot( Ax.YDirection());
|
|
Surf = new Geom_RectangularTrimmedSurface( P , a1, b1,
|
|
Min(0.,V),Max(0.,V));
|
|
IsDone = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Les deux courbes sont des cercles.
|
|
else if ( TheCurve1->IsKind(STANDARD_TYPE(Geom_Circle)) &&
|
|
TheCurve2->IsKind(STANDARD_TYPE(Geom_Circle)) ) {
|
|
|
|
gp_Circ C1 = (Handle(Geom_Circle)::DownCast(TheCurve1))->Circ();
|
|
gp_Circ C2 = (Handle(Geom_Circle)::DownCast(TheCurve2))->Circ();
|
|
|
|
gp_Ax3 A1 = C1.Position();
|
|
gp_Ax3 A2 = C2.Position();
|
|
|
|
// first, A1 & A2 must be coaxials
|
|
if ( A1.Axis().IsCoaxial(A2.Axis(),Precision::Angular(),
|
|
Precision::Confusion()) ) {
|
|
Standard_Real V =
|
|
gp_Vec( A1.Location(),A2.Location()).Dot(gp_Vec(A1.Direction()));
|
|
if ( !Trim1 && !Trim2) {
|
|
if ( Abs( C1.Radius() - C2.Radius()) < Precision::Confusion()) {
|
|
Handle(Geom_CylindricalSurface) C =
|
|
new Geom_CylindricalSurface( A1, C1.Radius());
|
|
Surf = new Geom_RectangularTrimmedSurface
|
|
( C, Min(0.,V), Max(0.,V), Standard_False);
|
|
}
|
|
else {
|
|
Standard_Real Rad = C2.Radius() - C1.Radius();
|
|
Standard_Real Ang = ATan( Rad / V);
|
|
if ( Ang < 0.) {
|
|
A1.ZReverse();
|
|
V = -V;
|
|
Ang = -Ang;
|
|
}
|
|
Handle(Geom_ConicalSurface) C =
|
|
new Geom_ConicalSurface( A1, Ang, C1.Radius());
|
|
V /= Cos(Ang);
|
|
Surf = new Geom_RectangularTrimmedSurface
|
|
( C, Min(0.,V), Max(0.,V), Standard_False);
|
|
}
|
|
IsDone = Standard_True;
|
|
}
|
|
else if ( Trim1 && Trim2) {
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( !IsDone) {
|
|
GeomFill_Generator Generator;
|
|
Generator.AddCurve(Curve1);
|
|
Generator.AddCurve(Curve2);
|
|
Generator.Perform(Precision::PConfusion());
|
|
Surf = Generator.Surface();
|
|
}
|
|
|
|
return Surf;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : GetShape
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void GeomFill::GetShape (const Standard_Real MaxAng,
|
|
Standard_Integer& NbPoles,
|
|
Standard_Integer& NbKnots,
|
|
Standard_Integer& Degree,
|
|
Convert_ParameterisationType& TConv)
|
|
{
|
|
switch (TConv) {
|
|
case Convert_QuasiAngular:
|
|
{
|
|
NbPoles = 7 ;
|
|
NbKnots = 2 ;
|
|
Degree = 6 ;
|
|
}
|
|
break;
|
|
case Convert_Polynomial:
|
|
{
|
|
NbPoles = 8;
|
|
NbKnots = 2;
|
|
Degree = 7;
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
Standard_Integer NbSpan =
|
|
(Standard_Integer)(Ceiling(3.*Abs(MaxAng)/2./M_PI));
|
|
NbPoles = 2*NbSpan+1;
|
|
NbKnots = NbSpan+1;
|
|
Degree = 2;
|
|
if (NbSpan == 1) {
|
|
TConv = Convert_TgtThetaOver2_1;
|
|
}
|
|
else if (NbSpan == 2) {
|
|
TConv = Convert_TgtThetaOver2_2;
|
|
}
|
|
else if (NbSpan == 3) {
|
|
TConv = Convert_TgtThetaOver2_3;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : GetMinimalWeights
|
|
//purpose : On suppose les extremum de poids sont obtenus pour les
|
|
// extremums d'angles (A verifier eventuelement pour Quasi-Angular)
|
|
//=======================================================================
|
|
|
|
void GeomFill::GetMinimalWeights(const Convert_ParameterisationType TConv,
|
|
const Standard_Real MinAng,
|
|
const Standard_Real MaxAng,
|
|
TColStd_Array1OfReal& Weights)
|
|
|
|
{
|
|
if (TConv == Convert_Polynomial) Weights.Init(1);
|
|
else {
|
|
gp_Ax2 popAx2(gp_Pnt(0, 0, 0), gp_Dir(0,0,1));
|
|
gp_Circ C (popAx2, 1);
|
|
Handle(Geom_TrimmedCurve) Sect1 =
|
|
new Geom_TrimmedCurve(new Geom_Circle(C), 0., MaxAng);
|
|
Handle(Geom_BSplineCurve) CtoBspl =
|
|
GeomConvert::CurveToBSplineCurve(Sect1, TConv);
|
|
CtoBspl->Weights(Weights);
|
|
|
|
TColStd_Array1OfReal poids (Weights.Lower(), Weights.Upper());
|
|
Standard_Real angle_min = Max(Precision::PConfusion(), MinAng);
|
|
|
|
Handle(Geom_TrimmedCurve) Sect2 =
|
|
new Geom_TrimmedCurve(new Geom_Circle(C), 0., angle_min);
|
|
CtoBspl = GeomConvert::CurveToBSplineCurve(Sect2, TConv);
|
|
CtoBspl->Weights(poids);
|
|
|
|
for (Standard_Integer ii=Weights.Lower(); ii<=Weights.Upper(); ii++) {
|
|
if (poids(ii) < Weights(ii)) {
|
|
Weights(ii) = poids(ii);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : Knots
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void GeomFill::Knots(const Convert_ParameterisationType TConv,
|
|
TColStd_Array1OfReal& TKnots)
|
|
{
|
|
if ((TConv!=Convert_QuasiAngular) &&
|
|
(TConv!=Convert_Polynomial) ) {
|
|
Standard_Integer i;
|
|
Standard_Real val = 0.;
|
|
for (i=TKnots.Lower(); i<=TKnots.Upper(); i++) {
|
|
TKnots(i) = val;
|
|
val = val+1.;
|
|
}
|
|
}
|
|
else {
|
|
TKnots(1) = 0.;
|
|
TKnots(2) = 1.;
|
|
}
|
|
}
|
|
|
|
|
|
//=======================================================================
|
|
//function : Mults
|
|
//purpose :
|
|
//=======================================================================
|
|
|
|
void GeomFill::Mults(const Convert_ParameterisationType TConv,
|
|
TColStd_Array1OfInteger& TMults)
|
|
{
|
|
switch (TConv) {
|
|
case Convert_QuasiAngular :
|
|
{
|
|
TMults(1) = 7;
|
|
TMults(2) = 7;
|
|
}
|
|
break;
|
|
case Convert_Polynomial :
|
|
{
|
|
TMults(1) = 8;
|
|
TMults(2) = 8;
|
|
}
|
|
break;
|
|
|
|
default :
|
|
{
|
|
// Cas rational classsique
|
|
Standard_Integer i;
|
|
TMults(TMults.Lower())=3;
|
|
for (i=TMults.Lower()+1; i<=TMults.Upper()-1; i++) {
|
|
TMults(i) = 2;
|
|
}
|
|
TMults(TMults.Upper())=3;
|
|
}
|
|
}
|
|
}
|
|
//=======================================================================
|
|
//function : GetTolerance
|
|
//purpose : Determiner la Tolerance 3d permetant de respecter la Tolerance
|
|
// de continuite G1.
|
|
//=======================================================================
|
|
|
|
Standard_Real GeomFill::GetTolerance(const Convert_ParameterisationType TConv,
|
|
const Standard_Real AngleMin,
|
|
const Standard_Real Radius,
|
|
const Standard_Real AngularTol,
|
|
const Standard_Real SpatialTol)
|
|
{
|
|
gp_Ax2 popAx2(gp_Pnt(0, 0, 0), gp_Dir(0,0,1));
|
|
gp_Circ C (popAx2, Radius);
|
|
Handle(Geom_Circle) popCircle = new Geom_Circle(C);
|
|
Handle(Geom_TrimmedCurve) Sect =
|
|
new Geom_TrimmedCurve(popCircle ,
|
|
0.,Max(AngleMin, 0.02) );
|
|
// 0.02 est proche d'1 degree, en desous on ne se preocupe pas de la tngence
|
|
// afin d'eviter des tolerances d'approximation tendant vers 0 !
|
|
Handle(Geom_BSplineCurve) CtoBspl =
|
|
GeomConvert::CurveToBSplineCurve(Sect, TConv);
|
|
Standard_Real Dist;
|
|
Dist = CtoBspl->Pole(1).Distance(CtoBspl->Pole(2)) + SpatialTol;
|
|
return Dist*AngularTol/2;
|
|
}
|
|
|
|
//===========================================================================
|
|
//function : GetCircle
|
|
//purpose : Calculs les poles et poids d'un cercle definie par ses extremites
|
|
// et son rayon.
|
|
// On evite (si possible) de passer par les convertions pour
|
|
// 1) Des problemes de performances.
|
|
// 2) Assurer la coherance entre cette methode est celle qui donne la derive
|
|
//============================================================================
|
|
void GeomFill::GetCircle( const Convert_ParameterisationType TConv,
|
|
const gp_Vec& ns1, // Normal rentrente au premier point
|
|
const gp_Vec& ns2, // Normal rentrente au second point
|
|
const gp_Vec& nplan, // Normal au plan
|
|
const gp_Pnt& pts1,
|
|
const gp_Pnt& pts2,
|
|
const Standard_Real Rayon, // Rayon (doit etre positif)
|
|
const gp_Pnt& Center,
|
|
TColgp_Array1OfPnt& Poles,
|
|
TColStd_Array1OfReal& Weights)
|
|
{
|
|
// La classe de convertion
|
|
|
|
Standard_Integer i, jj;
|
|
Standard_Real Cosa,Sina,Angle,Alpha,Cosas2,lambda;
|
|
gp_Vec temp, np2;
|
|
Standard_Integer low = Poles.Lower();
|
|
Standard_Integer upp = Poles.Upper();
|
|
|
|
Cosa = ns1.Dot(ns2);
|
|
Sina = nplan.Dot(ns1.Crossed(ns2));
|
|
|
|
if (Cosa<-1.) {Cosa=-1; Sina = 0;}
|
|
if (Cosa>1.) {Cosa=1; Sina = 0;}
|
|
Angle = ACos(Cosa);
|
|
// Recadrage sur ]-pi/2, 3pi/2]
|
|
if (Sina <0.) {
|
|
if (Cosa > 0.) Angle = -Angle;
|
|
else Angle = 2.*M_PI - Angle;
|
|
}
|
|
|
|
switch (TConv) {
|
|
case Convert_QuasiAngular:
|
|
{
|
|
GeomFill_QuasiAngularConvertor QConvertor;
|
|
QConvertor.Init();
|
|
QConvertor.Section(pts1, Center, nplan, Angle, Poles, Weights);
|
|
break;
|
|
}
|
|
case Convert_Polynomial:
|
|
{
|
|
GeomFill_PolynomialConvertor PConvertor;
|
|
PConvertor.Init();
|
|
PConvertor.Section(pts1, Center, nplan, Angle, Poles);
|
|
Weights.Init(1);
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
// Cas Rational, on utilise une expression directe beaucoup plus
|
|
// performente que GeomConvert
|
|
Standard_Integer NbSpan=(Poles.Length()-1)/2;
|
|
|
|
Poles(low) = pts1;
|
|
Poles(upp) = pts2;
|
|
Weights(low) = 1;
|
|
Weights(upp) = 1;
|
|
|
|
np2 = nplan.Crossed(ns1);
|
|
|
|
Alpha = Angle/((Standard_Real)(NbSpan));
|
|
Cosas2 = Cos(Alpha/2);
|
|
|
|
for (i=1, jj=low+2; i<= NbSpan-1; i++, jj+=2) {
|
|
lambda = ((Standard_Real)(i))*Alpha;
|
|
Cosa = Cos(lambda);
|
|
Sina = Sin(lambda);
|
|
temp.SetLinearForm(Cosa-1, ns1, Sina, np2);
|
|
Poles(jj).SetXYZ(pts1.XYZ() + Rayon*temp.XYZ());
|
|
Weights(jj) = 1;
|
|
}
|
|
|
|
lambda = 1./(2.*Cosas2*Cosas2);
|
|
for (i=1, jj=low+1; i<=NbSpan; i++, jj+=2) {
|
|
temp.SetXYZ(Poles(jj-1).XYZ() + Poles(jj+1).XYZ()
|
|
-2.*Center.XYZ());
|
|
Poles(jj).SetXYZ(Center.XYZ() + lambda*temp.XYZ());
|
|
Weights(jj) = Cosas2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Standard_Boolean GeomFill::GetCircle(const Convert_ParameterisationType TConv,
|
|
const gp_Vec& ns1, const gp_Vec& ns2,
|
|
const gp_Vec& dn1w, const gp_Vec& dn2w,
|
|
const gp_Vec& nplan, const gp_Vec& dnplan,
|
|
const gp_Pnt& pts1, const gp_Pnt& pts2,
|
|
const gp_Vec& tang1, const gp_Vec& tang2,
|
|
const Standard_Real Rayon,
|
|
const Standard_Real DRayon,
|
|
const gp_Pnt& Center,
|
|
const gp_Vec& DCenter,
|
|
TColgp_Array1OfPnt& Poles,
|
|
TColgp_Array1OfVec& DPoles,
|
|
TColStd_Array1OfReal& Weights,
|
|
TColStd_Array1OfReal& DWeights)
|
|
{
|
|
Standard_Real Cosa,Sina,Cosas2,Sinas2,Angle,DAngle,Alpha,lambda,Dlambda;
|
|
gp_Vec temp, np2, dnp2;
|
|
Standard_Integer i, jj;
|
|
Standard_Integer NbSpan=(Poles.Length()-1)/2;
|
|
Standard_Integer low = Poles.Lower();
|
|
Standard_Integer upp = Poles.Upper();
|
|
|
|
Cosa = ns1.Dot(ns2);
|
|
Sina = nplan.Dot(ns1.Crossed(ns2));
|
|
|
|
if (Cosa<-1.){Cosa=-1; Sina = 0;}
|
|
if (Cosa>1.) {Cosa=1; Sina = 0;}
|
|
Angle = ACos(Cosa);
|
|
// Recadrage sur ]-pi/2, 3pi/2]
|
|
if (Sina <0.) {
|
|
if (Cosa > 0.) Angle = -Angle;
|
|
else Angle = 2.*M_PI - Angle;
|
|
}
|
|
|
|
if (Abs(Sina)>Abs(Cosa)) {
|
|
DAngle = -(dn1w.Dot(ns2) + ns1.Dot(dn2w))/Sina;
|
|
}
|
|
else{
|
|
DAngle = (dnplan.Dot(ns1.Crossed(ns2)) + nplan.Dot(dn1w.Crossed(ns2)
|
|
+ ns1.Crossed(dn2w)))/Cosa;
|
|
}
|
|
|
|
// Aux Extremites.
|
|
Poles(low) = pts1;
|
|
Poles(upp) = pts2;
|
|
Weights(low) = 1;
|
|
Weights(upp) = 1;
|
|
|
|
DPoles(low) = tang1;
|
|
DPoles(upp) = tang2;
|
|
DWeights(low) = 0;
|
|
DWeights(upp) = 0;
|
|
|
|
|
|
switch (TConv) {
|
|
case Convert_QuasiAngular:
|
|
{
|
|
GeomFill_QuasiAngularConvertor QConvertor;
|
|
QConvertor.Init();
|
|
QConvertor.Section(pts1, tang1,
|
|
Center, DCenter,
|
|
nplan, dnplan,
|
|
Angle, DAngle,
|
|
Poles, DPoles,
|
|
Weights, DWeights);
|
|
return Standard_True;
|
|
}
|
|
case Convert_Polynomial:
|
|
{
|
|
GeomFill_PolynomialConvertor PConvertor;
|
|
PConvertor.Init();
|
|
PConvertor.Section(pts1, tang1,
|
|
Center, DCenter,
|
|
nplan, dnplan,
|
|
Angle, DAngle,
|
|
Poles, DPoles);
|
|
Weights.Init(1);
|
|
DWeights.Init(0);
|
|
return Standard_True;
|
|
}
|
|
|
|
default:
|
|
// Cas rationel classique
|
|
{
|
|
np2 = nplan.Crossed(ns1);
|
|
dnp2 = dnplan.Crossed(ns1).Added(nplan.Crossed(dn1w));
|
|
|
|
Alpha = Angle/((Standard_Real)(NbSpan));
|
|
Cosas2 = Cos(Alpha/2);
|
|
Sinas2 = Sin(Alpha/2);
|
|
|
|
for (i=1, jj=low+2; i<= NbSpan-1; i++, jj+=2) {
|
|
lambda = ((Standard_Real)(i))*Alpha;
|
|
Cosa = Cos(lambda);
|
|
Sina = Sin(lambda);
|
|
temp.SetLinearForm(Cosa-1,ns1,Sina,np2);
|
|
Poles(jj).SetXYZ(pts1.XYZ() + Rayon*temp.XYZ());
|
|
|
|
DPoles(jj).SetLinearForm(DRayon, temp, tang1);
|
|
temp.SetLinearForm(-Sina,ns1,Cosa,np2);
|
|
temp.Multiply(((Standard_Real)(i))/((Standard_Real)(NbSpan))*DAngle);
|
|
temp.Add(((Cosa-1)*dn1w).Added(Sina*dnp2));
|
|
DPoles(jj)+= Rayon*temp;
|
|
}
|
|
|
|
lambda = 1./(2.*Cosas2*Cosas2);
|
|
Dlambda = (lambda*Sinas2*DAngle)/(Cosas2*NbSpan);
|
|
|
|
for (i=1, jj=low; i<=NbSpan; i++, jj+=2) {
|
|
temp.SetXYZ(Poles(jj).XYZ() + Poles(jj+2).XYZ()
|
|
-2.*Center.XYZ());
|
|
Poles(jj+1).SetXYZ(Center.XYZ()+lambda*temp.XYZ());
|
|
DPoles(jj+1).SetLinearForm(Dlambda, temp,
|
|
1.-2*lambda, DCenter,
|
|
lambda, (DPoles(jj)+ DPoles(jj+2)));
|
|
}
|
|
|
|
// Les poids
|
|
Dlambda = -Sinas2*DAngle/(2*NbSpan);
|
|
for (i=low; i<upp; i+=2) {
|
|
Weights(i) = 1.;
|
|
Weights(i+1) = Cosas2;
|
|
DWeights(i) = 0.;
|
|
DWeights(i+1) = Dlambda;
|
|
}
|
|
}
|
|
return Standard_True;
|
|
}
|
|
// return Standard_False;
|
|
}
|
|
|
|
Standard_Boolean GeomFill::GetCircle(const Convert_ParameterisationType TConv,
|
|
const gp_Vec& ns1, const gp_Vec& ns2,
|
|
const gp_Vec& dn1w, const gp_Vec& dn2w,
|
|
const gp_Vec& d2n1w, const gp_Vec& d2n2w,
|
|
const gp_Vec& nplan, const gp_Vec& dnplan,
|
|
const gp_Vec& d2nplan,
|
|
const gp_Pnt& pts1, const gp_Pnt& pts2,
|
|
const gp_Vec& tang1, const gp_Vec& tang2,
|
|
const gp_Vec& Dtang1, const gp_Vec& Dtang2,
|
|
const Standard_Real Rayon,
|
|
const Standard_Real DRayon,
|
|
const Standard_Real D2Rayon,
|
|
const gp_Pnt& Center,
|
|
const gp_Vec& DCenter,
|
|
const gp_Vec& D2Center,
|
|
TColgp_Array1OfPnt& Poles,
|
|
TColgp_Array1OfVec& DPoles,
|
|
TColgp_Array1OfVec& D2Poles,
|
|
TColStd_Array1OfReal& Weights,
|
|
TColStd_Array1OfReal& DWeights,
|
|
TColStd_Array1OfReal& D2Weights)
|
|
{
|
|
Standard_Real Cosa,Sina,Cosas2,Sinas2;
|
|
Standard_Real Angle, DAngle, D2Angle, Alpha;
|
|
Standard_Real lambda, Dlambda, D2lambda, aux;
|
|
gp_Vec temp, dtemp, np2, dnp2, d2np2;
|
|
Standard_Integer i, jj;
|
|
Standard_Integer NbSpan=(Poles.Length()-1)/2;
|
|
Standard_Integer low = Poles.Lower();
|
|
Standard_Integer upp = Poles.Upper();
|
|
|
|
Cosa = ns1.Dot(ns2);
|
|
Sina = nplan.Dot(ns1.Crossed(ns2));
|
|
|
|
if (Cosa<-1.){Cosa=-1; Sina = 0;}
|
|
if (Cosa>1.) {Cosa=1; Sina = 0;}
|
|
Angle = ACos(Cosa);
|
|
// Recadrage sur ]-pi/2, 3pi/2]
|
|
if (Sina <0.) {
|
|
if (Cosa > 0.) Angle = -Angle;
|
|
else Angle = 2.*M_PI - Angle;
|
|
}
|
|
|
|
if (Abs(Sina)>Abs(Cosa)) {
|
|
aux = dn1w.Dot(ns2) + ns1.Dot(dn2w);
|
|
DAngle = -aux/Sina;
|
|
D2Angle = -(d2n1w.Dot(ns2) + 2*dn1w.Dot(dn2w) + ns1.Dot(d2n2w))/Sina
|
|
+ aux*(dnplan.Dot(ns1.Crossed(ns2)) + nplan.Dot(dn1w.Crossed(ns2)
|
|
+ ns1.Crossed(dn2w)))/(Sina*Sina);
|
|
}
|
|
else{
|
|
temp = dn1w.Crossed(ns2) + ns1.Crossed(dn2w);
|
|
DAngle = (dnplan.Dot(ns1.Crossed(ns2)) + nplan.Dot(temp))/Cosa;
|
|
D2Angle = ( d2nplan.Dot(ns1.Crossed(ns2)) +2*dnplan.Dot(temp)
|
|
+ nplan.Dot(d2n1w.Crossed(ns2) + 2*dn1w.Crossed(dn2w)
|
|
+ ns1.Crossed(d2n2w)) )/Cosa
|
|
- ( dn1w.Dot(ns2) + ns1.Dot(dn2w))
|
|
* (dnplan.Dot(ns1.Crossed(ns2)) + nplan.Dot(temp)) /(Cosa*Cosa);
|
|
}
|
|
|
|
// Aux Extremites.
|
|
Poles(low) = pts1;
|
|
Poles(upp) = pts2;
|
|
Weights(low) = 1;
|
|
Weights(upp) = 1;
|
|
|
|
DPoles(low) = tang1;
|
|
DPoles(upp) = tang2;
|
|
DWeights(low) = 0;
|
|
DWeights(upp) = 0;
|
|
|
|
D2Poles(low) = Dtang1;
|
|
D2Poles(upp) = Dtang2;
|
|
D2Weights(low) = 0;
|
|
D2Weights(upp) = 0;
|
|
|
|
|
|
switch (TConv) {
|
|
case Convert_QuasiAngular:
|
|
{
|
|
GeomFill_QuasiAngularConvertor QConvertor;
|
|
QConvertor.Init();
|
|
QConvertor.Section(pts1, tang1, Dtang1,
|
|
Center, DCenter, D2Center,
|
|
nplan, dnplan, d2nplan,
|
|
Angle, DAngle, D2Angle,
|
|
Poles, DPoles, D2Poles,
|
|
Weights, DWeights, D2Weights);
|
|
return Standard_True;
|
|
}
|
|
case Convert_Polynomial:
|
|
{
|
|
GeomFill_PolynomialConvertor PConvertor;
|
|
PConvertor.Init();
|
|
PConvertor.Section(pts1, tang1, Dtang1,
|
|
Center, DCenter, D2Center,
|
|
nplan, dnplan, d2nplan,
|
|
Angle, DAngle, D2Angle,
|
|
Poles, DPoles, D2Poles);
|
|
Weights.Init(1);
|
|
DWeights.Init(0);
|
|
D2Weights.Init(0);
|
|
return Standard_True;
|
|
}
|
|
|
|
default:
|
|
{
|
|
np2 = nplan.Crossed(ns1);
|
|
dnp2 = dnplan.Crossed(ns1).Added(nplan.Crossed(dn1w));
|
|
d2np2 = d2nplan.Crossed(ns1).Added(nplan.Crossed(dn2w));
|
|
d2np2 += 2*dnplan.Crossed(dn1w);
|
|
|
|
Alpha = Angle/((Standard_Real)(NbSpan));
|
|
Cosas2 = Cos(Alpha/2);
|
|
Sinas2 = Sin(Alpha/2);
|
|
|
|
for (i=1, jj=low+2; i<= NbSpan-1; i++, jj+=2) {
|
|
lambda = ((Standard_Real)(i))*Alpha;
|
|
Cosa = Cos(lambda);
|
|
Sina = Sin(lambda);
|
|
temp.SetLinearForm(Cosa-1,ns1,Sina,np2);
|
|
Poles(jj).SetXYZ(pts1.XYZ() + Rayon*temp.XYZ());
|
|
|
|
DPoles(jj).SetLinearForm(DRayon, temp, tang1);
|
|
dtemp.SetLinearForm(-Sina,ns1,Cosa,np2);
|
|
aux = ((Standard_Real)(i))/((Standard_Real)(NbSpan));
|
|
dtemp.Multiply(aux*DAngle);
|
|
dtemp.Add(((Cosa-1)*dn1w).Added(Sina*dnp2));
|
|
DPoles(jj)+= Rayon*dtemp;
|
|
|
|
D2Poles(jj).SetLinearForm(D2Rayon, temp,
|
|
2*DRayon, dtemp, Dtang1);
|
|
temp.SetLinearForm(Cosa-1, dn2w, Sina, d2np2);
|
|
dtemp.SetLinearForm(-Sina,ns1,Cosa,np2);
|
|
temp+= (aux*aux*D2Angle)*dtemp;
|
|
dtemp.SetLinearForm(-Sina, dn1w+np2, Cosa, dnp2,
|
|
-Cosa, ns1);
|
|
temp+=(aux*DAngle)*dtemp;
|
|
D2Poles(jj)+= Rayon*temp;
|
|
}
|
|
|
|
lambda = 1./(2.*Cosas2*Cosas2);
|
|
Dlambda = (lambda*Sinas2*DAngle)/(Cosas2*NbSpan);
|
|
aux = Sinas2/Cosas2;
|
|
D2lambda = ( Dlambda * aux*DAngle
|
|
+ D2Angle * aux*lambda
|
|
+ (1+aux*aux)*(DAngle/(2*NbSpan)) * DAngle*lambda )
|
|
/ NbSpan;
|
|
for (i=1, jj=low; i<=NbSpan; i++, jj+=2) {
|
|
temp.SetXYZ(Poles(jj).XYZ() + Poles(jj+2).XYZ()
|
|
-2.*Center.XYZ());
|
|
Poles(jj+1).SetXYZ(Center.XYZ()+lambda*temp.XYZ());
|
|
|
|
|
|
dtemp.SetXYZ(DPoles(jj).XYZ() + DPoles(jj+2).XYZ()
|
|
-2.*DCenter.XYZ());
|
|
DPoles(jj+1).SetLinearForm(Dlambda, temp,
|
|
lambda, dtemp,
|
|
DCenter);
|
|
D2Poles(jj+1).SetLinearForm(D2lambda, temp,
|
|
2*Dlambda, dtemp,
|
|
lambda, (D2Poles(jj)+ D2Poles(jj+2)));
|
|
D2Poles(jj+1)+= (1-2*lambda)*D2Center;
|
|
}
|
|
|
|
// Les poids
|
|
Dlambda = -Sinas2*DAngle/(2*NbSpan);
|
|
D2lambda = -Sinas2*D2Angle/(2*NbSpan)
|
|
-Cosas2*Pow(DAngle/(2*NbSpan),2);
|
|
|
|
for (i=low; i<upp; i+=2) {
|
|
Weights(i) = 1.;
|
|
Weights(i+1) = Cosas2;
|
|
DWeights(i) = 0.;
|
|
DWeights(i+1) = Dlambda;
|
|
D2Weights(i) = 0.;
|
|
D2Weights(i+1) = D2lambda;
|
|
}
|
|
}
|
|
return Standard_True;
|
|
}
|
|
}
|